Anionic Boron- and Carbon-Based Hetero-Diradicaloids Spanned by a p-Phenylene Bridge

Avijit Maiti, ${ }^{\dagger}$ Fangyuan Zhang, ${ }^{\ddagger}$ Ivo Krummenacher, ${ }^{\#}$ Moulika Bhattacharyya, ${ }^{\dagger}$ Sakshi Mehta, ${ }^{\S}$
Michael Moos, ${ }^{\ddagger}$ Christoph Lambert, ${ }^{\ddagger}$ Bernd Engels, ${ }^{* \bar{\top}}$ Abhishake Mondal, ${ }^{* \S}$ Holger
Braunschweig,*\# Prince Ravat, ${ }^{* \ddagger}$ and Anukul Jana*†
${ }^{\dagger}$ Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, India
${ }^{\ddagger}$ Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
\#Institute of Inorganic Chemistry and Institute for Sustainable Chemistry \& Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
${ }^{\text {§ }}$ Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
${ }^{\top}$ Institut für Physikalische und Theoretische Chemie, Julius-Maximilians-Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany

1. Content S1
2. General Considerations S2
3. Experimental Details and Analytical Data S3
4. NMR Spectra S10
5. UV/Vis/NIR Spectra S18
6. Molecular Structures of $\mathbf{2}^{\text {Dip }}, \mathbf{3}^{\text {Dip }}, \mathbf{4}^{\text {iPr }}$, and $\mathbf{5}^{\text {iPr }}$ S26
7. Crystallographic Details S28
8. EPR Spectroscopy S36
9. Cyclic Voltammetry and Spectroelectrochemistry S38
10. Quantum Chemical Calculations S41
11. References S53

General Considerations

All experiments were carried out under an argon atmosphere using standard Schlenk techniques or in a PL-HE-2GB Innovative Technology GloveBox and MBraun Unilab SP GloveBox. Hexane, diethyl ether, THF, and toluene were dried by PS-MD-5 Innovative Technology solvent purification system. 1,4-Dibromobenzene (Sigma Aldrich), potassium (Sigma Aldrich)), nBuLi (Hychem Laboratories), Mel (Hychem Laboratories), MeOTf (Sigma Aldrich) were commercially purchased and used as it is. Mel (Hychem Laboratories) was distilled under N_{2} atmosphere prior to use. 18-Crown-6 (Sigma Aldrich) was purified by recrystallization from a saturated hot acetonitrile solution and drying the crystalline compounds at $90^{\circ} \mathrm{C}$ under vacuum prior to use. Mes $\mathrm{SF}^{\mathrm{B1}}$ and $\mathrm{KC}_{8}{ }^{\text {S2 }}$ were synthesized according to literature procedure. THF- d_{8} was dried and distilled over potassium under nitrogen. CDCl_{3} and $\mathrm{CD}_{3} \mathrm{CN}$ were dried and distilled over CaH_{2} under argon. NMR spectra were recorded on a BrukerNanoBay 300 MHz NMR spectrometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were referenced to the peaks of residual protons of the deuterated solvent $\left({ }^{1} \mathrm{H}\right)$ or the deuterated solvent itself $\left({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right) .{ }^{11} \mathrm{~B}$ NMR spectra were referenced to external $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2} .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ spectra were referenced to external tol-CF3.

Elemental analyses of $\mathbf{2}^{\text {Dip }}, \mathbf{3}^{\text {Dip }}, 4^{\text {Dip }}, 4^{\text {iPr }}, 5^{\text {Dip }}, 5^{\text {iPr }}$, and $6^{\text {Dip }}$ were performed on an Elementar vario MICRO cube elemental analyzer. UV/Vis spectra were acquired using a Jasco V-670 spectrometer using quartz cells with a path length of 0.1 cm . Melting points were determined in closed NMR tubes under argon atmosphere and are uncorrected. Cyclic voltammetry experiments were performed in THF with 0.1 M [Bu4N][PF6] as supporting electrolyte using a Gamry Instruments Reference 600 potentiostat. A standard three-electrode cell configuration was employed using a platinum disk working electrode, a platinum wire counter electrode, and a $\mathrm{Ag} / \mathrm{AgCl}$ serving as reference electrode. The redox potentials were referenced to the ferrocene (Fc) / ferrocenium $\left(\mathrm{Fc}^{+}\right)$redox couple. Thin layer measurements were done by attaching the working electrode to the flat surface of a glass halfsphere and measuring 10 cycles with a scan speed of $2 \mathrm{mVs}^{-1}$. Spectroelectrochemical experiments in reflection mode were performed using an Agilent Cary 5000 spectrometer in combination with a custom designed sample compartment consisting of a cylindrical PTFE cell with an Infrasil ${ }^{\circledR}$ wedge window (angled by 0.5°) and an adjustable two-in-one electrode (6 mm platinum disc working electrode, 1 mm platinum wire counter electrode). The potentials were adjusted with a Princeton Applied Research potentiostat (PAR 283) and referenced to a leak free $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode (Warner Instruments). All experiments were measured at room temperature under an argon atmosphere. HRMS of $6^{\text {Dip }}$ and $5^{\text {iPr }}$ were measured on an Exactive Plus Orbitrap-HRMS manufactured by Thermo Scientific. Mass spectrometry of $\mathbf{2}^{\text {Dip }}, \mathbf{3}^{\text {Dip }}, \mathbf{4}^{\text {Dip }}$, and $4^{\text {iPr }}$ were performed on a Bruker Daltonics micrOTOF focus (ESI) system. EPR measurements at X-band (9.38 GHz) were carried out using a Bruker ELEXSYS E580 CW EPR spectrometer equipped with an Oxford Instruments helium cryostat (ESR900) and a MercuryiTC temperature controller. The spectral analysis was performed using MATLAB 8.6.0.267246 (R2015b) and the Optimization toolbox. The spectral simulations were performed using MATLAB 9.8.0.1323502 (R2020a) and the EasySpin 5.2.28 toolbox. ${ }^{\text {S3 }}$

Experimental Details and Analytical Data

Synthesis of 2 ${ }^{\text {Dip }}$

22.20 mL of n BuLi ($35.5 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane) was added dropwise into a 100 mL Schlenk flask containing 8 g of 1,4-dibromobenzene (33.9 mmol) in 60 mL of THF at $-78{ }^{\circ} \mathrm{C}$ and stirred for 30 mins at that temperature. Then -78 ${ }^{\circ} \mathrm{C}$ precooled THF solution of bis-(2,6-diisopropylphenyl)carbodiimide ($11.70 \mathrm{~g}, 32.27 \mathrm{mmol}$, in 30 mL THF) was added by a cannula to the resulting white turbid solution, maintaining $-78^{\circ} \mathrm{C}$ temperature of both the Schlenk flasks. After completion of the addition, the resulting light yellow color solution was stirred for 1 hr at $-78{ }^{\circ} \mathrm{C}$. After that, it was slowly bought to room temperature within 2 hrs and further stirred for 2 hrs at room temperature. Subsequently, the reaction mixture was cooled down to $-78^{\circ} \mathrm{C}$ and 3.16 mL of methyl iodide (50 mmol) was added dropwise using syringe maintaining $-78^{\circ} \mathrm{C}$ temperature of the reaction mixture. Then the resulting reaction mixture slowly bought to room temperature within 2 hrs and was stirred further overnight at room temperature. Subsequently, after removing all the volatiles in vacuo it leads to a white solid residue. Then the resulting solid residue was poured into a mixture of 60 mL of DCM and 30 mL of water, and DCM layer was extracted. Further water layer was extracted two times using DCM ($50 \mathrm{~mL} \times 2$). After that all the combined organic layer was dried by passing through anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporation of the resulting filtrate gives $\mathbf{2}^{\text {Dip }}$ as a white solid. Suitable single crystals for X-ray diffraction analysis were grown by a slow evaporation of saturated DCM solution of it. Yield: $11.9 \mathrm{~g}(69 \%)$. M.P.: 110-112 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl $\left.3,298 \mathrm{~K}\right): \delta=7.18-7.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Dip}-\mathrm{H})$, 7.05-7.00 (m, 4H, Ph-H), 6.95-6.94 (m, 2H, Dip-H), 6.89-6.87 (m, 1H, Dip-H), 6.74 (s, 1H, Dip-H), 6.71 (s, 1H, Dip-H), $3.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right.$), 3.37 (sept, ${ }^{3} \mathrm{~J}_{(\mathrm{H}, \mathrm{H})}=6.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\operatorname{Dip}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.09\left(\right.$ sept, $\left.{ }^{3} J_{(\mathrm{H}, \mathrm{H})}=6.83 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Dip}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.26\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{(\mathrm{H}, \mathrm{H})}=6.74 \mathrm{~Hz}, 6 \mathrm{H}, \operatorname{Dip}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{(\mathrm{H}}\right.$, H) $\left.=6.74 \mathrm{~Hz}, 6 \mathrm{H}, \operatorname{Dip}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.16\left(\mathrm{~d},{ }^{3}{ }_{(\mathrm{H}, \mathrm{H})}=6.85 \mathrm{~Hz}, 6 \mathrm{H}, \operatorname{Dip}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.03\left(\mathrm{~d},{ }^{3} J_{(\mathrm{H}, \mathrm{H})}=6.93 \mathrm{~Hz}, 6 \mathrm{H}, \operatorname{Dip}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$ ppm. ${ }^{13}$ C $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=155.54(\mathrm{NCN}), 146.85(\mathrm{~N}-\mathrm{DipC}), 145.27(\mathrm{~N}-\mathrm{DipC}), 140.55$ (DipC), 137.96 (DipC), 131.96 (NCN-PhC), 130.17 (PhC), 130.09 (PhC), 128.14 (PhC), 124.11 (BrPhC), 122.43 (DipC), 121.86 (DipC), $40.48\left(\mathrm{NCH}_{3}\right), 28.44\left(\mathrm{DipCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 28.36\left(\mathrm{DipCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.36\left(\mathrm{DipCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 24.19\left(\mathrm{DipCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 22.80$ ($\left.\mathrm{DipCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $22.10\left(\mathrm{DipCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$ ppm. Elemental Analysis(\%): calculated for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{BrN} \mathrm{N}_{2}$: C 72.03, H 7.75, N 5.25; Found: C 72.71; H 7.87; N 5.19. HRMS (ESI+): (m/z) calculated for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{BrN}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 533.2531$, Found: 533.2516.

Synthesis of $3^{\text {Dip }}$

2.34 mL of n BuLi ($3.75 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane) was added dropwise to the 100 mL Schlenk flask containing THF solution of $\mathbf{2}^{\text {Dip }}$ ($1.82 \mathrm{~g}, 3.41 \mathrm{mmol}$, in 60 mL THF) at $-78^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred for 30 mins at $-78{ }^{\circ} \mathrm{C}$. After that THF solution of Mes2BF ($0.91 \mathrm{~g}, 3.41 \mathrm{mmol}$, in 20 mL THF) was added by using cannula at $-78{ }^{\circ} \mathrm{C}$ and slowly raised the temperature to $-20^{\circ} \mathrm{C}$. Then the reaction mixture was stirred 4 hrs at $-20^{\circ} \mathrm{C}$ before warmed up to room temperature and stirred for overnight. Subsequently all the volatiles were removed in vacuo and the resulting oily residue was extracted with 60 mL of hexane as $3^{\text {Dip. After evaporation all the solvent it was titurated }}$ with 20 mL of pentane and then filtered the silution to get pure $3^{\text {Dip }}$ as a residue. Subsequently, filtrate was kept to get second corp of 3. Yield: 2.1g (87\%) M.P.: 181-183 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR for $\mathbf{3}^{\text {Dip }}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta=7.14-7.09$ (m, 1H, Dip-H), 7.03-6.96 (m, 4H, Ph-H), 6.90-6.88 (m, 2H, Dip-H), 6.84-6.79 (m, 3H, Dip-H), 6.73 (s, 4H, Mes-H) 3.49 (s, $3 \mathrm{H}, \mathrm{NCH}_{3}$), 3.37 (sept, $\left.{ }^{3} \mathrm{~J}_{(\mathrm{H}, \mathrm{H})}=6.81 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Dip}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.15$ (sept, $\left.{ }^{3} \mathrm{~J}_{(\mathrm{H}, \mathrm{H})}=6.88 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Dip}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.27(\mathrm{~s}, 6 \mathrm{H}$, Mes- CH_{3}), 1.74 (s, 12 H, Mes- CH_{3}), $1.27\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{(\mathrm{H}, \mathrm{H})}=6.80 \mathrm{~Hz}, 6 \mathrm{H}, \operatorname{Dip}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{(\mathrm{H}, \mathrm{H})}=6.74 \mathrm{~Hz}, 6 \mathrm{H}\right.$, Dip$\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.12\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{(\mathrm{H}, \mathrm{H})}=6.84 \mathrm{~Hz}, 6 \mathrm{H}, \operatorname{Dip}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.00\left(\mathrm{~d},{ }^{3} J_{(\mathrm{H}, \mathrm{H})}=6.96 \mathrm{~Hz}, 6 \mathrm{H}, \operatorname{Dip}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (75.4 MHz, CDCl 3,298 K): $\delta=156.28$ (NCN), 146.88, 145.56, 140.85, 138.69, 137.96, 136.23, 134.30, 128.41, 122.26, 121.66, $40.34\left(\mathrm{NCH}_{3}\right), 28.38\left(\mathrm{DipCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 28.32\left(\mathrm{DipCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.35\left(\mathrm{DipCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 24.19\left(\mathrm{DipCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 23.19$ (Mes- CH_{3}), $22.71\left(\mathrm{DipCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 22.08\left(\mathrm{DipCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 21.20\left(\mathrm{Mes}-\mathrm{CH}_{3}\right) \mathrm{ppm}$. Elemental Analysis(\%): calculated for $\mathrm{C}_{50} \mathrm{H}_{63} \mathrm{BN}_{2}$: C 85.44, H 9.03, N 3.99; Found: C 84.72, H 9.23, N 4.07. HRMS (ESI+): (m/z) calculated forC50 $\mathrm{H}_{64} \mathrm{BN}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 703.5162$, Found: 703.5195.

Synthesis of $4^{\text {Dip }}$

Hexane solution of MeOTf ($0.46 \mathrm{~mL}, 4.1 \mathrm{mmol}$, in 10 mL of hexane) was added to a hexane solution of $3^{\text {Dip }}$ (2.4 gm , 3.41 mmol , in 20 mL of hexane) obtained from the above reaction considering quantitative yield at $-78{ }^{\circ} \mathrm{C}$. After stirring 30 mins at $-78{ }^{\circ} \mathrm{C}$ the resulting mixture was slowly warmed to room temperature and stirred for 12 hrs . Resulting white turbid solution was filtered and the resulting residue was washed with 30 mL of $\mathrm{Et}_{2} \mathrm{O}$ to get pure product of $4^{\text {Dip }}$ as white solids. Suitable single crystals for single crystal X-ray diffraction study were obtained by slow
$\mathrm{Et}_{2} \mathrm{O}$ diffusion in saturated acetonitrile solution of it. Yield: $2.4 \mathrm{~g}(81 \%) . \mathrm{M} . \mathrm{P} .: 163-165^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right.$, 298 K): $\delta=7.64-7.59$ (m, 1H, Dip-H), 7.48-7.46 (m, 4H, Ph-H), 7.42-7.36 (m, 2H, Dip-H), 7.22-7.17 (m, 1H, Dip-H),7.097.03 (m, 2H, Dip-H), 6.82(s, 4H, Mes-H), 3.38 (sept, $\left.{ }^{3} J_{(H, H)}=6.85 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Dip}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.01$ (sept, $\left.{ }^{3} J_{(H, H)}=6.75 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Dip}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.27\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Mes}-\mathrm{CH}_{3}\right), 1.77\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Mes}-\mathrm{CH}_{3}\right), 1.53\left(\mathrm{~d},{ }^{3} J_{(\mathrm{H}, \mathrm{H})}=\right.$ $\left.6.80 \mathrm{~Hz}, 6 \mathrm{H}, \operatorname{Dip}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.36\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{(\mathrm{H}, \mathrm{H})}=6.70 \mathrm{~Hz}, 6 \mathrm{H}, \operatorname{Dip}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.32\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{(\mathrm{H}, \mathrm{H})}=6.70 \mathrm{~Hz}, 6 \mathrm{H}, \operatorname{Dip}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $1.11\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{(\mathrm{H}, \mathrm{H})}=6.70 \mathrm{~Hz}, 6 \mathrm{H}, \operatorname{Dip}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right): \delta=165.21$ (NCN), 145.88, $145.84,144.16,142.13,141.78,140.77,138.16,136.21,133.31,132.03$ ($q, C F_{3}$), 129.27, 126.94, 126.61,126.27, 125.93, 125.78, $50.89\left(\mathrm{NCH}_{3}\right), 46.17\left(\mathrm{NCH}_{3}\right), 30.24\left(\mathrm{DipCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 29.86\left(\mathrm{DipCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.56\left(\mathrm{DipCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.01$ $\left(\mathrm{DipCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 23.54\left(\mathrm{Mes}-\mathrm{CH}_{3}\right), 23.04\left(\mathrm{DipCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 22.56\left(\mathrm{DipCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 21.26\left(\mathrm{Mes}-\mathrm{CH}_{3}\right)$ ppm. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (282.2 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right): \delta=-79.31 \mathrm{ppm}$. UV/Vis (THF): $\lambda_{\max }(\varepsilon)=324$ (10282) $\mathrm{nm}\left(\mathrm{Lmol}^{-1} \mathrm{~cm}^{-1}\right.$). Elemental Analysis(\%): calculated for $\mathrm{C}_{52} \mathrm{H}_{66} \mathrm{BF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$:. C 72.04, H 7.67, N 3.23, S 3.70; Found: C 71.32, H 7.77, N 3.07, S 3.41. HRMS (ESI+): (m/z) calculated forC ${ }_{51} \mathrm{H}_{66} \mathrm{BN}_{2}\left([\mathrm{M}-\mathrm{OTf}]^{+}\right)$: 717.5314, Found: 717.5315.

Synthesis of $5^{\text {Dip }}$

30 mL of precooled $\left(-78^{\circ} \mathrm{C}\right)$ THF was added to a Schlenk flask containing $4^{\text {Dip }}$ ($377 \mathrm{mg}, 0.44 \mathrm{mmol}$) and $\mathrm{KC}_{8}(130 \mathrm{mg}$, 0.96 mmol) at $-78^{\circ} \mathrm{C}$ and slowly bought to room temperature in a 4 hrs . After that it was stirred for another 12 hrs at room temperature. Subsequently all the volatilities were removed in vacuo and the resulting residue was extracted with $20 \mathrm{~mL}(\mathrm{x} 2)$ of warm toluene. After removing all the solvent of the combining filtrate it was washed with 30 mL of hexane which leads to a red solid. After that 115 mg of 18 -crown- $6(0.44 \mathrm{mmol})$ and 30 ml toluene was added into it and stirred for 4 hrs . Then all the volatiles were removed in vacuo and the resulting residue was washed with 30 mL of hexane. After that it was extracted with $20 \mathrm{ml}(\mathrm{x} 2)$ THF and the combine filtrate was concentrated to about 10 mL . Then it was layered with 5 mL of toluene and then 5 mL of hexane, sequentially and kept at $-30^{\circ} \mathrm{C}$ for 3 days. The resulting red crystals of $5^{\text {Dip }}$ is also suitable for single crystal X-ray diffraction study. Yield: $323 \mathrm{mg}\left(63\right.$ \%). M.P.: $140^{\circ} \mathrm{C}$. UV/Vis (THF): $\lambda_{\max }(\varepsilon)=443$ (10384), 545 (29323), 717 (2887) nm ($\mathrm{Lmol}^{-1} \mathrm{~cm}^{-1}$). Elemental Analysis(\%): calculated for $\mathrm{C}_{71} \mathrm{H}_{106} \mathrm{BKN}_{2} \mathrm{O}_{8}$: C 73.17, H 9.17, N 2.40 ; Found: C 73.18, H 9.11, N 2.27.

Synthesis of $6^{\text {Dip }}$

30 mL of precooled $\left(-78^{\circ} \mathrm{C}\right.$) THF was added to a Schlenk flask containing $4^{\text {Dip }}$ ($500 \mathrm{mg}, 0.576 \mathrm{mmol}$) and $\mathrm{KC}_{8}(77 \mathrm{mg}$, 0.576 mmol) at $-78^{\circ} \mathrm{C}$ and slowly bought to room temperature in a 4 hrs . After that it was stirred for another 12 hrs at room temperature. Subsequently all the volatilities were removed in vacuo and the resulting residue was extracted with $20 \mathrm{~mL}(\times 2)$ of hexane. After removing all the solvent of the combining filtrate $6^{\text {Dip }}$ was obtained as dark green solid. Single crystals suitable for single crystal X-ray diffraction study were obtained from saturated hexane solution at $-30^{\circ} \mathrm{C}$ after 2 days. Yield: $151 \mathrm{mg}(36 \%)$. M.P.: $104{ }^{\circ} \mathrm{C}$. UV/Vis (THF): $\lambda_{\max }(\varepsilon)=439(16294), 717$ (14458) nm ($\mathrm{Lmol}^{-1} \mathrm{~cm}^{-1}$). Elemental Analysis(\%): calculated for $\mathrm{C}_{51} \mathrm{H}_{66} \mathrm{BN}_{2}$: C 85.33, H 9.27, N 3.90; Found: C 84.80, H 9.56, N 3.67. HRMS (LIFDI): calculated for $\mathrm{C}_{51} \mathrm{H}_{66} \mathrm{BN}_{2}$ ([M]) 717.5314, Found 717.5302.

Comproportionation reaction between $4^{\text {Dip }}$ and $5^{\text {Dip }}$ to $6^{\text {Dip }}$

5 mL of THF was added to a mixture of $5^{\text {Dip }}(8 \mathrm{mg}, 0.006 \mathrm{mmol})$ and $4^{\text {Dip }}(6 \mathrm{mg}, 0.006 \mathrm{mmol})$ in a 5 mL volumetric flask at room temperature. After gentle shaking $6^{\text {Dip }}$ was obtained as green colored solution as confirmed by UV/Vis spectroscopy. For UV/Vis measurement 1 mL stock solution was taken and 9 mL THF was added for dilution.

Oxidation of $5^{\text {Dip }}$ to $6^{\text {Dip }}$

10 mL of THF was added to a mixture of $5^{\text {Dip }}(36 \mathrm{mg}, 0.030 \mathrm{mmol})$ and AgOTf ($7.9 \mathrm{mg}, 0.030 \mathrm{mmol}$) at room temperature. After stirring 2 hrs , all the solvent was evaporated and extracted with 10 mL of hexane. After evaporating all solvent from the filtrate $6^{\text {Dip }}$ was obtained as green solid compound as confirmed by UV/Vis spectroscopy.

Oxidation of $5^{\text {Dip }}$ to $4^{\text {Dip }}$

10 mL of THF was added to a mixture of $5^{\text {Dip }}(24 \mathrm{mg}, 0.021 \mathrm{mmol})$ and AgOTf ($11.6 \mathrm{mg}, 0.045 \mathrm{mmol}$) at room temperature. After stirring 2 hrs , solution was filtered. After evaporating all solvent from the filtrate $4^{\text {Dip }}$ was obtained as crystalline compound along with 18-Crown-6 and KOTf as indicated in NMR spectrum. ${ }^{1} \mathrm{H}$ NMR for $4^{\text {Dip }}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$): $\delta=7.61-7.56$ (m, 1H, Dip-H), 7.49-7.47 (m, 2H, Ph-H), 7.39-7.37 (m, 2H, Ph-H), 7.33-7.30 (m, 2H, Dip-H), 7.18-7.13 (m, 1H, Dip-H), 6.98-6.95 (m, 2H, Dip-H), 6.77 (s, 4H, Mes-H), 3.62 (s, 24H, 18-C-6), 3.36 (m, $\left.2 \mathrm{H}, \mathrm{Dip}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.99$ (sept, 2H, Dip-CH(CH3)2), $2.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 2.28\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Mes}-\mathrm{CH}_{3}\right), 1.77$ (s, $\left.12 \mathrm{H}, \mathrm{Mes}-\mathrm{CH}_{3}\right), 1.55\left(\mathrm{~d}, \mathrm{~J}=6.75 \mathrm{~Hz}, 6 \mathrm{H}, \operatorname{Dip}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.42\left(\mathrm{~d}, \mathrm{~J}=6.69 \mathrm{~Hz}, 6 \mathrm{H}, \operatorname{Dip}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.34(\mathrm{~d}, J=6.58 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.\operatorname{Dip}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.12\left(\mathrm{~d}, \mathrm{~J}=6.60 \mathrm{~Hz}, 6 \mathrm{H}, \operatorname{Dip}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(282.2 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right): \delta=-78.168 \mathrm{ppm}$.

Synthesis of $4^{\text {iPr }}$

10 mL of n BuLi ($15 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane) was added dropwise into a 100 mL Schlenk flask containing 3.5 g of 1,4dibromobenzene (14 mmol) in 60 mL of THF at $-78{ }^{\circ} \mathrm{C}$ and stirred for 30 mins at that temperature. Then $-78{ }^{\circ} \mathrm{C}$ precooled THF solution of N, N '-Diisopropylcarbodiimide ($2.8 \mathrm{~g}, 22 \mathrm{mmol}$, in 30 mL THF) was added by a cannula to the resulting white turbid solution, maintaining $-78^{\circ} \mathrm{C}$ temperature of both the Schlenk flasks. After completion of the addition, the resulting white suspension solution was stirred for 1 hr at $-78^{\circ} \mathrm{C}$. After that, it was slowly brought to room temperature within 2 hrs and further stirred for 2 hrs at room temperature. Subsequently, the reaction mixture was cooled down to $-78{ }^{\circ} \mathrm{C}$ and 1.74 mL of methyl iodide (28 mmol) was added dropwise using syringe maintaining $-78^{\circ} \mathrm{C}$ temperature of the reaction mixture. Then the resulting reaction mixture slowly brought to room temperature within 2 hrs and was refluxed for 4 hrs to get clear solution. Subsequently, after removing all the volatiles in vacuo residue was extracted with 70 ml hot hexane. After removing all the solvent from filtrate 3.02 gm of $\mathbf{2}^{\text {iPr }}$ was obtained (Yield: 72%). 6.35 mL of $n B u L i(10 \mathrm{mmol}, 1.6 \mathrm{M}$ in hexane) was added dropwise to the 100 mL Schlenk flask containing THF solution of $\mathbf{2}^{\text {iPr }}(3.024 \mathrm{~g}, 10 \mathrm{mmol}$, in 60 mL THF$)$ at $-78^{\circ} \mathrm{C}$. The resulting reaction mixture was stirred for 30 mins at $-78^{\circ} \mathrm{C}$. After that THF solution of Mes $2 \mathrm{BF}(2.61 \mathrm{~g}, 10 \mathrm{mmol}$, in 20 mL THF) was added by using cannula at $-78^{\circ} \mathrm{C}$ and slowly raised the temperature to $-20^{\circ} \mathrm{C}$. Then the reaction mixture was stirred 4 hrs at $-20^{\circ} \mathrm{C}$ before warmed up to room temperature and stirred for overnight. Subsequently all the volatiles were removed in vacuo and the resulting oily residue was extracted with 60 mL of hexane as $3^{i \mathrm{Pr}}$. Hexane solution of MeOTf ($1.13 \mathrm{~mL}, 10 \mathrm{mmol}$, in 10 mL of hexane) was added to a hexane solution of $3^{\text {iPr }}$ obtained from the above reaction considering quantitative yield at $-78^{\circ} \mathrm{C}$. After stirring 30 mins at $-78^{\circ} \mathrm{C}$ the resulting mixture was slowly warmed to room temperature and stirred for 12 hrs . Resulting white turbid solution was filtered and the resulting residue was washed with 30 mL of $\mathrm{Et}_{2} \mathrm{O}$ to get pure product of $4^{i \mathrm{Pr}}$ as white solids. Suitable single crystals for single crystal X-ray diffraction study were obtained by slow $\mathrm{Et}_{2} \mathrm{O}$ diffusion in saturated acetonitrile solution of it. Yield: 4.2 g (47 \%). M.P.: 188-192 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$): $\delta=7.62-7.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H}), 7.56-7.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H})$, 6.88(s, 4H, Mes-H), 3.51 (br, 2H, iPr-CH(CH3)2), 3.12 (br, 6H, NCH3), 2.29 (s, 6H, Mes-CH3), 1.96 (s, 12H, Mes-CH3), 1.20-1.19 (br, 12H, $\left.\operatorname{iPr}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$): $\delta=171.03(\mathrm{NCN}), 151.95,141.81$, $140.74,136.92,133.66,129.34,56.32\left(i \operatorname{Pr}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 35.36\left(\mathrm{NCH}_{3}\right), 23.66\left(\mathrm{Mes}-\mathrm{CH}_{3}\right), 21.28\left(\mathrm{Mes}-\mathrm{CH}_{3}\right), 20.28(i \operatorname{Pr}-$ $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} .{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($282.2 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$): $\delta=-79.31 \mathrm{ppm}$. UV/Vis (THF): $\lambda_{\max }(\varepsilon)=322$ (9729), 265 (16340) $\mathrm{nm}\left(\mathrm{Lmol}^{-1} \mathrm{~cm}^{-1}\right.$). Elemental Analysis(\%): calculated for $\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{BF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}: \mathrm{C} 64.76, \mathrm{H} 7.35, \mathrm{~N} 4.44, \mathrm{~S} 5.08$; Found: C 64.67, H 7.62, N 4.52, S 5.31. HRMS (ESI+): (m/z) calculated forC ${ }_{33} \mathrm{H}_{46} \mathrm{BN}_{2}$ ([M-OTf] ${ }^{+}$): 481.3749, Found: 481.3744.

Synthesis of 5ipr

30 mL of precooled $\left(-78^{\circ} \mathrm{C}\right)$ THF was added to a Schlenk flask containing $4^{\text {iPr }}(630 \mathrm{mg}, 0.99 \mathrm{mmol})$ and KC_{8} (337 mg , 2.49 mmol) at $-78^{\circ} \mathrm{C}$ and slowly brought to room temperature in a 4 hrs . After that it was stirred for another 12 hrs at room temperature. Subsequently all the volatilities were removed in vacuo and the resulting residue was extracted with $20 \mathrm{~mL}(\times 2)$ of toluene. After removing all the solvent of the combining filtrate it was washed with 30 mL of hexane which leads to a red solid. After that 264 mg of 18 -crown $-6(0.99 \mathrm{mmol})$ and 30 ml toluene was added into it and stirred for 4 hrs. Then all the volatiles were removed in vacuo and the resulting residue was washed with 30 mL of hexane. After that it was extracted with 20 ml (x2) THF and the combine filtrate was concentrated to about 5 mL . Then it was layered with 5 mL of toluene and then 5 mL of hexane, sequentially and kept at $-30^{\circ} \mathrm{C}$ for 2 days. The resulting red crystals of $\mathbf{5}^{\mathbf{i P r}}$ is also suitable for single crystal X-ray diffraction study. Yield: $380 \mathrm{mg}(41 \%)$ M.P.: $140{ }^{\circ} \mathrm{C}$. UV/Vis (THF): $\lambda_{\max }(\varepsilon)=343$ (14433), 502 (29149), 707 (3882) $\mathrm{nm}\left(\mathrm{Lmol}^{-1} \mathrm{~cm}^{-1}\right.$). Elemental Analysis(\%): calculated for $\mathrm{C}_{53} \mathrm{H}_{86} \mathrm{BKN}_{2} \mathrm{O}_{8}$: C 68.51, H 9.33, N 3.01 ; Found: $\mathrm{C} 67.56, \mathrm{H} 8.67, \mathrm{~N}$ 2.47. HRMS (ESI+): (m/z) calculated forC ${ }_{33} \mathrm{H}_{46} \mathrm{BN}_{2}\left(\left[\mathrm{M}-\mathrm{K}(18-\mathrm{C}-6)(\mathrm{THF})_{2}\right]^{+}\right)$: 481.3749, Found 481.3747.

NMR Spectra

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}^{\text {Dip }}$ in CDCl_{3} at room temperature.

Figure S2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{2}^{\text {Dip }}$ in CDCl_{3} at room temperature.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $3^{\text {Dip }}$ in CDCl_{3} at room temperature.

Figure S4. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{3}^{\text {Dip }}$ in CDCl_{3} at room temperature.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of $4^{\text {Dip }}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at room temperature.

Figure S6. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4}^{\text {Dip }}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at room temperature.

Figure S7. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4}^{\text {Dip }}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at room temperature.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectra of $5^{\text {Dip }}$ in THF-d8 at variable temperature.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}^{\mathrm{Dip}}$ in CDCl_{3} at room temperature after 1:2 reaction of $\mathbf{5}^{\text {Dip }}$ and AgOTf.

Figure S10. ${ }^{19}$ F NMR spectrum of $\mathbf{4}^{\text {Dip }}$ in CDCl_{3} at room temperature after 1:2 reaction of $\mathbf{5}^{\text {Dip }}$ and AgOTf.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{4}^{\mathrm{iPr}}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at room temperature.

Figure S12. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4}^{\mathrm{iPr}}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at room temperature.

Figure S13. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\mathbf{4}^{\mathrm{iPr}}$ in $\mathrm{CD}_{3} \mathrm{CN}$ at room temperature.

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5}^{\mathbf{i P r}}$ in THF-d8 at room temperature.

Figure S15. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $5^{\text {iPr }}$ in THF-d d_{8} at room temperature.

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{5}^{\mathbf{i P r}}$ in THF-d8 at variable temperature.

Figure S17. UV/Vis/NIR spectra of $\mathbf{4}^{\text {Dip }}$ in THF at different concentrations at room temperature.

Figure S18. Linear regression of $\mathbf{4}^{\text {Dip }}$ at 324 nm .

Figure S19. UV/Vis/NIR spectra of $\mathbf{5}^{\text {Dip }}$ in THF at different concentrations at room temperature (absorbance at $\lambda_{\max }=$ 717 nm could be due to the formation of trace amount of $6^{\text {Dip }}$ during sample preparation by the contamination with adventitious source of oxygen).

Figure S20. Linear regression of $\mathbf{5}^{\text {Dip }}$ at 443 nm .

Figure S21. Linear regression of $\mathbf{5}^{\text {Dip }}$ at 545 nm .

Figure S22. Linear regression of $5^{\text {Dip }}$ at 717 nm .

Figure S23. UV/Vis/NIR spectra of $\mathbf{6}^{\text {Dip }}$ in THF at different concentrations at room temperature.

Figure S24. Linear regression of $\mathbf{6}^{\text {Dip }}$ at 439 nm .

Figure S25. Linear regression of $\mathbf{6}^{\text {Dip }}$ at 717 nm .

Figure S26. Comparison of UV/Vis/NIR spectra of $\mathbf{4}^{\text {Dip }}, \mathbf{5}^{\text {Dip }}$, and $\mathbf{6}^{\text {Dip }}$ in THF at room temperature (absorbance at $\boldsymbol{\lambda}_{\text {max }}$ $=717 \mathrm{~nm}$ could be due to the formation of trace amount of $6^{\text {Dip }}$ during sample preparation by the contamination with adventitious source of oxygen).

Figure S27. UV/Vis/NIR spectra of $\mathbf{6}^{\text {Dip }}$ in THF at room temperature after $1: 1$ reaction of $\mathbf{5}^{\text {Dip }}$ and $\mathbf{4}^{\text {Dip }}$.

Figure S28. UV/Vis/NIR spectra of $\mathbf{6}^{\text {Dip }}$ in THF at room temperature after 1:1 reaction of $5^{\text {Dip }}$ and AgOTf.

Figure S29. UV/Vis/NIR spectra of $\mathbf{4}^{\text {iPr }}$ in THF at different concentrations at room temperature.

Figure S30. Linear regression of $\mathbf{4}^{\text {iPr }}$ at 265 nm .

Figure S31. Linear regression of $\mathbf{4}^{\text {iPr }}$ at 322 nm .

Figure S32. UV/Vis/NIR spectrum of $5^{\text {iPr }}$ in THF at room temperature (the absorbance at $\lambda_{\max }=707 \mathrm{~nm}$ could be due to the formation of trace amount of $\mathbf{6}^{\mathrm{iPr}}$ during sample preparation by the contamination with adventitious source of oxygen).

Molecular Structures of $2^{\text {Dip }}, 3^{\text {Dip }}, 4^{\text {iPr }}$, and $5^{\text {iPr }}$

Figure S33. Molecular structure of $\mathbf{2}^{\text {Dip }}$ with thermal ellipsoids at 50% probability level. All H atoms are omitted for clarity reasons. Selected bond lengths [Å] and bond angles []: N1-C1 1.382(2), N2-C1 1.283(2), C1-C2 1.493(3), C2C3 1.383(3), C3-C4 1.378(3), C4-C5 1.372(3), C5-C6 1.368(3), C6-C7 1.386(3), C7-C2 1.382(3), C5-Br 1.900(2); N1-C1-C2 117.52(17).

Figure S34. Molecular structure of $\mathbf{3}^{\text {Dip }}$ with thermal ellipsoids at 50% probability level. All H atoms are omitted for clarity reasons. Selected bond lengths [Å] and bond angles [$]$: N1-C1 1.281(2), N2-C1 1.371(2), C1-C2 1.493(2), C2C3 1.383(2), C3-C4 1.378(2), C4-C5 1.392(2), C5-C6 1.396(2), C6-C7 1.374(2), C7-C2 1.388(2), C5-B1 1.563(2); N1-C1-N2 118.21(13), C43-B1-C34 124.52(15).

Figure S35. Molecular structure of $\mathbf{4}^{\text {iPr }}$ with thermal ellipsoids at 50% probability level. All H atoms are omitted for clarity reasons. Selected bond lengths [Å] and bond angles [${ }^{\circ}$]: N1-C1 1.311(4), N2-C1 1.332(4), C1-C2 1.501(4), C2C3 1.375(4), C3-C4 1.390(4), C4-C5 1.389(4), C5-C6 1.389(4), C6-C7 1.387(4), C7-C2 1.387(4), C5-B1 1.586(4); N1-C1-C2 123.10(27), C43-B1-C34 124.96(26).

Figure S36. Molecular structure of $\mathbf{5}^{\text {iPr }}$ with thermal ellipsoids at 50% probability level. All H atoms are omitted for clarity reasons. Due to the presence of structural disorder in this molecule we are not disussing the metrical parameters of it.

Crystallographic Details

Single-crystal X-ray diffraction data of $5^{\text {Dip }}, 5^{\text {iPr }}$, and $6^{\text {Dip }}$ were collected at 100 K whereas $\mathbf{2}^{\text {Dip }}, 3^{\text {Dip }}, 4^{\text {Dip }}$, and $4^{\text {iPr }}$ were collected at 293K, respectively using a XtaLAB AFC12 (RINC): Kappa single diffractometer with graphitemonochromated molybdenum $K \alpha$ radiation, $\lambda=0.71073 \AA \AA$. Data were integrated using CrysAlisPro 1.171.39.29d (Rigaku Oxford Diffraction, 2017) software. ${ }^{54}$ Empirical absorption correction was done using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The structure was solved with the SHELXT structure solution program ${ }^{55}$ using Direct Methods and refined with the SHELXL refinement package ${ }^{56}$ using Least Squares minimisation in the Olex-2 software. ${ }^{57}$ All the non-hydrogen atoms were refined with anisotropic thermal parameters. All the hydrogen atoms were placed in geometrically calculated positions or found in the Fourier difference map and included in the refinement process using riding model.

Table S1 Crystal data and structure refinement for $2^{\text {Dip }}$ (CCDC 2041458)

Identification code	AJ1387
Empirical formula	$\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{BrN}_{2}$
Formula weight	533.58
Temperature/K	293(2)
Crystal system	triclinic
Space group	P-1
a/Å	9.1354(2)
b/Å	10.3621(3)
c/Å	15.9295(5)
$\alpha /{ }^{\circ}$	90.751(2)
$\beta /{ }^{\circ}$	99.524(2)
\%/ ${ }^{\circ}$	97.310(2)
Volume/ ${ }^{\text {a }}$	1474.15(7)
Z	2
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.202
μ / mm^{-1}	1.415
F(000)	564.0
Crystal size/mm ${ }^{3}$	$0.24 \times 0.21 \times 0.19$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	5.19 to 57.814
Index ranges	$-10 \leq h \leq 12,-13 \leq k \leq 13,-21 \leq 1 \leq 17$
Reflections collected	29268
Independent reflections	6854 [$\mathrm{inint}=0.0360, \mathrm{R}_{\text {sigma }}=0.0409$]
Data/restraints/parameters	6854/0/325
Goodness-of-fit on F^{2}	1.017
Final R indexes [$1>=2 \sigma(\mathrm{I})$]	$\mathrm{R}_{1}=0.0436, w \mathrm{R}_{2}=0.0879$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0777, \mathrm{wR}_{2}=0.0963$
Largest diff. peak/hole / e \AA^{-3}	0.27/-0.33

Table S2 Crystal data and structure refinement for $3^{\text {Dip }}$ (CCDC 2041459)

Identification code	AJ1599
Empirical formula	$\mathrm{C}_{50} \mathrm{H}_{63} \mathrm{BN}_{2}$
Formula weight	702.83
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	Pbca
a/Å	15.7394(5)
b/Å	23.6105(8)
c/Å	23.9959(7)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\mathrm{V} /{ }^{\circ}$	90
Volume/ \AA^{3}	8917.2(5)
Z	8
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.047
μ / mm^{-1}	0.059
F(000)	3056.0
Crystal size/mm ${ }^{3}$	$0.34 \times 0.29 \times 0.21$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	5.456 to 57.942
Index ranges	$-21 \leq h \leq 17,-32 \leq k \leq 30,-31 \leq 1 \leq 31$
Reflections collected	76005
Independent reflections	10807 [$\mathrm{Rint}=0.1322, \mathrm{R}_{\text {sigma }}=0.0648$]
Data/restraints/parameters	10807/0/493
Goodness-of-fit on F^{2}	1.026
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R}_{1}=0.0660, \mathrm{wR}_{2}=0.1707$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1083, \mathrm{wR}_{2}=0.1962$
Largest diff. peak/hole / e \AA^{-3}	0.20/-0.19

Table S3 Crystal data and structure refinement for $4^{\text {Dip }}$ (CCDC 2041460)

Identification code	AJ1229
Empirical formula	$\mathrm{C}_{54} \mathrm{H}_{69} \mathrm{BF}_{3} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$
Formula weight	907.99
Temperature/K	239.99(10)
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{n}$
$a / \AA ̊$	14.9223(9)
b/Å	15.8434(9)
c/Å	22.1840(14)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	97.197(6)
$\mathrm{V} /{ }^{\circ}$	90
Volume/Å ${ }^{3}$	5203.4(5)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.159
μ / mm^{-1}	0.116
F(000)	1944.0
Crystal size/mm ${ }^{3}$	$0.21 \times 0.19 \times 0.12$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	5.034 to 58.228
Index ranges	$-20 \leq h \leq 17,-18 \leq k \leq 21,-27 \leq 1 \leq 29$
Reflections collected	49040
Independent reflections	11998 [$\mathrm{Rint}=0.0378, \mathrm{R}_{\text {sigma }}=0.0368$]
Data/restraints/parameters	11998/0/603
Goodness-of-fit on F^{2}	1.059
Final R indexes [$1>=2 \sigma(1)$]	$\mathrm{R}_{1}=0.0623, \mathrm{wR}_{2}=0.1782$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0880, \mathrm{wR}_{2}=0.1928$
Largest diff. peak/hole / e \AA^{-3}	0.51/-0.44

Table S4 Crystal data and structure refinement for $5^{\text {Dip }}$ (CCDC 2041461)

Identification code	AJ1395
Empirical formula	$\mathrm{C}_{51} \mathrm{H}_{66} \mathrm{BN}_{2}$
Formula weight	717.86
Temperature/K	100.01(10)
Crystal system	monoclinic
Space group	$\mathrm{P} 2_{1} / \mathrm{c}$
a/Å	15.9878(5)
b/Å	17.5315(10)
c/Å	18.1549(7)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	101.432(4)
$\mathrm{V} /{ }^{\circ}$	90
Volume/ \AA^{3}	4987.7(4)
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	0.956
μ / mm^{-1}	0.054
F(000)	1564.0
Crystal size/mm ${ }^{3}$	$0.29 \times 0.24 \times 0.18$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	5.134 to 58.068
Index ranges	$-19 \leq h \leq 21,-23 \leq k \leq 16,-23 \leq 1 \leq 23$
Reflections collected	73679
Independent reflections	12014 [$\mathrm{Rint}=0.1035, \mathrm{R}_{\text {sigma }}=0.0849$]
Data/restraints/parameters	12014/24/533
Goodness-of-fit on F^{2}	1.032
Final R indexes [$1>=2 \sigma(1)]$	$\mathrm{R}_{1}=0.0907, \mathrm{wR}_{2}=0.2233$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1373, \mathrm{wR}_{2}=0.2472$
Largest diff. peak/hole / e \AA^{-3}	0.34/-0.28

Table S5 Crystal data and structure refinement for 6 $^{\text {Dip }}$ (CCDC 2041462)

Identification code	aj1391
Empirical formula	$\mathrm{C}_{71} \mathrm{H}_{106} \mathrm{BKN}_{2} \mathrm{O}_{8}$
Formula weight	1165.48
Temperature/K	108.66(10)
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
$a / \AA ̊$	15.4973(4)
b/Å	16.6318(4)
c/Å	28.1403(7)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	92.897(2)
$\mathrm{V} /{ }^{\circ}$	90
Volume/ ${ }^{\text {a }}$	7243.8(3)
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.069
μ / mm^{-1}	0.124
F(000)	2536.0
Crystal size/mm ${ }^{3}$	$0.31 \times 0.24 \times 0.24$
Radiation	MoK $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	4.534 to 58.104
Index ranges	$-20 \leq h \leq 20,-20 \leq k \leq 22,-36 \leq 1 \leq 35$
Reflections collected	93280
Independent reflections	17181 [$\mathrm{Rint}=0.0584, \mathrm{R}_{\text {sigma }}=0.0543$]
Data/restraints/parameters	17181/0/758
Goodness-of-fit on F^{2}	1.038
Final R indexes [$1>=2 \sigma(1)$]	$\mathrm{R}_{1}=0.0575, \mathrm{wR}_{2}=0.1348$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0833, \mathrm{wR}_{2}=0.1455$
Largest diff. peak/hole / e \AA^{-3}	0.89/-0.42

Table S6 Crystal data and structure refinement for $4^{\text {iPr }}$ (CCDC 2041463)

Identification code	AJ1111
Empirical formula	$\mathrm{C}_{34} \mathrm{H}_{46} \mathrm{BF}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$
Formula weight	630.60
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	$\mathrm{P} 2{ }_{12} \mathrm{~L}_{1}{ }_{1}$
a/Å	8.3933(5)
b/Å	15.4652(11)
c/Å	27.3449(17)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$V^{\prime}{ }^{\circ}$	90
Volume/Å ${ }^{3}$	3549.5(4)
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.180
μ / mm^{-1}	0.141
F(000)	1344.0
Crystal size/mm ${ }^{3}$	$0.32 \times 0.26 \times 0.22$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	5.076 to 57.904
Index ranges	$-10 \leq h \leq 11,-16 \leq k \leq 20,-37 \leq 1 \leq 35$
Reflections collected	33197
Independent reflections	8240 [$\mathrm{inint}=0.0899, \mathrm{R}_{\text {sigma }}=0.0798$]
Data/restraints/parameters	8240/0/409
Goodness-of-fit on F^{2}	1.020
Final R indexes [$1>=2 \sigma(\mathrm{l})$]	$\mathrm{R}_{1}=0.0592, w \mathrm{R}_{2}=0.1420$
Final R indexes [all data]	$\mathrm{R}_{1}=0.1084, \mathrm{wR}_{2}=0.1604$
Largest diff. peak/hole / e \AA^{-3}	0.22/-0.19

Table S7 Crystal data and structure refinement for $5^{\text {iPr }}$ (CCDC 2041464)

Identification code	aj1402
Empirical formula	$\mathrm{C}_{53} \mathrm{H}_{86} \mathrm{BKN}_{2} \mathrm{O}_{8}$
Formula weight	929.14
Temperature/K	100(2)
Crystal system	triclinic
Space group	P-1
a/Å	11.9400(3)
b/Å	16.1972(4)
c / A	16.2337(5)
$\alpha /{ }^{\circ}$	70.887(3)
$\beta /{ }^{\circ}$	77.191(2)
Y/ ${ }^{\circ}$	68.408(2)
Volume/Å ${ }^{3}$	2739.92(14)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.126
μ / mm^{-1}	0.147
F(000)	1012.0
Crystal size/mm ${ }^{3}$	$0.340 \times 0.320 \times 0.170$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	5.348 to 57.986
Index ranges	$-16 \leq h \leq 15,-21 \leq k \leq 21,-20 \leq 1 \leq 21$
Reflections collected	44117
Independent reflections	12575 [$\mathrm{Rint}=0.0339, \mathrm{R}_{\text {sigma }}=0.0360$]
Data/restraints/parameters	12575/900/926
Goodness-of-fit on F^{2}	1.068
Final R indexes [$1>=2 \sigma(1)$]	$\mathrm{R}_{1}=0.0639, w \mathrm{R}_{2}=0.1781$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0814, \mathrm{wR}_{2}=0.1897$
Largest diff. peak/hole / e \AA^{-3}	0.99/-0.46

EPR Spectroscopy

Figure S37. Variable temperature X-band EPR spectra of $5^{\text {Dip }}$ in tetrahydrofuran between 230 and 300 K .

Figure S38. Three different representations of the temperature dependence of the double integral EPR intensity (A) of $5^{\text {Dip }}$ in tetrahydrofuran solution. Circles (\bigcirc) represent the experimental results and the red line corresponds to the fit with the Bleaney-Bowers equation. Fitting of the temperature-dependent double-integral intensity to the Bleaney-Bowers model gives a singlet-triplet gap of $2 J=-232 \mathrm{~cm}^{-1}\left(\Delta E_{s t}=-0.66 \mathrm{kcal} \mathrm{mol}^{-1}\right)$, indicating a thermally excited triplet state. The characteristic half-field transition (and zero-field splittings) indicative of a triplet state could not be observed both in solution and in the solid state (powder sample).

Figure S39. Variable temperature X-band EPR spectra of 5 ${ }^{\text {iPr }}$ in tetrahydrofuran between 230 and 300 K . The isotropic EPR signals are centered around $g=2.0028$.

Figure S40. Three different representations of the temperature dependence of the double integral EPR intensity (A) of 5^{iPr} in tetrahydrofuran solution. Circles (\bigcirc) represent the experimental results and the red line corresponds to the fit with the Bleaney-Bowers equation. Fitting of the temperature-dependent double-integral intensity to the Bleaney-Bowers model gives a singlet-triplet gap of $2 J=-257 \mathrm{~cm}^{-1}\left(\Delta E_{\mathrm{st}}=-0.73 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$, indicating a thermally excited triplet state.

Cyclic Voltammetry and Spectroelectrochemistry

Figure S41. Cyclic voltammogram of of $4^{\text {Dip }}$ measured at different scan rate in THF ($0.1 \mathrm{M}\left[n B u_{4} N\right]\left[P_{6}\right]$).

Figure S42. Obtained (black) and simulated (red, using DigiElch) cyclic voltammogram of compound $\mathbf{4}^{\text {Dip }}$ in THF (0.1 $\mathrm{M}\left[n \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$) at scan rate of $50 \mathrm{mVs}^{-1}$. Digital simulation indicated an electrochemical-conformational change/chemical process-electrochemical (ECE) mechanism (Scheme 1).

Based on the solid-state moleccular structure $4^{\text {Dip }}$ is in the amphi-conformation, whereas $6^{\text {Dip }}$ (one-electron reduced species) and $5^{\text {Dip }}$ (one-electron reduced species) are in an anti-confirmation (Figure 1). ${ }^{58}$ Based on this we are assuming first one-electron reduction of amphi-4 $\mathbf{4}^{\text {Dip }}$ is converted to the amphi-conformation of $6^{\text {Dip }}$. Then amphi-6 ${ }^{\text {Dip }}$ rearranged anti- $6^{\text {Dip }}$ (conformational change) before it reduced to anti-5 ${ }^{\text {Dip }}$ (Scheme S1).

Scheme S1. Possible mechanism (electrochemical-conformational change/chemical process-electrochemical) for the electrochemical reduction of $4^{\text {Dip }}$.

Figure S43. Thin layer cyclic voltammetry of $\mathbf{4}^{\text {Dip }}$ (10 cycles) in THF ($0.1 \mathrm{M}\left[n \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$) at scan rate of $2 \mathrm{mVs}^{-1}$.

Figure S44. UV/Vis/NIR spectroelectrochemistry of $\mathbf{4}^{\text {Dip }}$ in THF (0.1 M [nBu4N][PF6]).

Figure S45. Cyclic voltammogram of $\mathbf{4}^{i \mathrm{Pr}}$ in THF ($0.1 \mathrm{M}\left[n \mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]$) measured at different scan rates.

Quantum Chemical Calculations

All the DFT calculations were performed using Gaussian 16 suite. ${ }^{59}$ The gas-phase geometry optimizations were done with the respective functional (M062X, B3LYP, wB97XD, MN12SX, B3LYP, or MN12L) and the 6-31G(d,p) or Def2SVP basis sets. Frequency analysis was performed to verify the stationary state geometry. In all cases no imaginary frequency was found. For $5^{\text {DIP }} / 5^{\text {iPr }}$ the singlet state geometries were optimized using restricted-DFT and unrestricted broken-symmetry DFT wavefunctions.

The potential energy scan (at UB3LYP/6-31g(d,p) level) for compound 5 was performed to see influence of dihedral angles of $\mathrm{N}-\mathrm{C}-\mathrm{N}$ and C-B-C planes with central benzene ring on energies of singlet and triplet state as well as the energy difference between these two states. The bulky substituents were replaced by methyl group to reduce the computational cost.

TD-DFT calculations were performed at M062X/Def2SVP level on (U)M062X/Def2SVP optimized geometry for $\mathbf{4}^{\text {DIP }}$, 5^{DIP} and 6^{DIP}.

Table S8. The energy difference between optimized geometries of singlet and triplet states $\Delta E_{(\text {BSS-T) }}$.

| | DFT-level | Dihedral angle (BSS) / | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

${ }^{a}$ Using X-ray geometry as a initial guess, the broken symmetry singlet (BSS) state was found to be isoenergetic with restricted singlet (RS) state. ${ }^{6}$ A Counter ion potassium encapsulated in 18-C-6 and two THF was included in geometry optimization. ${ }^{c}$ Single point energy calculation using the triplet optimized geometry in enty 7. ${ }^{d}$ BSS state was calculated to be $4.9 \mathrm{kcal} \mathrm{mol}^{-1}$ lower in energy compared to RS state.

Figure S46. Optimized geometries (top and side views) of Singlet (left) and triplet (right) states of $\mathbf{5}^{\text {iPr }}$ including a counter ion potassium encapsulated in 18-C-6 and two THF as observed in single crystal structure.

Figure S47. Molecular Electrostatic Potential (MEP) surface of singlet (left) anf triplet (right) states of $\mathbf{5}^{\text {ipr }}$ including a counter ion potassium encapsulated in 18-C-6 and two THF.

Figure S48. Relaxed potential energy scan of 5 (without counter ion and solvent) for the singlet (blue) and the triplet (red) states by varying the dihedral angle of $C-B-C$ and $N-C-N$ plane. PES were performed at UB3LYP/6-31g(d,p) level of DFT.
a

b

c

Figure S49. TD-DFT calculated electronic absorption spectra of (a) $\mathbf{4}^{\mathrm{DIP}}$ (b) $\mathbf{5}^{\mathrm{DIP}}$, and (c) $\mathbf{6}^{\mathrm{DIP}} . f$: oscillator strength.

Table S9. Summary of TD-DFT calculated key low energy transitions.

Excited singlet state	Wavelength (nm)	Energy (eV)	Major transtions	Contribution	oscillator strength (f)
$4^{\text {DIP }}$					
1	336.22	3.69	195 -> 196	0.64	0.10
			195 -> 197	0.19	
2	315.57	3.92	194 -> 196	0.63	0.09
			194 -> 197	0.18	
3	300.10	4.13	193 -> 196	0.64	0.015
			193 -> 197	0.18	
			193 -> 201	0.12	
HOMO: 195, LUMO: 196					
$5{ }^{\text {DIP }}$					
1	480.11	2.5824	196 -> 197	0.69	0.90
2	461.00	2.69	196 -> 198	0.43	0.0063
			196 -> 199	0.50	
			$196->201$	0.20	
3	433.74	2.86	196 -> 198	-0.26	0.0084
			196 -> 199	0.27	
			$196->200$	0.59	
			$196->207$	0.11	
HOMO: 196, LUMO: 197					
$6^{\text {DIP }}$					
1	1.97	630.04	196A -> 197A	0.95	0.30
2	2.78	445.91	196A -> 198A	0.71	0.0068
			196A -> 203A	0.50	
			196A -> 200A	-0.36	
3	3.17	390.87	196A -> 199A	0.87	0.0052
			196A -> 201A	-0.43	
			196A -> 200A	-0.36	
SOMO: 196, LUMO: 197					

Mulliken charges (1) and spin densities (2) of $6^{\text {DIP }}$

		1	2
1	C	0.022463	0.155365
2	C	-0.025349	-0.080969
3	C	0.090585	0.193673
4		-0.024789	-0.080610
5		0.019866	0.155581
6		0.027339	-0.066174
7		0.170483	0.388624
8	N	-0.355881	0.061408
9		0.071509	-0.009148
10	B	-0.488824	0.185590
11	N	-0.355137	0.064165
12	C	0.068212	-0.009443
13	C	-0.002464	0.016866
14	C	-0.087739	-0.005497
15	C	0.016811	0.011998
16	C	-0.094147	-0.003375
17	C	0.033597	0.011135
18	C	0.034211	0.011326
19	C	-0.094133	-0.003416
20	C	0.017082	0.011758
21	C	-0.088044	-0.005430
22	C	-0.001536	0.016603
23	C	-0.150566	0.002230
24	C	-0.015310	0.000228
25	C	-0.008911	0.000471
26	C	-0.202977	0.000228
27	C	-0.000886	0.000305
28	C	-0.015376	0.000365
29	C	-0.150833	0.002024
30	C	-0.204371	0.000177
31	C	-0.000215	0.000313
32	C	-0.015482	0.000367
33	C	-0.015155	0.000415
34	C	-0.009620	0.000501
35	C	0.117733	-0.023091
36	C	-0.135798	0.004348
37	C	-0.075532	-0.001359
38	C	-0.066707	0.002862
39	C	-0.069683	-0.001330
40	C	-0.153197	0.005082
41	C	0.051273	0.000412
42	C	0.080411	-0.002722
43	C	0.007021	-0.000217
44	C	0.096693	0.000557
45	C	0.117223	-0.022902
46	C	-0.135779	0.004280
47	C	-0.075435	-0.001297
48		-0.066736	0.00

49 C $-0.069603-0.001261$
50 C -0.1529370 .004883
51 C 0.0483580 .000393
52 C $0.080425-0.002739$
53 C $0.007076-0.000208$
54 C 0.0972810 .000061
55 H $-0.078462-0.007271$
56 H 0.0258040 .002194
57 H 0.0259750 .002155
58 H -0.079122 -0.007172
59 H 0.0091740 .000137
60 H $0.014045-0.000576$
61 H 0.0120740 .000244
62 H 0.0121840 .000248
63 H $0.014114-0.000564$
64 H 0.0092130 .000141
65 H $0.000070-0.004278$
66 H 0.0346970 .000094
67 H 0.0690930 .000610
68 H 0.0329670 .000132
69 H 0.0393100 .000036
70 H $0.038297-0.000121$
71 H 0.0368090 .000417
72 H $0.048218-0.000289$
73 H 0.0450710 .000070
74 H $0.047944-0.000262$
75 H 0.0358140 .000208
76 H 0.0437580 .000005
77 H $0.064509-0.000011$
78 H 0.0352510 .000008
79 H -0.000367-0.004032
80 H $0.048705-0.000271$
81 H $0.045051 \quad 0.000074$
82 H $0.047753-0.000264$
83 H 0.0357330 .000204
84 H 0.0438760 .000007
85 H 0.0646070 .000064
86 H 0.0351270 .000008
87 H 0.0346270 .000095
88 H 0.0681180 .000472
89 H 0.0332870 .000094
90 H 0.0390880 .000036
91 H $0.038712-0.000120$
92 H 0.0369360 .000400
93 H -0.0204660 .000180
$94 \mathrm{H}-0.0202840 .000004$
95 H $\quad 0.0289730 .000957$
96 H $0.055494-0.000069$

97 H $0.055769-0.001068$
98 H 0.0380370 .000343
99 H 0.0241230 .000036
100 H 0.0664770 .000009
101 H 0.0348140 .000002
102 H 0.0479020 .000090
103 H 0.0558280 .000138
104 H 0.0412130 .003325
105 H 0.0464120 .006639
106 H $0.057203-0.000440$
107 H -0.0204680 .000180
$108 \mathrm{H}-0.0204640 .000002$
109 H 0.0288790 .000900
110 H 0.0567230 .000361
111 H $0.056809-0.001143$
112 H 0.0383530 .000341
113 H 0.0241380 .000037
$114 \mathrm{H} \quad 0.0665080 .000007$
115 H 0.0347270 .000002
116 H 0.0478930 .000087
117 H 0.0558130 .000132
118 H 0.0457740 .006652
119 H 0.057711 -0.000414
120 H 0.0415440 .003636
Sum of Mulliken charges $=0.00$
Sum of Mulliken spin density $=1.0$

Figure S50. Optimized structure and numbering of atoms of 6 DIP .

Table S10. Cartesian Coordinates

$4^{\text {DIP }}$							
RM062X/def2SVP, Total energy: -2114.89516530 hartree							
C	0.05599	1.23841	0.41028	H	-0.55336	-2.45788	4.52893
C	-1.33200	1.27887	0.31055	H	0.06521	-3.81512	2.55733
C	-2.03439	0.33387	-0.45426	H	7.16979	2.47373	-0.53071
C	-1.29519	-0.62123	-1.16913	H	8.22779	0.56123	-1.68920
C	0.09603	-0.64831	-1.11418	H	6.84049	-1.25182	-2.64029
C	0.76492	0.26202	-0.29291	H	2.17696	-2.53798	-0.26300
C	2.25307	0.17854	-0.18106	H	3.18091	-4.78797	0.13303
N	2.74634	-0.45880	0.87991	H	3.74139	-3.61686	1.35484
C	1.82287	-0.99995	1.86849	H	2.49180	-4.80557	1.77428
B	-3.61895	0.30793	-0.46049	H	-0.26800	-3.30642	-0.31816
N	2.95956	0.73319	-1.16293	H	0.23078	-4.75105	0.58983
C	4.39974	0.67552	-1.29304	H	0.90503	-4.45602	-1.01726
C	1.50936	-0.21511	2.99194	H	2.47382	1.54602	2.25381
C	0.64180	-0.76644	3.93914	H	1.52227	3.18275	3.75646
C	0.12273	-2.04706	3.77801	H	0.15874	2.16912	3.20687
C	0.47039	-2.80808	2.66710	H	0.85036	1.94620	4.82566
C	1.33209	-2.30397	1.68813	H	3.01226	0.66806	5.14047
C	5.15798	1.74080	-0.77832	H	3.75843	2.06560	4.32934
C	6.54565	1.67135	-0.92885	H	4.10705	0.41182	3.76749
C	7.14289	0.59708	-1.58316	H	3.43794	2.76711	-0.02778
C	6.36077	-0.42399	-2.11482	H	4.53244	3.97133	1.82340
C	4.96817	-0.40359	-1.98907	H	4.87386	2.23330	1.96461
C	1.75399	-3.18504	0.52322	H	6.12143	3.34037	1.35012
C	2.86036	-4.15118	0.97034	H	4.24106	5.06893	-0.44209
C	0.58475	-3.96143	-0.08874	H	4.37165	4.10966	-1.93769
C	2.11158	1.16284	3.22302	H	5.82139	4.45327	-0.97288
C	1.09811	2.16883	3.77787	H	3.08413	-1.36612	-2.29282
C	3.32149	1.06993	4.16415	H	3.52733	-2.19642	-4.58355
C	4.52451	2.93960	-0.08822	H	3.85519	-0.44484	-4.49827
C	5.04304	3.12451	1.34223	H	5.20071	-1.60202	-4.50081
C	4.74938	4.21457	-0.91074	H	3.88617	-3.67030	-2.53168
C	4.13076	-1.51385	-2.60460	H	4.53890	-2.98605	-1.02636
C	4.17713	-1.43131	-4.13555	H	5.57843	-3.14624	-2.45995
C	4.56027	-2.90318	-2.12303	H	-6.67786	-2.78089	-2.34621
C	-4.31260	-1.09865	-0.53996	H	-4.30633	-4.18018	0.94222
C	-5.32367	-1.33947	-1.50263	H	-2.97208	-0.96712	1.90293
C	-5.91095	-2.60221	-1.58757	H	-3.05027	-2.71153	2.21937
C	-5.55697	-3.64083	-0.72149	H	-1.88443	-2.06079	1.04977
C	-4.57898	-3.38704	0.24071	H	-6.42596	-0.68054	-3.23848
C	-3.94535	-2.14486	0.33817	H	-6.38513	0.50294	-1.91007
C	-2.91299	-1.95906	1.43080	H	-4.96064	0.27290	-2.92573
C	-5.79633	-0.25694	-2.44584	H	-6.17539	-5.37750	-1.84350
C	-6.23370	-4.98155	-0.81956	H	-5.77744	-5.71273	-0.14026
C	4.16547	-0.71822	1.17826	H	-7.30037	-4.89856	-0.56317
C	-4.40493	1.66194	-0.36766	H	4.63306	-1.32263	0.39229
C	-5.46064	1.81324	0.56739	H	4.72974	0.21438	1.29183
C	-6.14052	3.02818	0.65166	H	4.19246	-1.27366	2.12080
C	-5.83884	4.10442	-0.18826	H	-6.94162	3.13790	1.38772
C	-4.81889	3.93802	-1.12504	H	-4.58598	4.75900	-1.80834
C	-4.09281	2.74739	-1.21909	H	-3.20098	3.39624	-3.07365
C	-3.01778	2.65852	-2.28147	H	-2.01993	2.86067	-1.86215
C	-5.88741	0.68790	1.48192	H	-2.97256	1.66604	-2.75207
C	-6.60234	5.39646	-0.07820	H	-5.03299	0.19741	1.96944
C	2.29838	1.43144	-2.27949	H	-6.55575	1.06177	2.26792
H	0.58956	1.96225	1.02914	H	-6.42248	-0.09404	0.92211
H	-1.89056	2.05057	0.84752	H	-6.42362	5.87233	0.89750
H	-1.82578	-1.36847	-1.76549	H	-6.30792	6.10540	-0.86226
H	0.65670	-1.39706	-1.67978	H	-7.68448	5.22079	-0.16089
H	0.36956	-0.18433	4.82041	H	2.99700	2.18992	-2.64984
				H	2.07257	0.72558	-3.09281
				H	1.37268	1.91354	-1.95121

$5^{\text {DIP }}$ —Singlet							
UM062X/def2SVP, Total energy: -2115.0774929 hartree							
C	-0.01065	1.29700	-0.11762	H	6.62948	-4.32547	0.81238
C	-1.36905	1.15045	-0.15720	H	4.46648	-4.02388	1.99809
C	-2.04912	-0.09526	-0.37626	H	6.86161	-1.21761	-2.27549
C	-1.15436	-1.18650	-0.63866	H	4.43765	-1.66537	-4.06023
C	0.20497	-1.06926	-0.65152	H	6.11770	-1.32217	-4.50706
C	0.90639	0.17305	-0.31836	H	5.70890	-2.84709	-3.68471
C	2.29456	0.17940	-0.28443	H	4.53176	0.69968	-2.04213
N	3.13865	1.25662	0.19707	H	5.71276	0.82929	-3.37154
C	2.54352	2.40269	0.82412	H	6.24635	0.89885	-1.68377
B	-3.54070	-0.24218	-0.34194	H	1.81441	-1.64379	1.08456
N	2.99448	-0.84276	-1.01003	H	0.57749	-3.72635	1.45726
C	3.97724	-1.73356	-0.50122	H	1.47813	-3.86117	-0.07152
C	2.54311	3.63363	0.12907	H	2.08798	-4.68112	1.38364
C	1.98456	4.75765	0.74582	H	1.58049	-2.28000	3.39277
C	1.43929	4.68794	2.02368	H	3.22110	-1.60892	3.20325
C	1.44935	3.47604	2.70114	H	2.97973	-3.36616	3.33570
C	1.98977	2.32379	2.12028	H	2.88505	4.85058	-1.54947
C	5.23401	-1.89060	-1.16531	H	5.02201	3.84107	-2.31190
C	6.14358	-2.83909	-0.67603	H	5.10287	4.38075	-0.61227
C	5.89395	-3.60443	0.45222	H	4.92537	2.64898	-0.99375
C	4.68817	-3.42207	1.11462	H	2.78250	3.18582	-3.32908
C	3.72395	-2.51958	0.65911	H	1.32989	3.05940	-2.29798
C	5.77090	-1.10741	-2.37611	H	2.62238	1.86021	-2.14347
C	5.47680	-1.77273	-3.73308	H	2.27861	0.21961	2.25226
C	5.53736	0.41043	-2.36829	H	2.79435	0.14583	4.70277
C	2.39113	-2.52016	1.39496	H	3.87635	1.28966	3.86013
C	1.58579	-3.76998	1.01845	H	2.50674	1.89738	4.81890
C	2.55906	-2.43928	2.91580	H	0.47312	-0.29834	3.83496
C	3.10704	3.80554	-1.27427	H	-0.15649	0.58380	2.41514
C	4.63121	3.66039	-1.29774	H	0.05404	1.42037	3.97816
C	2.42117	2.92375	-2.32182	H	-4.31368	-4.52188	1.66567
C	1.92355	1.02353	2.90724	H	-6.61036	-3.59724	-1.83548
C	2.83089	1.09186	4.14074	H	-6.22769	-1.69547	-3.07228
C	0.48675	0.66518	3.30294	H	-6.26177	-0.32390	-1.93151
C	-4.22748	-1.69116	-0.26624	H	-4.77536	-0.69705	-2.80328
C	-3.90891	-2.60524	0.76765	H	-2.86896	-1.23575	2.10404
C	-4.56734	-3.83997	0.84755	H	-3.06731	-2.90118	2.73452
C	-5.53600	-4.22451	-0.07691	H	-1.86118	-2.52198	1.47856
C	-5.85034	-3.32365	-1.09620	H	-5.73082	-6.29253	-0.68695
C	-5.22458	-2.07852	-1.19479	H	-6.13799	-5.99318	1.01448
C	-5.64646	-1.15365	-2.31249	H	-7.26734	-5.50950	-0.27535
C	-2.87959	-2.29947	1.83318	H	4.25252	0.13534	1.66904
C	-6.20465	-5.57356	0.00084	H	5.08472	0.42133	0.13229
C	4.38361	0.86717	0.84791	H	4.85384	1.77094	1.26017
C	-4.50733	1.03923	-0.36936	H	-5.28077	3.77758	-2.28107
C	-4.44368	1.99002	-1.41688	H	-7.12516	2.43837	1.35137
C	-5.34141	3.06543	-1.45163	H	-6.29126	0.66425	2.55483
C	-6.30964	3.25429	-0.46768	H	-6.11181	-0.69694	1.41532
C	-6.37234	2.31755	0.56550	H	-4.68375	-0.01717	2.19558
C	-5.50264	1.22542	0.62070	H	-3.22034	0.84641	-2.80797
C	-5.65812	0.24526	1.75973	H	-3.80041	2.42225	-3.43281
C	-3.43797	1.88878	-2.54181	H	-2.47080	2.32742	-2.25140
C	-7.23882	4.44123	-0.49894	H	-8.23701	4.17765	-0.12003
C	2.63707	-0.99223	-2.41366	H	-6.85640	5.26219	0.12904
H	0.37058	2.29946	0.04508	H	-7.35120	4.83238	-1.52001
H	-1.97922	2.04535	0.00816	H	1.56363	-0.80695	-2.54662
H	-1.58804	-2.16889	-0.85849	H	3.17912	-0.30386	-3.08375
H	0.80208	-1.95252	-0.87409	H	2.83821	-2.02466	-2.73630
H	1.97469	5.70553	0.20242				
H	1.00220	5.57514	2.48552				
H	1.01154	3.41294	3.70008				
H	7.09845	-2.95271	-1.19643				

5			
DIP	-Triplet		
UMO62X/def2SVP, Total energy:	-2115.0417547 hartree		
C	0.14709	1.34392	0.42270

$6^{\text {DIP }}$							
UM062X/def2SVP, Total energy: -2115.04914818 hartree							
C	-0.52282	1.03283	-0.63647	H	-2.22741	5.67527	-0.05253
C	0.85401	1.01702	-0.63792	H	-3.01933	0.28965	2.24379
C	1.60194	-0.02926	-0.03598	H	-1.49477	-0.12744	4.08747
C	0.84934	-1.06864	0.57187	H	-0.62659	0.73289	2.78922
C	-0.52759	-1.06354	0.59594	H	-1.13790	1.60528	4.25870
C	-1.26985	-0.00648	-0.00805	H	-3.99311	0.39408	4.50116
C	-2.68921	0.01447	0.02352	H	-4.85260	1.51832	3.41316
N	-3.41425	-1.16334	0.14169	H	-3.67976	2.14178	4.59153
C	-3.01474	-2.35394	-0.55449	H	-2.98248	2.61989	-2.04234
B	3.14577	-0.03048	-0.03207	H	-4.16531	4.47712	-3.19800
N	-3.38415	1.21328	-0.05798	H	-4.99055	4.16577	-1.64717
C	-2.90646	2.39723	0.59968	H	-3.89579	5.54685	-1.80460
C	-2.82216	-3.55486	0.17172	H	-1.64537	4.12247	-3.41656
C	-2.53722	-4.72784	-0.53154	H	-0.67281	3.66255	-1.99617
C	-2.39528	-4.72822	-1.91342	H	-1.43190	5.26351	-2.07579
C	-2.52918	-3.53358	-2.60848	H	-3.17252	-0.22755	-2.17016
C	-2.84323	-2.33619	-1.95758	H	-2.93268	-2.60713	2.08614
C	-2.64748	2.38679	1.98894	H	-4.10242	-4.43974	3.29257
C	-2.25665	3.57997	2.60539	H	-5.01111	-4.08131	1.79955
C	-2.13016	4.76321	1.88980	H	-3.95541	-5.49940	1.87340
C	-2.35823	4.75436	0.51940	H	-1.56167	-4.16830	3.35723
C	-2.72286	3.58431	-0.15104	H	-0.66600	-3.72369	1.88203
C	-2.76622	1.15133	2.86976	H	-1.47142	-5.29981	1.99460
C	-1.42624	0.82419	3.53873	H	-1.75670	0.16759	-4.10529
C	-3.88819	1.31055	3.90105	H	-0.83190	-0.71792	-2.86424
C	-2.84794	3.64691	-1.66934	H	-1.44905	-1.57162	-4.30353
C	-4.04837	4.49900	-2.10443	H	-4.28603	-0.27963	-4.36219
C	-1.57328	4.20112	-2.32180	H	-5.10553	-1.39713	-3.23694
C	-2.98125	-1.08845	-2.81830	H	-4.02309	-2.03303	-4.49252
C	-2.85532	-3.63292	1.69412	H	6.39728	-2.75279	2.13391
C	-4.05417	-4.45116	2.19367	H	4.21735	-4.55183	-1.09155
C	-1.56145	-4.23631	2.25940	H	2.91033	-3.24692	-2.50701
C	-1.67664	-0.78796	-3.56489	H	1.64622	-2.76137	-1.35661
C	-4.16782	-1.20640	-3.78060	H	2.55703	-1.52523	-2.21724
C	3.93265	-1.39089	0.18677	H	4.39831	0.17567	2.46675
C	4.93776	-1.49320	1.17923	H	5.91353	-0.64313	2.90934
C	5.63305	-2.69058	1.35344	H	5.84932	0.44514	1.49997
C	5.38702	-3.80782	0.55089	H	5.99404	-5.78937	-0.06818
C	4.41287	-3.69596	-0.43889	H	7.22697	-4.90030	0.85971
C	3.67843	-2.51858	-0.62694	H	5.82203	-5.59076	1.68911
C	2.64855	-2.50855	-1.73653	H	-5.54539	-1.24053	0.06702
C	5.29293	-0.31972	2.06297	H	-4.79542	-2.09117	1.43097
C	6.14820	-5.09015	0.76432	H	-4.84089	-0.32157	1.43003
C	-4.71688	-1.20458	0.79299	H	6.40792	2.70210	-2.16855
C	3.93159	1.33202	-0.24201	H	4.19993	4.49153	1.04313
C	4.94406	1.43799	-1.22659	H	2.89571	3.17312	2.45457
C	5.63793	2.63708	-1.39401	H	1.63368	2.71073	1.29256
C	5.38318	3.75265	-0.59176	H	2.52918	1.45758	2.14525
C	4.40206	3.63707	0.39061	H	4.41785	-0.22984	-2.52080
C	3.66876	2.45778	0.57173	H	5.93592	0.59111	-2.94925
C	2.63186	2.44489	1.67508	H	5.86070	-0.49881	-1.54167
C	5.30838	0.26607	-2.10865	H	5.98068	5.73484	0.03448
C	6.14295	5.03705	-0.79768	H	7.22287	4.84988	-0.88494
C	-4.72559	1.29054	-0.62118	H	5.82277	5.53806	-1.72434
H	-1.05948	1.82867	-1.14680	H	-4.82062	2.17816	-1.25542
H	1.39511	1.82955	-1.13239	H	-4.91810	0.41041	-1.24489
H	1.38713	-1.88959	1.05608	H	-5.50179	1.35229	0.15890
H	-1.06645	-1.85178	1.11555				
H	-2.40042	-5.65883	0.02234				
H	-2.16543	-5.65290	-2.44432				
H	-2.39893	-3.52610	-3.69262				
H	-2.05879	3.57850	3.67926				
H	-1.83921	5.68516	2.39485				

References

(S1) Dorkó, E.; Varga, E.; Gáti, T.; Holczbauer, T.; Pápai, I.; Mehdi H.; Soós, T. Steric Control of Geminal Lewis pair Behaviour: Frustration Induced Dyotropic Rearrangement. Synlett 2014, 25, 1525-1528.
(S2) Weitz, I. S. ; Rabinovitz, M. The application of $\mathrm{C}_{8} \mathrm{~K}$ for organic synthesis: reduction of substituted naphthalenes J. Chem. Soc. Perkin Trans 1. 1993, 117-120.
(S3) Stoll, S.; Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006, 178, 42-55.
(S4) CrysAlisPro: Rigaku Oxford Diffraction (1995-2017). Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
(S5) Sheldrick, G. M. SHELXT-Integrated space-group and crystal-structure determination Acta Cryst. A 2015, 71, 38.
(S6) Sheldrick, G. M. Crystal structure refinement with SHELXL Acta Cryst. C 2015, 71, 3-8.
(S7) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339-341.
(S8) Collins, M. S.; Rosen, E. L.; Lynch, V. M.; Bielawski, C. W. Differentially Substituted Acyclic Diaminocarbene Ligands Display Conformation-Dependent Donicities. Organometallics 2010, 29, 3047-3053.
(S9) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. C.01, Wallingford, CT, 2016.

