SUPPORTING INFORMATION ## Incorporation of Metal Phosphide Domains into Colloidal Hybrid Nanoparticles Emil A. Hernández-Pagán,^{1,2,*} Robert W. Lord,¹ Joseph M. Veglak,¹ and Raymond E. Schaak^{1,3,4,*} ¹ Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 ² Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 ³ Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802 ⁴ Materials Research Institute, The Pennsylvania State University, University Park, PA 16802 ^{*} E-mail: emilhp@udel.edu, res20@psu.edu Figure S1. Conduction and valence band energy levels for CdS and PbS relative to the work function of Ni_2P . ¹⁻³ Figure S2. TEM image of the Ni₂P-PbS hybrid nanoparticles. Figure S3. TEM image of the Co_xP_y -PbS hybrid nanoparticles. **Figure S4.** TEM image of Ni_2P –CdS hybrid nanoparticles, showing the presence of CdS quantum dots that homogeneous nucleated during the synthesis. Figure S5. TEM image of (a) Ni_2P -Au and (b) Co_xP_y -Au hybrids nanoparticles. **Figure S6.** TEM image of (a) Ni₂P–Ag and (b) Co_xP_y–Ag hybrid nanoparticles. ## References - (1) Nozik, A.; Memming, R. Physical Chemistry of Semiconductor-Lquid Interfaces. *J. Phys. Chem.* **1996**, *100*, 13061–13078. - (2) Yeon, D.; Lee, S.; Jo, Y.; Moon, J.; Cho, Y. Origin of the enhanced photovoltaic characteristics of PbS thin film solar cells processed at near room temperature. *J. Mater. Chem. A* **2014**, *2*, 20112-20117. - (3) Song, R.; Zhou, W.; Luo, B.; Jing, D. Highly efficient photocatalytic H₂ evolution using TiO₂ nanoparticles integrated with electrocatalytic metal phosphides as cocatalysts. *Appl. Surf. Sci.* **2017**, *416*, 957-964.