Supporting Information

Fabrication of highly monodisperse and small-grain platinum hole–cylinder nanoparticles as a cathode catalyst for Li–O₂ batteries

Keon Hee Park[†], Do Youb Kim[‡], Ju Ye Kim^{†, ϵ}, Minki Kim[†], Geun-Tae Yun[†], Yesol Kim[†], Heeeun Joo[†], Sungho Choi[‡], Jungdon Suk[‡], Yongku Kang^{‡, ¶}, Mihye Wu^{†,‡,§,*}, Woo-Bin Jung^{†,§,1,*} and Hee-Tae Jung^{†,§,*}

[†]Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea

[‡]Advanced Materials Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Korea

[€] Chemical & Process Technology Division, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Korea

[§]Korea Advanced Institute of Science and Technology (KAIST) Institute for Nanocentury, Daejeon 34141, Korea

^{II}School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.

^aDepartment of Chemical Convergence Materials, University of Science and Technology (UST), Yuseong-gu, Dajeon 34113, Korea

Corresponding authors

Hee-Tae Jung (heetae@kaist.ac.kr)

Woo-Bin Jung (woobinjung@seas.harvard.edu)

Mihye Wu (wumihye@krict.re.kr)

Morphology analysis of Pt hole-cylindrical nanopatterns

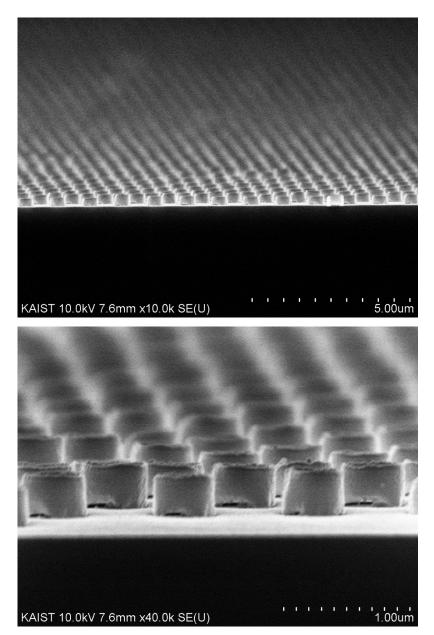
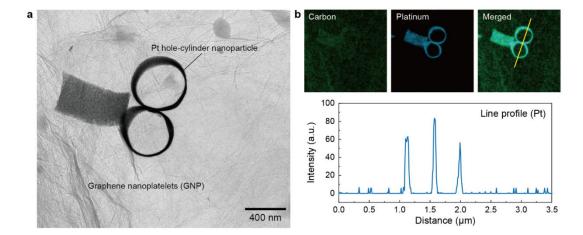



Figure S1: Low magnification and high magnification SEM image of Pt hole-cylindrical nanopattern fabricated over a large area from the side view.

TEM images and EDS line profile of GNP and Pt hole-cylinder nanoparticles

Figure S2 shows the Pt catalyst of the hole-cylinder morphology, and it can be seen

that the Pt-hole-cylinder nanoparticles are well attached to the catalyst support GNP.

Figure S2: (a) TEM images of GNP and Pt hole-cylinder nanoparticles. **(b)** TEM-EDS mapping images and line profile of GNP and Pt hole-cylinder nanoparticles.

Electrochemical performance of electrodes in discharge/charge profile at first-cycle

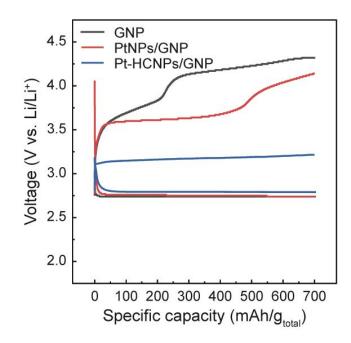


Figure S3: First-cycle discharge/charge profile of Li–O₂ cells with GNP, PtNPs/GNP, and Pt-HCNPs/GNP electrodes under a 70 mA g⁻¹ to capacity of 700 mAh g⁻¹.

Electrochemical performance of electrodes in discharge/charge profile at the selected

cycles



Figure S4: Discharge/charge profile of Li–O₂ cells at the selected cycles with (a) GNP, (b) PtNPs/GNP, and (c) Pt-HCNPs/GNP electrodes under a 70 mA g⁻¹ to capacity of 700 mAh g⁻¹.

The specific capacity of the electrodes

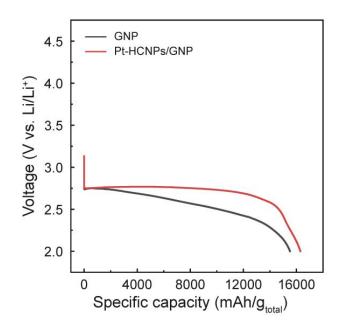


Figure S5: The full discharge profiles of GNP and Pt-HCNPs/GNP electrodes under a 100 mA g^{-1} to 2.0 V.

Morphology of discharge product

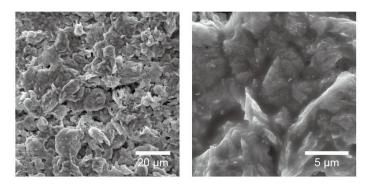
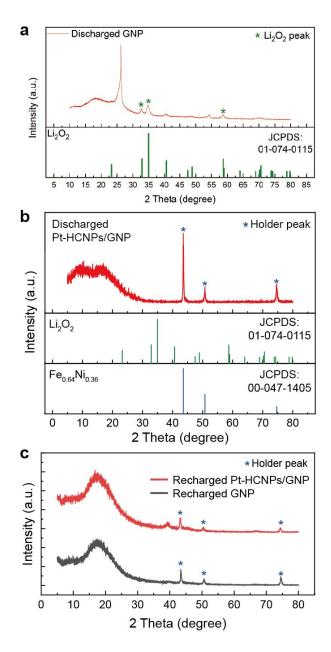
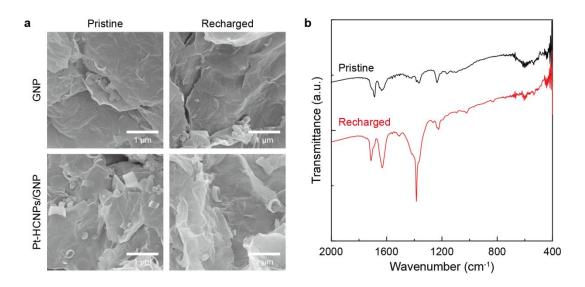



Figure S6: SEM images of PtNPs/GNP after discharge

Discharge product analysis


In **Figure S7**, the peak of crystalline Li_2O_2 can be seen in the XRD pattern of the discharged GNP electrode, whereas in the case of the XRD pattern of the discharged Pt-

HCNPs/GNP electrode, the peak of crystalline Li₂O₂ cannot be seen.

Figure S7: XRD pattern of (a) GNP electrode after discharge **(b)** Pt-HCNPs/GNP electrode after discharge **(c)** GNP and Pt-HCNPs/GNP electrodes after recharge

Pristine and recharged cathode analysis

Figure S8: Pristine and recharged cathodes (a) SEM images of GNP and Pt-HCNPs/GNP **(b)** IR spectra of Pt-HCNPs/GNP.

Overpotential comparison

Table S1. Comparison of overpotential of Pt-HCNPs/GNP cathode with other reportedPt-based catalysts

Cathode	Electrolyte	Current density (mA g ⁻¹)	Overpotential (V vs. Li/Li⁺)	Ref
Pt-HCNPs/GNP	1M LiNO $_3$ in DMA	100	0.41 V	This work
CNF@Pt	$1M LiNO_3$ in DMA	500	0.9 V	Carbon 2018 , 130, 94- 104
Pt/CNTs/Ni foam	1M LiTFSI in TEGDME	160	1.1 V	ACS Appl. Mater. Interfaces 2014 , 6, 15, 12479–12485
Pt/α -MnO ₂ nanotube	1M LiClO ₄ in DMSO	70	1.07 V	Nano Energy 2014 , <i>10</i> , 19-27
Pt-Cu core-shell on carbon	1M LiCF ₃ SO ₃ in TEGDME	100	0.5 V	<i>Nano Lett.</i> 2016 , <i>16</i> , 781-785
Pt-coated BND-Co@Graphene	1M LiCF $_3$ SO $_3$ in TEGDME	100	0.88 V	Adv. Energy Mater 2019 , 9, 1900662
Pt bulk-doped BND- Co@Graphene	1M LiCF $_3$ SO $_3$ in TEGDME	100	0.55 V	Adv. Energy Mater 2019 , 9, 1900662