Supporting information

Evidence for the coexistence of polysulfide and conversion reactions in the lithium storage mechanism of MoS₂ anode material

Woosung Choi¹, Yun Seok Choi², Hyunwoo Kim¹, Jaesang Yoon^{1,3}, Yelim Kwon², Taewhan Kim¹, Ju-Hyun Ryu², Ji Hye Lee², Wontae Lee^{1,4}, Joonsuk Huh^{2,5,6}, Ji Man Kim^{2,*}, and Won-Sub Yoon^{1,*}

¹ Department of Energy Science, Sungkyunkwan University, Suwon 16419, South Korea

² Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea

³ The Institute of New Paradigm of Energy Science Convergence, Sungkyunkwan University, Suwon 16419, South Korea

⁴ Center for Fostering Renewable Energy Integrated System Researcher, Suwon 16419, South Korea

⁵ SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, South Korea

⁶ Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, South Korea

Figure S1. (a) SEM image and (b) EDS mapping spectrum of commercial MoS₂.

Figure S2. Low-magnitude TEM images of a MoS₂ microsphere for (a,b) pristine, (d,e) fully discharged, and (g,h) fully charged MoS₂. Corresponding ED patterns of the MoS₂ electrode in (c,f,i), respectively.

Figure S3. Voltage profile (left, gray line), and Mo valence vs. capacity (right, dark blue line) of MoS₂ electrode upon the first cycle. Mo valence was calculated via linear interpolation using the X-ray absorption edge point of bulk MoS₂, and Mo metal foil as the reference.

Figure S4. Voltage profiles for MoS₂ and MoS₂+25S composite during the first cycle at 100 mA g⁻¹ between 3.0 and 0.001 V (*vs.* Li/Li⁺). The highlighted region indicates that the additional part which is only related to the sulfur reaction.

Figure S5. Voltage profile (left, gray line), and Mo valence vs. capacity (right, dark blue line) of MoS₂ electrode upon the second cycle. Mo valence was calculated via linear interpolation using the X-ray absorption edge point of bulk MoS₂, and Mo metal foil as the reference.

Figure S6. Depth profile XPS of MoS_2 , which was obtained before sputtering and after sputtering at 30 nm (5 nm per each level). (a) Mo_{3d} XPS spectra of 1FC and 2D200, (b) S_{2p} XPS spectra of 1FC and 2D200.

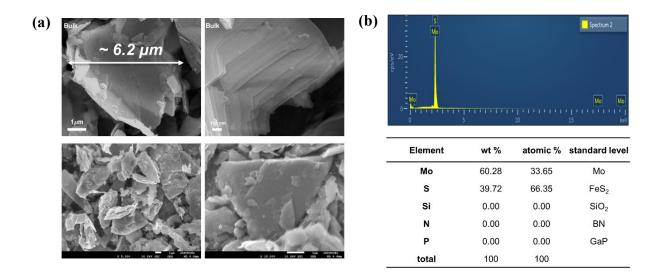
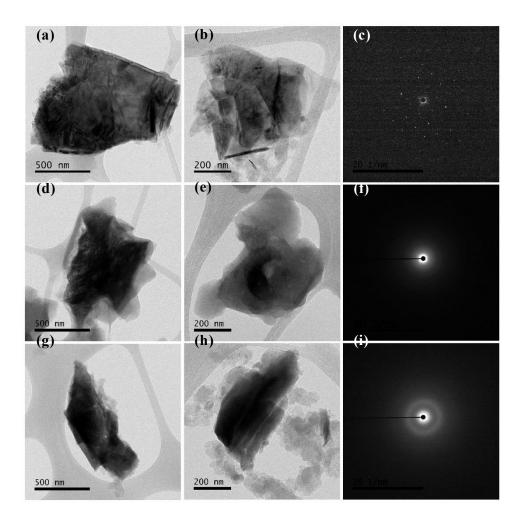
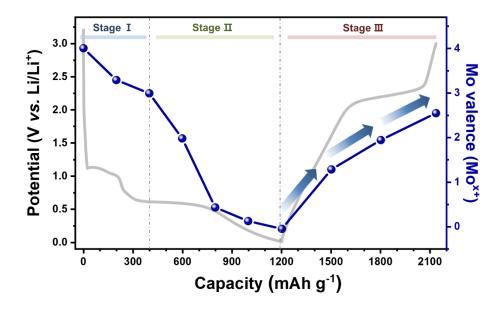
Figure S7. XPS spectra of MoS_2 after eliminating the SEI layer. (a) Mo_{3d} at level 6 (30 nm) and (b) S_{2p} at level 6 (30 nm).

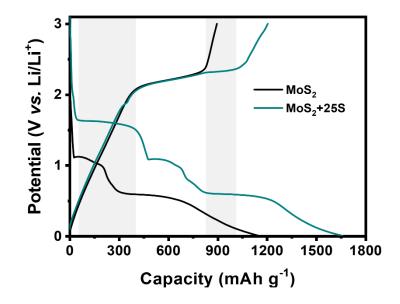
Figure S8. k³-weighted Fourier transform magnitude and imaginary part along with the bestfit model of Mo K-edge EXAFS spectrum of pristine MoS₂, 1st full charge, and 2nd discharge 400.

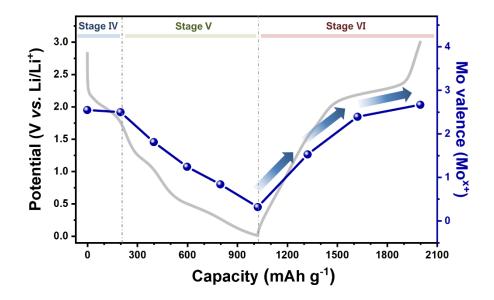
Figure S9. k-weight fitting of pristine MoS_2 EXAFS to determine the reduction factor (S_0^2) and coordination number (CN).

Figure S10. (a) Voltage profiles of the MoS₂ during the 1st to 10th cycles between 0.001–3.0 V (*vs.* Li/Li⁺) at a current density of 100 mA g⁻¹. (b) CV profiles between 0.001–3.0 V (*vs.* Li/Li⁺) at a scan rate of 0.05 mV s⁻¹ during the 1st to 10th cycles.

Table S1. Best-fit results for k³-weighted Mo K-edge EXAFS spectrum data.


Figure S1. (a) SEM image and (b) EDS mapping spectrum of commercial MoS₂.


Figure S2. Low-magnitude TEM images of a MoS_2 microsphere for (a,b) pristine, (d,e) fully discharged, and (g,h) fully charged MoS_2 . Corresponding ED patterns of the MoS_2 electrode in (c,f,i), respectively.

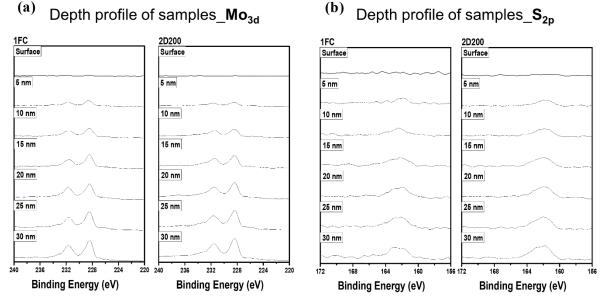
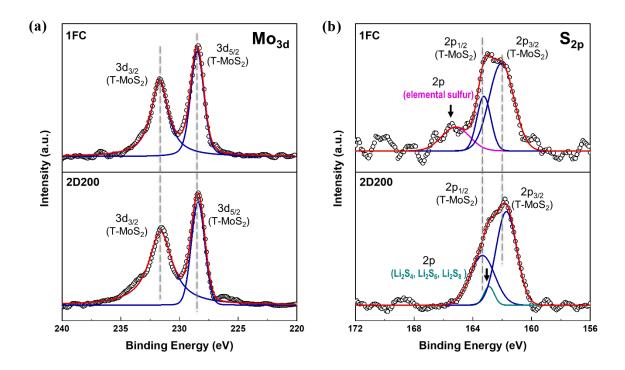

Figure S3. Voltage profile (left, gray line), and Mo valence vs. capacity (right, dark blue line) of MoS₂ electrode upon the first cycle. Mo valence was calculated via linear interpolation using the X-ray absorption edge point of bulk MoS₂, and Mo metal foil as the reference.

Figure S4. Voltage profiles for MoS_2 and MoS_2+25S composite during the first cycle at 100 mA g⁻¹ between 3.0 and 0.001 V (*vs.* Li/Li⁺). The highlighted region indicates that the additional part which is only related to the sulfur reaction.


Figure S5. Voltage profile (left, gray line), and Mo valence vs. capacity (right, dark blue line) of MoS₂ electrode upon the second cycle. Mo valence was calculated via linear interpolation using the X-ray absorption edge point of bulk MoS₂, and Mo metal foil as the reference.

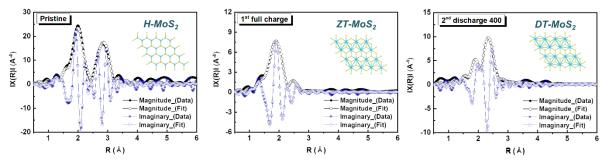

(a)

Figure S6. Depth profile XPS of MoS₂, which was obtained before sputtering and after sputtering at 30 nm (5 nm per each level). (a) Mo_{3d} XPS spectra of 1FC and 2D200, (b) S_{2p} XPS spectra of 1FC and 2D200.

(b) Depth profile of samples_S_{2p}

Figure S7. XPS spectra of MoS_2 after eliminating the SEI layer. (a) Mo_{3d} at level 6 (30 nm) and (b) S_{2p} at level 6 (30 nm).

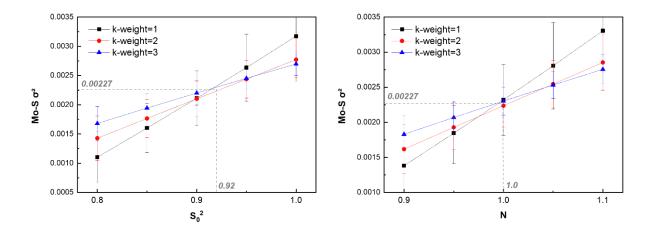
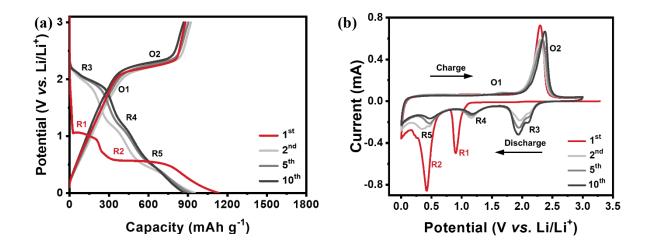


Figure S8. k³-weighted Fourier transform magnitude and imaginary part along with the bestfit model of Mo K-edge EXAFS spectrum of pristine MoS₂, 1st full charge, and 2nd discharge 400.

Sample	Path	CN	R [Å]	σ²[10 ⁻³ Å]	R-factor
Pristine (H-MoS ₂)	Mo-S	6.0*	2.407(2)	2.27*	0.00569
	Mo-Mo	6.0*	3.171(3)	4.1(2)	
1FC (ZT-MoS ₂)	Mo-S	4.4(2)	2.413(3)	8.0(5)	0.00194
	Mo-Mo	2.1(8)	2.771(10)	16.1(38)	
2D-400 (DT- MoS ₂)	Mo-S	3.5(4)	2.475(12)	5.4(10)	0.00209
	Mo-Mo	3.0(4)	2.652(6)	5.0(5)	


Table S1. Best-fit results for k³-weighted Mo K-edge EXAFS spectrum data.

* Fixed value

Figure S9. k-weight fitting of pristine MoS_2 EXAFS to determine the reduction factor (S_0^2) and coordination number (CN).

To determine the reduction factor (S_0^2) of MoS₂, k-weight fitting was performed based on the pristine sample as shown in **Figure S9** and the S₀² value was obtained as 0.92. EXAFS fitting with the S₀² value fixed at 0.92 was performed for two other samples. Consequently, the pristine MoS₂ results were consistent with the H-MoS₂ (hexagonal symmetry) crystallography values.

Figure S10. (a) Voltage profiles of the MoS₂ during the 1st to 10th cycles between 0.001–3.0 V (*vs.* Li/Li⁺) at a current density of 100 mA g⁻¹. (b) CV profiles between 0.001–3.0 V (*vs.* Li/Li⁺) at a scan rate of 0.05 mV s⁻¹ during the 1st to 10th cycles.