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Table	S1.	Assignment	of	identity	to	healthy	tissue	ions	that	exhibit	a	gradient	of	cancer-
like	abundance	in	the	vicinity	of	medulloblastoma	cancer.	HPLC-MS/MS	was	performed,	as	
described	in	the	methods	section,	on	tissue	extract	material	to	determine	the	identity	for	each	of	
the	DESI-MS	target	ions	shown	in	Fig.	1F	to	exhibit	distance-dependent	gradient	behaviour	in	
proximity	of	cancer.	The	accurate	mass,	retention	time,	theoretical	mass	and	diagnostic	
fragments	if	applicable	(observed),	have	been	reported.	This	analysis	was	performed	largely	as	
described	previously1.		A	variety	of	different	classes	of	lipids,	some	of	which	are	known	to	be	
synthesized	from	DHA	are	reported	and	assigned.	
	
	 	

Target	m/z 	(DESI-MS) LC-MS	(m/z ) RT	(min) Theoretical	
m/z

Error	
(ppm) Ion	form Assignment Predicted	formula Distinguishing	fragments	(ms/ms)

790.537 790.5403 10.3 790.5392 1.4 [M-H]-	 PE(22:6/18:0)	or	
PE(18:0/22:6)	 [C45H77NO8P]

m/z 	79,	m/z 	97,	m/z 	122,	m/z 	140,	m/z 	153,	m/z	
283,	m/z 	327,	m/z	 462,	m/z	 480,	m/z 	506,	m/z 	524

941.812 941.7073 8.6 941.7087 -1.4 [M-H]-	 MGDG(48:6) [C57H97O10] Exact	mass	only

804.548 804.576 10.18 804.5755 0.6 [M+formate]- PC(18:1/16:0)	or	
PC(16:0/18:1) [C43H83NO10P]

m/z 	79,	m/z 	97,	m/z 	153,	m/z 	168,	m/z 	224,	m/z	
255,	m/z	 281,	m/z 	462,	m/z 	480,		m/z 	488,	m/z 	506,	

m/z 	744

834.53 834.5313 8.9 834.5291 2.6 [M-H]-	 PS(22:6/18:0)	or	
PS(18:0/22:6) [C46H77NO10P]

m/z 	79,	m/z 	97,	m/z 	153,	m/z 	283,	m/z 	327,	m/z	
419,	m/z 	437,	m/z	 463,	m/z	 481,	m/z 	747

778.548 778.5594 10 778.5598 -0.5 [M+formate]- PC(16:0/16:0) [C41H81NO10P]
m/z 	79,	m/z 	97,	m/z 	153,	m/z 	168,	m/z 	224,	m/z	

255,	m/z 	462,	m/z	 480,	m/z	 718

888.625 888.6241 11.3 888.624 0.1 [M-H]-	
SHexCer(d18:1/24:1)	

or	
SHexCer(d24:1/18:1)	

[C48H90NO11S] m/z 	97,	m/z 	139,	m/z 	241,	m/z 	257,	m/z 	300

854.519 854.6725 13.4 854.6727 -0.2 [M+formate]- HexCer(d18:1/24:1)	 [C49H92NO10]
m/z 	161,	m/z 	237,	m/z 	263,	m/z 	364,	m/z 	365,	m/z	

390,	m/z 	406,	m/z	 629,	m/z	 647,	m/z 	809
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Figure	S1.	DESI-MS	imaging	suggests	that	small	molecule	ions	prominent	in	the	healthy	
tissue	are	most	abundantly	present	in	the	sites	distal	to	cancer.		(A)	DESI-MS	ion	images	
(absolute	intensity)	of	prominent	healthy	tissue	lipids	identified	in	Table	S1/analyzed	in	Fig.	1	
(with	the	exception	of	m/z	941.71	that	did	not	produce	a	good	DESI-MS	image).	These	ion	images	
are	consistent	with	distance	dependent	alteration	in	abundance	reported	in	Fig.	1	and	with	two-
point	laser	capture	microdissection	HPLC-MS	(Fig.	1J).	A	multivariate	segmented	image	(using	
bisecting	k-means	on	LipoStar	MSI2)	is	also	included	that	shows	that	a	unique	cluster	(green)	
corresponding	to	a	uniform	area	surrounding	cancer,	also	populated	at	the	edges	of	tissue	where	
DESI-MS	signal	overall	shows	a	drop	in	intensity.	We	have	also	included	an	overlay	of	white	and	
gray	matter	markers	(m/z	834.52	and	m/z	888.623,	4).	(B)	DESI-MS	images	of	ion	abundance	
(absolute	intensity)	for	the	same	ions	in	A	(Fig.	1)	as	well	as	for	an	additional	set	of	healthy	tissue	
markers	are	shown	here.	A	segmented	image	(bisecting	k-means	clustering)	is	also	included	that	
suggests	altered	spectral	content	in	the	vicinity	of	cancer.	The	m/z	303.23	(arachidonic	acid)	has	
been	previously	seen	using	similar	DESI-MS	experimental	conditions	by	our	group5	and	DESI-MS	
markers	of	white	and	gray	matter	for	mouse	brain	tissue	m/z	834.52	and	m/z	888.623,	4	have	
been	observed	previously	by	our	group6,	reprinted	(adapted)	with	permission.	Copyright	(2020)	
American	Chemical	Society.	m/z	281.25	(oleic	acid)	seen	previously	in	other	tissues	under	
similar	experimental	conditions5	is	present	in	medulloblastoma	cancer.	The	results	in	this	figure	
are	obtained	from	an	independently	prepared	medulloblastoma	bearing	brain	compared	to	the	
specimen	studied	in	Fig.1	(or	panel	A	in	this	figure).	The	results	are	consistent	with	Fig.	1	
observations	in	that	most	healthy	tissue	ions	tend	to	be	abundant	at	sites	distal	to	the	cancer	
region.	To	investigate	the	extent	to	which	the	biological	heterogeneity	in	the	brain	structure	
(distribution	of	white	and	gray	matter)	could	explain	the	trend	in	abundance	seen	we	have	
included	an	H&E	image	as	well	as	white	and	gray	matter	biomarker	ions6	for	both	Panel	A	and	
Panel	B	tumour	cases.	The	DESI-MS	dataset	for	this	specimen	has	been	reported	previously6,	
reprocessed	herein	and	the	previously	published	H&E	images6	have	been	reproduced	with	
permission.	As	can	be	seen	here,	the	distribution	of	gray	and	white	matter	alone	cannot	explain	
the	abundance	trends	seen	in	many	of	these	ions.	The	DESI-MS	ions	used	to	reveal	tissue	
architecture	were	visualized	with	LipoStarMSI2.				
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Figure	S2.	The	PIRL-MS	imaging	of	an	independent	medulloblastoma	bearing	brain.	In	this	
figure	we	have	repurposed	the	PIRL-MS	imaging	dataset	of	a	medulloblastoma	bearing	brain	
previously	published	by	our	group6,	reprinted	(adapted)	with	permission.	Copyright	(2020)	
American	Chemical	Society.	Some	of	the	PIRL-MS	images	presented	are	published	previously6	
and	are	reproduced	here	with	permission	for	the	clarity	of	discussion.	The	highlighted	box	
indicates	the	transition	border	between	cancer	and	healthy	tissue.	The	m/z	134.05,	observed	
previously	in	PIRL-MS	studies	of	medulloblastoma1,	6,	7	and	assigned	as	adenine	(m/z	134.0473,	
C5H4N5–)6,	8,	and	m/z	355.32,	previously	seen	in	the	healthy	tissue6,	are	used	to	denote	
cancer/healthy	tissue	boundaries.	The	border	region	(boxed)	is	further	highlighted	on	5	PIRL-MS	
line	scans	wherein	a	sharp	decrease	in	the	intensity	of	cancer	biomarker	ion	(m/z	134.0473,	
C5H4N5–)	[5]	is	accompanied	with	a	more	gradual,	gradient-like	rise	in	healthy	tissue	marker,	
consistent	with	the	DESI-MS	analysis	of	independent	medulloblastoma	bearing	brain	specimen	
presented	in	Fig.	1.	Therefore,	it	is	highly	unlikely	that	the	interactions	between	the	solvent	
material	in	a	DESI-MS	experiment	and	tissue	could	explain	the	distance	dependent,	ion	
abundance	trends	from	DESI-MS	analyses	presented,	and	discussed	in	the	text.				
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Figure	S3.	Analysis	of	ROIs	from	PIRL-MS	images	of	medulloblastoma	bearing	brain	
specimens	suggest	a	cancer-like	metabolic	state	in	the	healthy	tissue	regions	in	the	
vicinity	of	cancer.	In	this	figure,	we	have	repurposed	the	PIRL-MS	imaging	datasets	of	two	
medulloblastoma	bearing	brain	tissues	previously	analyzed	and	published	by	our	group6.	The	
PIRL-MS	images	are	published6	and	are	reproduced	here	with	permission	for	the	clarity	of	
presentation.	Copyright	(2020)	American	Chemical	Society.	The	cancer	site	(red)	is	highlighted	
by	the	distribution	of	m/z	134.05	and	the	healthy	tissue	site	(blue)	is	highlighted	by	the	
distribution	of	m/z	355.32/848.81	as	described	previously6.	The	relative	position	of	ROIs	with	
respect	to	healthy	tissue	border	(highlighted	by	dashed	lines)	is	indicated.	The	PCA-LDA	model	
was	created	using	32	ROIs	(9	pixel/	ROI	where	each	pixel	covers	an	area	of	200μm	by	200μm)	
from	a	mixture	of	DAOY/Med8A	bearing	brain	healthy	tissue	as	well	as	cancer	regions.	The	PIRL-
MS	ROIs	of	the	model	suggest	drastic	spectral	differences	between	healthy	tissue	from	cancer	
bearing	or	non-cancer	bearing	brain	specimens.	More	interestingly,	the	PIRL-MS	ROIs	from	two	
independent	DAOY	and	Med8A	MB	cancer	bearing	brain	specimens	show	a	distance	dependent,	
gradient	like	behaviour	with	the	ROIs	close	to	the	cancer	border	lining	up	close	to	the	PCA-LDA	
space	occupied	by	cancer	in	the	model,	and	those	ROIS	farther	away	from	cancer	border	
stretching	closer	to	the	healthy	tissue	region	of	the	PCA-LDA	model.	This	observation	suggests	
that	no	artifactual	DESI-MS	solvent	effects	are	influencing	the	validity	of	conclusions	made	from	
DESI-MS	results.	
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Figure	S4.	Generality	of	gradient	observation	using	3	independent	biological	replicates	of	
Fig.	1	specimen.	In	this	figure,	we	are	showing	the	distance	dependent	gradient	across	a	vector	
perpendicular	to	the	cancer	border	as	done	for	Fig.	1	specimen	(results	presented	in	Fig.	2)	for	
three	independent	replicates	thereof.	For	ease	of	comparison,	some	of	the	results	presented	for	
Fig.	1	specimen	are	duplicated	here.	In	addition	to	healthy	tissue	ions	(m/z	778.56,	m/z	834.53, 
m/z	804.58,	m/z	941.71,	m/z	790.54,	m/z	854.67,	m/z	888.62)	we	have	also	included	the	
gradient	trends	for	DHA	(m/z	327.23)	and	its	metabolic	products	(m/z	790.54	and	m/z	834.53).	
Furthermore,	the	trends	seen	for	tentative	cancer	site	marker	(m/z	281.25)	is	also	shown.	The	
same	gradient	seen	in	Figs.	1,2	is	observed	in	healthy	tissue	markers	with	DHA	and	its	metabolic	
products	conforming	to	the	same	pattern	consistent	with	a	role	for	interstitial	fluid	flow	in	
potentially	establishing	such	a	gradient.	It	is	worth	noting	that	the	cancer	site	marker	ion’s	
abundance	(m/z	281.25)	sharply	decreases	at	the	border.	To	guide	the	eye,	H&E	pathology	and	
manually	contoured	(segmented)	images	illustrating	cancer	site	have	been	included.	
Additionally,	average	gradient	trends	across	healthy	tissue	ions,	DHA	and	its	products	were	also	
calculated	and	shown.	The	plateau	region	between	two	consecutive	data	peaks	(marked	with	red	
arrows)	are	shown	and	suggest	1.3-2.0	mm	(specimen	1),	0.7-1.4	mm	(specimen	2),	0.8-1.0	mm	
(specimen	3)	and	0.7-1.5	mm	(Fig.	1	specimen)	from	the	cancer	border.		
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Figure	S5.	Gradient	of	healthy	tissue	markers	using	PIRL-MS.	As	m/z	281.25	was	only	a	
tentative	empirically	observed	and	previously	not	characterized	marker	for	medulloblastoma	
xenograft	cancer,	we	repeated	the	Fig.	S4	analysis	on	Fig.	S2	specimen	and	an	independent	
biological	replicate	thereof,	subjected	to	PIRL-MS	analysis	as	discussed	in	Fig.	S2.	The	spatial	
resolution	of	PIRL-MS	is	poor	compared	to	DESI-MS	utilized	in	Fig.	S4.	However,	PIRL-MS	offers	
the	advantage	of	a	strong	cancer	site	marker.	m/z	134.05	is	a	previously	studied,	identified	and	
established	PIRL-MS	medulloblastoma	cancer	maker6	that	decreases	very	sharply	at	the	cancer	
border	wherein	some	lag	(indicative	of	gradient	seen	in	Fig.	S4)	is	observed	for	healthy	tissue	
marker	ions	(m/z	355.30,	m/z	600.50,	m/z	848.80).	Some	of	the	PIRL-MS	images	are	published	
previously6	and	are	reproduced	with	permission	(Copyright	(2020)	American	Chemical	Society).	
We	have	presented	manually	contoured	segmented	images	to	guide	the	eye	to	the	cancer	region	
used	in	the	analysis	of	gradient	plots.	Albeit	limited	by	the	poor	spatial	resolution	of	PIRL-MS,	a	
similar	gradient	behaviour	along	a	vector	perpendicular	to	the	cancer	border	is	seen	wherein,	
average	gradient	trends	across	healthy	tissue	marker	ions	(m/z	355.30,	m/z	600.50,	m/z	848.80)	
suggest	a	signal	plateau	at	0.5-1.1	mm	and	0.3-1.4	mm	away	from	the	cancer	border.	
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Figure	S6.	The	ion	abundance	trends	for	DHA	and	DHA	containing	lipids	across	a	vector	
perpendicular	to	the	cancer	border.	In	this	figure,	we	have	extended	the	same	analysis	of	Fig.2	
to	DHA	(m/z	327.23)	and	DHA	containing	GPLs	m/z	790.54	and	m/z	834.53	(See	Table	S1	for	
identity	assignments).	We	show	the	abundance	patterns	for	these	ions	across	a	5	mm	distance	
along	a	hypothetical	flow	vector	perpendicular	to	the	cancer	border.	The	pattern	of	abundance	
for	these	three	ions	unnormalized	(A)	and	normalized	(to	solvent	m/z	283.23)	in	panel	(B)	are	
presented	and	shown	to	be	coinciding.	While	all	these	ions	conform	to	the	expected	pattern	of	
gradient	as	recovered	for	Fig.	2	over	the	short	1.2	mm	distance,	they	additionally	show	
concordance	in	their	abundance	patterns	across	the	larger	5.0	mm	range.	While	interpretation	of	
the	second	rise	in	signal	at	2.5	mm	and	subsequent	fall	towards	the	5.0	range	is	difficult	(and	is	
likely	compounded	by	potential	influence	of	healthy	brain	tissue	heterogeneity	on	these	length	
scales	(See	H&E	in	Fig.1A),	the	concordance	of	the	pattern	seen,	nevertheless,	is	something	that	is	
expected	for	the	metabolic	product	ions	of	a	precursor	molecule.	This	observation	is	consistent	
with	alterations	in	DHA	abundance	along	a	perpendicular	diffusion	vector	being	mirrored	in	DHA	
containing	lipids	m/z	790.54	and	m/z	834.53.	In	this	figure,	the	error	bars	indicate	10%	of	the	
standard	deviation	at	each	distance	from	the	boundary.	Values	are	normalized	to	lie	between	
(0,1)	prior	to	calculating	the	average	to	visualize	their	relative	behaviours	along	the	gradient.	
Negative	distances	are	those	within	the	tumour,	with	positive	distances	traveling	outwards.	
Therefore,	each	plot	represents	the	average	change	in	spectra	strength	as	moving	from	a	point	on	
the	tumour’s	medial	axis	outwards	on	a	straight	line	along	the	tumour	contour’s	normal	to	a	
distance	of	5.0	mm.	
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Controls	
	
	
Tissue	density	alterations	
Previous	studies	from	our	group	suggested	that	the	abundance	of	lipids	in	an	MS	image	could	be	
modulated	by	tissue	density	variations	in	the	pixels	examined,	wherein	a	lower	tissue	density	
could	result	in	an	artificially	lower	abundance	of	lipids9.	Therefore,	only	in	the	absence	of	drastic	
variations	in	tissue	density	across	a	specimen	could	changes	in	lipid	abundances	such	as	those	
reported	in	the	observed	gradient	be	confidently	related	to	altered	metabolic	states9.	Therefore,	
we	performed	tissue	density	calculations	on	the	specimen	analyzed	in	Fig.	1	as	described	
previously9.	As	shown	below	there	were	no	aberrant	alterations	in	tissue	density	that	could	
account	for	the	low	abundance	of	lipids	in	the	vicinity	of	the	cancerous	region.	Tissue	density	in	
the	region	of	intermediate	NAA	abundance	~1.2	mm	from	the	cancer	border	had	a	value	of	
0.80±0.07.	This	density	value	is	very	close	to	the	extracted	density	estimate	of	0.86±0.07,	
determined	over	the	entire	healthy	tissue	outside	the	NAA	transition	zone.	Furthermore,	no	
gradient	of	tissue	density	to	explain	the	gradient	in	the	abundance	of	tissue	lipids,	as	reported	in	
Fig.	1F,	was	detected	in	the	region	of	intermediate	NAA	abundance.		
	
	

	
Tissue	density	map.	Tissue	density	map9	suggests	no	drastic	alteration	of	tissue	density	in	the	NAA	abundance	
‘transition	zone’	that	could	rationalize	the	distance-dependent	gradient	of	increased	abundance	as	a	function	of	
increased	distance	from	the	cancer	border.	The	tissue	density	across	the	arbitrary	scan	line	(yellow)	suggests	no	
intermediate	tissue	density	in	the	area	of	NAA	intermediate	abundance	(highlighted).	
	
	
Hypoxia		
It	is	known	that	hypoxia	may	alter	lipid	metabolism	in	cancer	cells10	including	the	brain11,	12.	
Immunohistochemistry	analysis	reporting	on	the	abundance	of	carbonic	anhydrase	enzyme,	itself	
a	hypoxia	marker13,	was	performed.	As	judged	by	the	low	level	of	positively	stained	cells	(brown	
stain),	the	cancer	region	was	deemed	to	be	normoxic	in	the	specimen	analyzed	in	Fig.	1.	As	
hypoxia	is	known	to	result	in	drastic	changes	in	the	lipidome14	accessible	with	DESI-MS	15	it	is	
unlikely	that	the	cancer-like	metabolic	states	seen	in	the	vicinity	of	a	non-hypoxic	tumour	to	be	
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due	to	hypoxia.	We	were	also	unable	to	detect	any	of	the	proposed	hypoxia	DESI-MS	markers15		
in	our	dataset.		
	

	
	
	
Hypoxia	staining.	Carbonic	anhydrase	stained	image	of	the	tissue,	suggesting	no	hypoxia	in	the	cancer	region.	The	
region	shown	is	highlighted	with	a	green	box	on	the	tissue	density	map	above.	The	antibody	used	showed	no	cross	
reactivity	to	mouse	to	directly	report	on	the	hypoxia	status	of	the	healthy	tissue	in	the	vicinity	of	cancer.	However,	in	
the	absence	of	a	hypoxic	tumour	we	strongly	believe	that	the	surrounding	healthy	tissue	is	normoxic.	The	hypoxic	
regions	are	expected	to	appear	as	brown	stain.	The	blue	(darker)	background	indicates	cancer	cells	that	possess	
large	nuclei.	No	brown	stain	indicative	of	hypoxia	was	detected.	
	
Edema	
A	confounding	factor	that	prevents	us	from	putting	forward	a	detailed	mechanistic	explanation	
for	our	observation	is	that	residual	immune	response	and	swelling	of	the	brain	(edema)	may	
occur	in	xenografts,	leading	to	additional	alterations	of	the	metabolic	state.	While	edema	is	not	
necessarily	expected	to	possess	cancer-like	metabolic	states,	its	effects	may	be	observable	across	
the	entire	specimen.		In	our	tumour	bearing	DESI-MS	dataset	used	in	Figs.	1,2,	however,	the	
abundance	of	known	ischemia	and	macrophage	markers	indicative	of	immune	response16	
resembled	the	basal	levels	detected	in	healthy	tissue	from	non-tumour	bearing	mice	(Panel	A)	
While	the	absence	of	ischemia	or	macrophage	markers	may	not	necessarily	rule	out	edema,	no	
spatially	localized	abundance	of	such	markers	were	seen	outside	the	tumour	region.	Likewise,	we	
found	no	evidence	of	m/z	572.48	marker	ceramide	[Cer(d34:1) + Cl]−	a	widely	seen	necrosis	
marker5,	17-19	being	associated	with	the	region	of	intermediate	NAA	abundance	(Panel	B).		
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Assessment	of	ischemia	and	cell	death	in	DESI-MS	dataset	analyzed	in	Figs	1,2.	Presence	of	cancer	can	cause	
tissue	inflammation,	edema	or	trigger	ischemia	processes.	To	ensure	that	the	region	of	NAA	intermediate	abundance	
showing	the	gradient	of	cancer-like	metabolic	state	(i.e.	healthy	tissue	adjacent	to	the	cancer	border)	is	not	
artifactually	populated	with	necrotic	or	ischemic	cells,	we	inspected	the	DESI-MS	dataset	for	the	presence	of	
previously	established	mass	spectrometry	markers	of	ischemia	or	necrosis.	(A)	Known	markers	of	ischemia16	and	
macrophage	accumulation	bis(monoacylglycero)phosphate	(BMP)	m/z	819.52	[BMP	(40:7)]	,	m/z	865.50	[BMP	
(22:6/22:6)]	and	m/z	524.30	[LysoPS	(18:0)]	show	abundances	that	are	comparable	to	those	seen	in	non-tumour	
bearing	brain	specimen.	None	of	these	markers	are	localized	to	the	area	of	intermediate	NAA	abundance	where	a	
gradient	of	cancer-like	metabolic	states	is	seen	arguing	against	inflammation	or	immune	response	to	play	a	factor	in	
affecting	our	observations.(B)	The	m/z	572.48	[Cer(d34:1) + Cl]−	(necrosis	marker5,	17-19)	is	only	seen	inside	the	
tumour	region	and	is	absent	from	the	NAA	intermediate	abundance	as	well	as	the	rest	of	the	tissue.	In	both	panels	
normalized	(to	TIC)	ion	images	are	shown	using	LipoStar	MSI2.	For	Panel	A	results	we	have	also	listed	the	expected	
mass	of	ions	upon	transfer	of	assignment	from	published	results	to	what	we	have	seen	in	our	DESI-MS	spectra.	The	
uncertainties	associated	with	this	tentative	transfer	are	highlighted	and	can	influence	the	interpretations.	The	
publication	used	as	a	guide16	lists	additional	ion	markers	of	ischemia	but	those	were	not	detected	in	our	results.	
While	this	cannot	be	taken	to	rule	out	ischemia,	inflammation	or	edema	per	se,	the	very	low	relative	abundance	of	
those	ions	that	were	detectable	(relative	to	healthy	brain	tissue)	strongly	argues	against	inflammation	at	the	edge	of	
the	tumour	influencing	our	molecular	readout.				
	
	
Directionality	of	the	gradient	trend	
The	panels	below	show	the	DESI-MS	ion	abundance	patterns	along	vectors	parallel	to	the	cancer	
border	for	both	unnormalized	(Panel	A)	and	solvent	normalized	values	(Panel	B).	We	chose	an	
isocontour	line	0.3	mm	away	from	the	cancer	border	(Panel	C)	where	we	expected	the	flow	
influence	on	ion	abundance	to	be	present	(See	Fig.2).	Intensities	along	this	vector,	perpendicular	
to	the	diffusion	flow	vector,	are	not	expected	to	be	drastically	influenced	by	the	presence	of	an	
outward	flow	which	by	definition	is	perpendicular	to	the	cancer	border.	Consistent	with	this,	
such	data	points	do	not	conform	to	the	gradient	pattern	recovered	in	Fig.	2	for	those	collected	
along	the	expected	direction	of	the	interstitial	fluid	flow	vector,	assuming	it	existed.		
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The	abundance	of	DESI-MS	ions	perpendicular	to	the	direction	of	the	proposed	interstitial	fluid	flow.	In	this	
figure	we	are	presenting	the	DESI-MS	signal	strength	of	the	healthy	brain	tissue	ions	(Table	S1)	along	an	isocontour	
3	pixels	(0.3	mm)	away	from	the	cancer	border	where	from	Fig.	2	we	observed	the	gradient	like	behaviour	parallel	to	
the	direction	of	the	flow	(or	perpendicular	to	the	cancer	border).	DESI-MS	signal	strength	for	both	(A)	unnormalized	
and	(B)	solvent	normalized	(See	Fig.	2	legend)	is	presented.	Panel	C	represents	distance	from	the	closest	point	on	the	
tumour	boundary	where	the	green	line	represents	the	tissue	border,	red	line	indicates	the	cancer	boundary	and	the	
black	line	shows	the	isocontour	line	used	in	panels	A,B	for	the	analysis.	This	line	was	traced	from	the	red	square	
towards	the	yellow	square	for	this	analysis.	No	gradient-like	behaviour	was	seen	perpendicular	to	the	expected	
direction	of	the	interstitial	fluid	flow	(or	parallel	to	the	direction	of	the	cancer	border	isocontour	line	examined).		
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Statistical	modeling	
	
To	further	evaluate	whether	the	gradient	of	the	metabolic	state(s)	seen	in	Figs.	1F	and	2	from	a	
single	2D	tissue	slice	will	hold	true	over	other	independent	tumours,	we	first	prepared	an	
independent	orthotopic	medulloblastoma	bearing	brain,	then	serially	sectioned	it	to	clear	the	
cancer	region	entirely	and	analyzed	both	the	proximal	(containing	cancer)	and	distal	(clear	of	
cancer)	sections	thereof	with	DESI-MS	imaging.	We	further	collected	average	DESI-MS	spectra	
from	10-pixel	(0.01	mm2)	regions	of	interest	(ROIs)	from	two	types	of	morphometrically	
equivalent	healthy	tissues:	(1)	healthy	tissue	from	non-cancer	bearing	mouse	brain	and	(2)	
healthy	tissue	distal	to	the	cancer	site	from	a	second	independently	prepared	tumour	bearing	
mouse	brain.	We	then	subjected	the	average	spectra	of	each	ROI	to	principal	component	analysis-
linear	discriminant	analysis	(PCA-LDA)	modeling,	as	previously	performed	to	interpret	the	
spectral	(and	hence	metabolic)	similarities	between	different	biological	specimens20.	All	panels	
show	the	PCA-LDA	scores	plots	where	each	data	point	corresponds	to	the	DESI-MS	spectrum	of	
an	ROI.	Here,	the	data	points	that	possess	similar	mass	spectra	will	form	a	closely	grouped	
cluster	in	the	PCA-LDA	space.	Consistent	with	the	HPLC-MS	results	(Fig.	1J),	the	healthy	tissue	
ROIs	from	tumour	bearing	mouse	brain	had	a	drastically	altered	metabolic	state	(as	judged	by	
differences	in	their	DESI-MS	spectra)	compared	to	the	healthy	tissue	ROIs	from	non-cancer	
bearing	mouse	brain.	Therefore,	morphometrically	identical	healthy	tissues	are	seen	to	possess	
very	different	metabolic	profiles	based	on	whether	cancer	cells	are	present	in	their	vicinity.		
	
We	additionally	collected	DESI-MS	spectra	according	to	a	gradient	of	distances	across	the	DESI-
MS	image	of	the	proximal	tissue	section	described	above.	The	DESI-MS	spectra	of	the	healthy	
tissue	ROIs	obtained	along	a	gradient	of	distances	from	the	cancer	region	contained	mass	spectra	
that	also	showed	a	gradient	of	similarities	with	those	of	the	ROIs	from	cancer	and	healthy	tissue	
regions	of	the	independent	tumour	bearing	mice.	Strikingly,	the	same	regions	of	the	PCA-LDA	
space	occupied	with	the	gradient	data	points	described	above	could	be	populated	with	artificially	
created	mixed	DESI-MS	pixels	containing	a	gradient	of	cancer	and	healthy	tissue	metabolic	
contents	(panel	B).	This	control	experiment	was	performed	to	provide	further	support	that	the	
distance-dependent	gradient	data	points	reported	in	panel	A	contained	a	gradient	of	cancer-to-
healthy-like	metabolic	profiles.	The	support	for	this	statement	comes	from	the	co-incidence	of	
data	points	with	known	cancer/healthy	dual	character	(shown	in	panel	B)	falling	in	the	same	
regions	on	a	PCA-LDA	scores	plot	as	the	data	points	gathered	along	a	gradient	of	distances	from	
the	cancer	border	(shown	in	panel	A).	To	put	this	co-incidence	to	the	test,	we	further	sectioned	
the	same	cancer-bearing	brain	to	obtain	a	tissue	slice	that	was	sufficiently	far	(>1.2	mm)	away	
from	the	cancer	border	and	then	collected	ROIs	from	this	distal	slice	in	the	same	manner	as	for	
panel	A.	In	the	PCA-LDA	modeling	of	the	DESI-MS	spectra	of	ROIs	from	this	distal	section	(>1.2	
mm	away	from	cancer)	no	such	gradient	was	seen	(Panel	C).	All	ROIs	from	this	specimen	were	
equidistant,	and	sufficiently	(>1.2	mm)	far	from	the	cancer	region	to	the	point	that	their	
metabolic	states	could	not	have	been	influenced	by	the	presence	of	cancer	in	the	proximal	
specimen	analyzed	in	panel	A.	This	observation	is	consistent	with	our	results	above	in	showing	
that	distance-dependent	alterations	in	the	tissue	metabolic	state	are	taking	place	only	in	the	
vicinity	of	cancer.	Further	to	this,	it	must	be	noted	that	PCA-LDA	modeling	utilizes	highly	specific	
molecular	changes	captured	over	the	entire	small	molecule	range	of	the	mass	spectra	including	
metabolome	and	lipidome.	The	results	of	the	PCA-LDA	modeling	scores	plots	taken	together	with	
the	specificity	of	PCA-LDA	analysis	further	reinforce	the	notion	that	healthy	tissue	cells	in	the	
vicinity	of	cancer	possess	cancer-like	metabolic	states.		
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Statistical	modeling	of	the	DESI-MS	spectra	from	cancer	adjacent	healthy	tissue	suggests	a	cancer-like	
metabolic	state.	(A)	Distribution	of	59,	10-pixel	ROIs	from	a	gradient	of	distances	from	the	cancer	border	averaged	
from	6	tissue	slices	present	on	6	independently	imaged	slides.	The	data	points	on	the	PCA-LDA	space	(scores	plot)	
arrange	themselves	along	an	axis	that	stretches	from	the	cancer	data	points	of	the	model	to	the	healthy	tissue	from	
said	independent	cancer	bearing	brain.	(B)	Overlay	of	62,	10-pixel	ROIs	created	from	mixing	different	ratios	of	
healthy	and	cancer	single	pixels	from	same	6	slices	(on	6	independently	imaged	slides)	described	above	using	the	
same	PCA-LDA	model	(scores	plot)	shown	in	Panel	A.	Interestingly,	these	artificially	mixed	pixels	that	possess	
varying	degrees	of	both	cancer	and	healthy	tissue	characteristics	align	themselves	in	the	same	area	of	the	PCA-LDA	
space	as	those	shown	in	panel	A	scores	plot	occupied	with	distance-dependent	ROIs	from	healthy	tissue.	This	area	is	
highlighted	by	a	box.	This	coincidence	suggests	that	distance-dependent	ROIs	sampled	in	panel	A	indeed	possess	
cancer-like	spectral	and	hence	metabolic	similarity.	(C)	The	same	model	used	to	evaluate	the	PCA-LDA	space	
localization	of	103,	10-pixel	ROIs	from	12	tissue	slices	present	in	5	independently	imaged	slides	containing	a	distal	
section	that	is	sufficiently	far	away	(>2	mm)	from	the	cancer.	As	can	be	seen	here,	these	query	ROIs	aligned	
themselves	in	close	proximity	of	healthy	tissue	from	cancer	bearing	brain	and	no	longer	on	the	observed	gradient	
line	seen	in	panel	A	and	contextualized	with	the	‘ruler’	gold	standard	control	of	mixed	pixels	in	panel	B.	A	non-
copyrighted	image	of	a	generalized	ruler	is	used	to	convey	this	point.	We	have	depicted	a	cartoon	representation	of	
how	tissue	sectioning	for	slices	analyzed	in	panels	A	and	C	related	to	the	volume	of	cancer	bearing	brain	tissue	
blocks	used	for	sectioning.	In	panel	A,	the	section	is	made	inside	the	cancer	region	and	in	panel	C	outside	of	it.	For	
this	figure	we	first	created	a	statistical	model	from	10	pixel	(0.01	mm2)	ROIs	from	cancer	and	healthy	regions	of	the	
tissue	slice	analyzed	in	Fig.	1.	The	model	consisted	of	40,	10	pixel	ROIs	across	four	cancer	slides	each	containing	1	
tissue	slice	independently	acquired	to	show	concordance;	34	ROIs	of	healthy	tissue	>1.2	mm	from	cancer	
(sufficiently	far	from	the	cancer	border	not	to	involve	the	NAA	abundance	‘transition	zone’	shown	in	Fig.	1B,D)	
averaged	from	two	slides	each	containing	a	single	slice	independently	imaged;	and	81	ROIs	from	healthy	non-cancer	
bearing	brain	from	a	total	of	5	slices	available	within	3	independently	imaged	slides.	From	the	modeling	results,	
healthy	tissue	from	cancer-bearing	brains	possesses	a	drastically	different	mass	spectral	content	compared	to	the	
healthy	tissue	from	non-cancer	bearing	brains	and	the	cancer	tissue	itself.	
	
	
To	further	investigate	whether	limited	(changes	in	a	few	m/z	values)	or	global	(changes	of	
identity	or	abundance	across	m/z	values)	alterations	in	the	mass	spectra	account	for	the	
molecular	heterogeneity	of	cancer-neighbouring	healthy	tissue	ROIs	analyzed	in	above,	we	
created	a	different	PCA-LDA	model	that	describes	the	statistical	discrimination	between	DESI-MS	
spectra	of	(1)	cancer-adjacent	healthy	tissue,	(2)	cancer,	and	(3)	healthy	tissue	from	tumour	
bearing	mouse	brains.	We	then	inspected	the	model’s	loading	plots	that	summarize	the	relative	
rank	of	each	m/z	contribution	across	the	entire	mass	spectrum	to	the	statistical	discrimination	
seen.	The	PCA-LDA	scores	plot	for	this	model	is	comprised	of	distinctly	grouped	data	clusters	
suggesting	they	contain	distinct	mass	spectral	properties.	The	inspection	of	the	loading	plots	
associated	with	this	PCA-LDA	model	confirms	global	contributions	of	many	m/z	values	to	the	
statistical	discrimination	seen.	Therefore,	cancer-adjacent	healthy	tissue	cells	contain	a	distance-
dependent	gradient	of	distinct	metabolic	states	associated	with	global	changes	in	mass	spectra.	
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PCA-LDA	modeling	suggests	global	metabolic	changes	in	healthy	cells	close	to	the	cancer	border.	In	this	figure	
we	repurposed	the	data	presented	above	as	part	of	a	new	PCA-LDA	model.	This	model	highlights	the	statistical	
discrimination	of	DESI-MS	spectra	from	ROIs	collected	across	a	gradient	of	distances	from	the	cancer	border	
compared	to	those	from	the	cancer	site	and	healthy	tissue	from	cancer-bearing	mouse	brain.	(A)	PCA-LDA	scores	
plot.	Here,	a	clear	statistical	discrimination	between	said	data	groups	is	seen.		(B)	PCA-LDA	loading	plots	across	two	
linear	dimensions	(LD1	and	LD2).	Here,	the	LD1	plot	denotes	the	axis	(red	line)	of	statistical	discrimination	between	
cancer	and	healthy	tissue	where	some	of	the	distinguishing	ions	reported	in	Table	S1	(highlighted	in	red)	are	seen,	as	
expected.	These	ions,	however,	while	present	are	not	major	contributors	to	the	statistical	discrimination	along	this	
axis.	The	LD2	plot,	on	the	other	hand,	denotes	ions	that	distinguish	the	gradient-dependent	data	points	from	either	
of	the	cancer	or	healthy	tissue	groups.	The	collective	patterns	seen	in	the	LD1	and	LD2	loading	plots	suggest	global	
changes	in	many	m/z	values.	Therefore,	the	statistical	discrimination	between	the	gradient-dependent	data	points	
and	the	cancer	and	healthy	tissue	groups	seen	are	not	being	driven	strongly	by	a	specific	ion,	and	the	gradient	data	
points	group	between	the	cancer	and	healthy	tissue	points	along	the	main	axis	of	separation.	
	
	
To	ensure	that	the	supervised	nature	of	the	PCA-LDA	analysis	did	not	result	in	overfitting,	we	
performed	unsupervised	hierarchical	clustering	of	this	model.	We	further	show	that	the	healthy	
brain	tissue	from	cancer	bearing	mice	formed	its	own	cluster	away	from	the	healthy	brain	tissue	
from	non-cancer	bearing	mice	after	hierarchical	clustering	despite	inter-sample	heterogeneities	
resulting	in	further	dissection	of	the	cancer	data	points	into	own	clusters.		
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Unsupervised	hierarchical	clustering	of	PCA-LDA	model.		In	this	figure	we	performed	PCA	as	well	as	hierarchical	
clustering	of	the	supervised	model	above	comprising	data	points	from	cancer,	healthy	tissue	from	cancer-bearing	
and	non-cancer-bearing	mouse	brain	specimens.	The	boxed	area	contains	data	points	that	correspond	to	healthy	
tissue.	Hierarchical	clustering	results	suggests	two	clusters	in	the	healthy	tissue	region	(boxed).	Comparison	with	
the	corresponding	PCA	plot	suggests	that	the	two	clusters	seen	are	largely	contributed	to	by	the	difference	in	DESI-
MS	spectra	of	healthy	tissue	from	tumour	bearing	and	non-tumour	bearing	mice.	In	this	plot,	PCA	as	well	as	
hierarchical	(displayed	on	PCA)	clustering	results	(5	clusters)	have	been	shown.	PCA	itself	suggests	additional	inter-
sample	variability	in	the	cancer	data	points	where	a	‘separate’	grouping	of	DESI-MS	data	points	from	different	tissue	
slices	was	seen	(e.g.	green	cancer	cluster	corresponds	to	data	collected	from	one	tissue	slide	where	a	total	of	4	slides	
were	used	in	making	the	model).	The	overlap	seen	between	the	signatures	of	healthy	brain	tissue	regions	from	
cancer-bearing	and	healthy	mice	in	the	PCA	plot	(boxed	area)	can	be	resolved	through	hierarchical	clustering.	A	
caveat	here	is	that	the	cancer	data	points	that	contain	significant	intersample	variability	are	also	dissected	into	
additional	clusters.					
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Experimental	Methods	:	Additional	details	
	
Principal	Component	Analysis	–	Linear	Discriminant	Analysis	(PCA-LDA)		
PCA-LDA	modeling	was	performed	using	Waters	Abstract	Model	Builder	(AMX)	version	
1.0.1360.0.	The	model	was	built	using	DESI-MS	data	by	exporting	the	average	spectra	from	a	
series	of	10-pixel	regions	of	interest	(ROIs)	using	the	“export	as	MassLynx	raw	data”	function	in	
Waters	HDI	software.	These	were	imported	into	AMX	in	the	same	manner	as	described	
previously	for	data	collected	using	PIRL-MS20.	As	each	file	is	an	averaged	spectrum,	there	is	no	
need	to	select	a	scan	range	on	the	“sample	list”	tab	but	instead	the	“one	spectrum	per	sample”	
box	should	be	checked	under	the	“spectrum	interpretation”	section	of	the	“model	properties”	tab.	
The	model	was	built	with	30	PCA	dimensions	(~1/5	of	the	155	total	spectra)	and	2	LDA	
dimensions	(the	maximum	available),	as	previously	used	by	our	group20	(note	than	none	of	the	
model	properties	were	deliberately	optimized	to	result	in	biased	statistical	discrimination	
between	data	groups).	Mass	range	was	100-1000	Da	and	the	binning	was	set	to	0.1Da.	Parallel	
model	building	with	binning	windows	of	0.3	and	0.5Da	resulted	in	little	to	no	significant	impact	
on	the	clusters.	These	values	were	consistent	with	previous	successful	classifications	in	the	
context	of	peak	resolving	power	of	the	instrument	used1.	Solvent	ions	were	excluded	from	the	
model	using	the	“exclusion	list”	feature	of	AMX,	these	ions	were	selected	by	comparing	the	
spectrum	collected	from	outside	the	tissue	region	(i.e.	the	background)	of	5	different	slides	and	
compiling	a	list	of	all	the	ions	common	to	the	background	of	each	slide.	In	this	way,	we	aimed	to	
avoid	excluding	ions	that	may	originate	from	tissue	fragments	that	could	exist	outside	the	main	
tissue	area	as	a	result	of	the	sectioning	process.	The	data	points	in	gray	displayed	on	the	models	
were	not	built	into	the	models	themselves.	After	the	model	had	been	constructed	(using	the	
settings	above)	the	data	points	to	be	displayed	were	imported	under	the	sample	list	tab	and,	on	
the	same	tab,	these	points	were	selected	and	the	“add	to	list”	button	under	the	“spectrum	
operations”	section	was	used	to	display	them	on	the	model	visualization	field.	In	this	way,	these	
points	are	displayed	as	though	the	model	was	classifying	them,	rather	than	being	part	of	the	
model’s	construction.	Solvent	peaks	were	excluded	from	PCA-LDA	analysis	of	samples	with	DESI-
MS.	
	
Unsupervised	clustering	analysis		
Hierarchical	clustering	using	an	in-house	Python	based	program	was	performed	as	described	
previously6.	The	script	used	an	Agglomerative	Clustering	object	equipped	Scikit	learn	library	to	
perform	bottom-up	hierarchical	clustering.	Observations	began	in	their	own	clusters	which	were	
then	merged	together	successively.	Ward	Linkage	was	used	to	minimize	the	sum	of	squared	
differences	between	all	the	clusters.	
	
Laser	Capture	Microdissection	(LCM)	
LCM	was	performed	using	the	MMI	Cell	Cut	system	(Nikon	Microscopies).	Fresh-frozen	brain	
tissue	was	cut	into	10μm	sections	as	described	for	DESI-MS	imaging	above,	but	instead	of	
transferring	to	a	glass	slide,	sections	were	transferred	to	the	flat	side	of	MMI	membrane	slides®.	
Slides	were	stored	at	-80oC	until	ready	for	LCM.	The	MMI	CellTools	software	was	used	to	select	
regions	of	2mm2	area	for	automated	cutting	and	collection	into	a	special	0.5mL	collection	tube	
with	a	diffuser	cap	(MMI).	The	membrane	on	the	cap	sticks	to	the	membrane	above	the	cut	region	
of	tissue,	such	that	the	face	of	the	tissue	not	covered	by	membrane	faces	down	into	the	tube	for	
lipid	extraction.	
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LC-MS	and	MS/MS	analysis	
Extraction	of	lipids	from	LCM	tissue	for	HPLC-MS	and	MS/MS	was	performed	using	1mL	of	
chloroform	as	described	previously	1.	The	mass	spectrometer	and	source	parameters	were	
unchanged.	The	MS	scan	was	acquired	in	a	range	of	m/z	400-1000	Da.	Accurate	mass	was	
obtained	by	the	lock	mass	mode	with	a	reference	ion	(m/z	554.2615)	of	Leucine-Enkephalin.	For	
the	chromatographic	separation:	the	solvent	used	for	sample	reconstitution	was	
isopropanol:acetonitrile:water	(4:3:1,	v:v)	and	the	chromatographic	column	was	a	Waters	
Acquity	UPLC	CSH	C18	column	(2.1	X	100mm,	1.7μm)	at	55o	C.	A	gradient	was	established	
between	mobile	phase	A	(water:acetonitrile	2:3	with	10	mM	ammonium	formate	and	0.1%	
formic	acid)	and	mobile	phase	B	(isopropanol:acetonitrile	9:1	with	10	mM	ammonium	formate	
and	0.1%	formic	acid)	with	phase	A	run	at	100%	for	the	first	5	minutes,	50%	for	the	next	12	
minutes,	30%	for	0.1	minutes	and	0%	(i.e.	100%	B)	for	the	next	0.9	minutes.	The	run	finished	
with	100%	phase	A	for	the	last	two	minutes.	MS/MS scan	was	acquired	in	a	range	of	m/z	50-
1000	Da	with	scan	time	of	0.3	s.	The	typical	collision	energy	ramps	were	30-45	V,	40-60	V	and	
50-70	V	for	m/z	<800,	m/z	800-850	and	m/z	>850,	respectively.	All	other	conditions	were	as	
previously	reported	1.	The	box	plots	in	Fig.	1J	were	generated	using	the	program	MetaboAnalyst	6	
using	the	two	column	(retention	time	&	base	peak	intensity)	HPLC-MS	data.	The	tissue	regions	
highlighted	in	Panel	A	were	subjected	to	laser	capture	microdissection	for	this	analysis.	
	
Digital	Pathology	
Digital	pathology	methods	all	used	the	Definiens	(Munich	Germany)	software,	with	20x	
resolution	H&E	images	uploaded	for	analysis.	Details	of	the	file	processing	and	initial	settings	can	
be	found	in	9.	Tissue	density	calculations	used	a	slightly	modified	version	of	the	Definiens	
Developer	Ruleset	used	in	the	previous	work9.	Rather	than	performing	image	registration	on	the	
spatially	referenced	aggregate	statistics	file,	image	registration	of	the	H&E	section	to	the	MS	
image	were	performed	prior	to	analysis.	Furthermore,	tissue	area	is	defined	as	the	total	area	of	
each	tile,	subtracting	the	area	covered	by	nuclei	or	empty	space.	Internal	validation	has	found	no	
differences	in	analysis	results	using	either	methodologies.	The	degree	of	cancer	infiltration	in	
healthy	tissue	was	investigated	on	the	same	platform	utilizing	a	nuclear	size	cut	off	value	of	
60μm2,	where	larger	cells	were	classified	as	cancer,	and	smaller	as	healthy.		
	

	
Digital	pathology	masks.	In	this	figure,	we	are	showing	tissue	masks	used	for	the	estimations	of	tissue	density	
between	NAA	transition	zone	(intermediate	abundance,	denoted	by	the	red	mask)	and	the	rest	of	the	healthy	tissue	
(denoted	by	green	mask).	The	masks	are	shown	(arbitrarily)	on	an	expanded	view	of	the	tissue	density	plot	which	is	
presented	in	the	Control	section.	

1mm
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