Supporting Information

Assessment of 2,2-dibromo-3-nitrilopropionamide biocide enhanced by D-tyrosine against zinc corrosion by a sulfate reducing bacterium

Tuba Unsal^{a,b}, Di Wang^a, Sith Kumseranee^c, Suchada Punpruk^c, Magdy El-Said Mohamed^d, Mazen A. Saleh^d, Tingyue Gu^{a,*}

^aDepartment of Chemical and Biomolecular Engineering, Institute for Corrosion and Multiphase Technology, Ohio University, Athens, OH 45701, USA.

^bInstitute of Marine Sciences and Management, Istanbul University, Istanbul, 34134, Turkey. ^cPTT Exploration and Production, Bangkok 10900, Thailand.

^dResearch and Development Center, Saudi Arabian Oil Company, Dhahran 31311, Saudi Arabia.

Corresponding Author

*E-mail address: <u>gu@ohio.edu.</u> Tel.: 740-593-1499; fax: 740-593-0873

Treatment	$R_{\rm s}$ ($\Omega {\rm cm}^2$)	$\begin{array}{c} Y_2\\ (\Omega^{-1}\ \mathrm{cm}^{-2}\ \mathrm{s}^{\mathrm{n}})\end{array}$	<i>n</i> ₂	$R_{\rm b}$ ($\Omega {\rm cm}^2$)	$\frac{Y_l}{(\Omega^{-1} \text{ cm}^{-2} \text{ s}^n)}$	W (Ω cm ²)	<i>n</i> 1	$R_{\rm ct}$ ($\Omega {\rm cm}^2$)
Abiotic control	44.9	-	-	-	0.121	0.135	0.79	858
No treatment	16.1	0.073	0.80	6	0.083	-	0.82	121
1 ppm D-tyrosine	11.7	0.051	0.84	17	0.096	-	0.96	127
100 ppm DBNPA	17.6	0.271	0.82	19	0.088	-	0.86	163
100 ppm DBNPA + 1 ppm D-tyrosine	24.9	0.682	0.97	31	0.276	0.262	0.92	442

Table S1. Electrochemical parameters from fitting electrochemical impedance spectrometry (EIS) data.

Figure S1. Open circuit potential during Desulfovibrio vulgaris incubation.

Figure S2. Circuit models used for fitting EIS data: (A) abiotic coupon, (B) untreated, 100 ppm DBNPA and 1 ppm D-tyrosine alone treated coupon, and (C) the combination of 100 ppm DBNPA + 1 ppm D-tyrosine treated coupon.

The constant phase element (CPE) was used to replace the ideal capacitor for better fitting. In Figure S2A, the circuit includes (1): R_s as solution resistance, (2) charge transfer resistance R_{ct} and CPE₁ for the zinc surface double layer capacitance with a finite Warburg element (W). In Figure S2B, the circuit includes: (1) R_s , (2) the parallel combination of R_{ct} and CPE₁ for the zinc surface double layer capacitance and CPE₂ for the biofilm resistance (R_b). In Figure S2C, the circuit includes: (1) R_s , (2) the parallel combination of R_{ct} and CPE₁ for the formation of a heterogeneous layer containing mainly corrosion products, (3) the parallel combination of R_b together with W and CPE₂ for the biofilm layer on the zinc surface.