A New Approach to Design Alarm Filters

Using the Plant and Controller Knowledge
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1 ProofofLemmal

Proof. From the alarm signal formulation (see (8)) we obtain
w(z™h) =Ay(z y(z) + Au(z Huz™),

Where Ay(z_l) - Ayl + )\yzz_l + tee + Ay,Z_H'l and /\u (Z_l) - A“l + Auzz_l + Tt + /\urZ_H'l.

Substituting (10) and (11) in the above equation yields
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where z ¢ is added in the denominator to make the transfer function proper. The numerator
degree of transfer function in (A.1) is + I — 2 and the denominator degree is | + max(p,q) — 2.
So we set { = r — max(p,q) to have a proper transfer function. For derivation of (A.1), the
terms that are associated with b are excluded as they are constant in the steady-state and do not
affect the variance. This transfer function can be represented in the state-space form where the

system matrices are

o” I
a= ,
[0; Bxg—axf]
5=[01]",

According to Ref. 1, the state covariance of this system can be found by solving the following
Lyapunov equation

a¥Yal — v + 33T =0. (A.2)

As we have assumed that the controller is stabilizing, a solution for (A.2) can be found as

Y=Y a's's(a’).
i=0

Finally, the output variance is given by 02, = c'¥¢ 02, which completes the proof. O



2 Proofof Lemma 2

Proof. The integral is evaluated as
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where erf(-) indicates the error function. As 81 = —83, the proof is complete. O

3 Proof of Proposition 1

Proof. After some math operation, the second derivative of the cost function is obtained as
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Here, the term 2/nad 18 non-negative. Substituting the optimal answerin HA*1 fe 1 f gA H
5 T . 5 ~—14T T .. ces . .
2HA* 14 yields H(1¢gH 1fg) — 14,1f¢. To show that this is positive semi-definite we use
Schur’s complement lemma (see Ref. 2). According to this lemma we need to prove that the
following statement holds
H1pH 11L) 1%
(refrg) g = 0. (A4)
1fg 1
A 7 F—14T s - . . or7—1 . . 5—14T
Letus define ® = H(1rH "1t ). As H is positive definite, sois H™, which yields 1p, H ™17,

0. Hence, @ is positive definite and invertible. The matrix in (A.4) can be decomposed as

17 I 0 0
1 1 1, @ 10 1-1071]
It can be verified that 1 — 1 fgq)’ll;g = (. Considering the positive definiteness of ® and based

on the equation in (A.5) we conclude that (A.4) holds. O



4 Proof of Corollary 1

Proof. In case that we have no information from the plant and the controller, both © and y are
modeled as random processes where the samples are independent and identically distributed.
Moreover, in the conventional linear filters, # and y were not combined. So to interpret the
conventional approach according to the proposed method we assume that u(k) and y(k) are

the same. Now we have

y(k) =v(k) + b, (A.6)

u(k)=v(k) +b, (A7)

where v(k),k € {1,2,---}, follow a Gaussian distribution and b is defined in (4). By com-
paring (A.6) and (A.7) with (11) and (10) we determine f = 1, g = 1 and a(z ') f(z7!) —

B(z 1)g(z™!) = 1. From Lemma 1 we find ¥ = I. Furthermore we obtain Hy = Gy = I and

hence H = E ﬂ ; thus the optimal filter is obtained as A* = ¢ [0.5 0.5 --- 0.5]. This means

that the optimal solution in the conventional framework is the case that all filter coefficients are

equal. O

5 ProofofLemma3

Proof. The cost function | considering the optimal trip-point is given by

] 1R 1 g (A.8)
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As the alarm signal follows a Gaussian distribution, we have 1y, = cpy and o2 = 02‘71206’ where

Hw, and OZZUC are the mean and the variance of w,, respectively. Furthermore, from (18) we have
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where w;‘pc corresponds to the optimal trip-point calculated for w.. By comparing (18) and (A.9)

we conclude that wy, = cwyg,. Now Jc can be obtained as

cwy, 1 (r—cpw)? ) 1 2
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After some modification we have

cwy, 1 _(E-pw)? © 1 (%) 1

Je = 1m ~ V2ro e EdT + 1 e 2 —dr.
w

cwi, \/ 2700y, ¢

Substituting T, £ < yields

Wip 1 _M o0 _LCZZ
= e w dt.+ e *wdt. (A.10)
Je = m —o0 /2710y, c T wi, V270 ‘
By comparing (A.8) and (A.10) we can infer that J. = J, and the proof is complete. O
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