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1 Proof of Lemma 1

Proof. From the alarm signal formulation (see (8)) we obtain

w(z−1) = λy(z−1)y(z−1) + λu(z−1)u(z−1),

where λy(z−1) = λy1 +λy2z−1 + · · ·+λyr z
−r+1 and λu(z−1) = λu1 +λu2z−1 + · · ·+λur z

−r+1.

Substituting (10) and (11) in the above equation yields

w(z−1) =
λy(z−1) f (z−1) + λu(z−1)g(z−1)(
α(z−1) f (z−1)− β(z−1)g(z−1)

)
z−ζ

ν(z−1), (A.1)
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where z−ζ is added in the denominator to make the transfer function proper. The numerator

degree of transfer function in (A.1) is r+ l− 2 and the denominator degree is l +max(p,q)− 2.

So we set ζ = r −max(p,q) to have a proper transfer function. For derivation of (A.1), the

terms that are associated with b are excluded as they are constant in the steady-state and do not

affect the variance. This transfer function can be represented in the state-space form where the

system matrices are

A =


[0ζ β ∗ g − α ∗ f ]

0T I

 ,

B =
[
0 1
]T,

C = λy ∗ f + λu ∗ g,

D = 0.

According to Ref. 1, the state covariance of this system can be found by solving the following

Lyapunov equation

A ΨA T −Ψ +BB T = 0. (A.2)

As we have assumed that the controller is stabilizing, a solution for (A.2) can be found as

Ψ =
∞

∑
i=0

A iB TB (A T)i.

Finally, the output variance is given by σ2
w =C ΨC Tσ2

ν , which completes the proof.
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2 Proof of Lemma 2

Proof. The integral is evaluated as

√
π√

2κ2
2

(θ1 + θ3)erf

(
κ1 + τ√

2κ2

)
− θ2κ2

2 + θ3(κ1 + τ)

κ23 e
− (κ1+τ)2

2κ2
2 + c,

where erf(·) indicates the error function. As θ1 =−θ3, the proof is complete.

3 Proof of Proposition 1

Proof. After some math operation, the second derivative of the cost function is obtained as

∂2 J
∂λ∗2 =

(
H̄λ∗1T

f g + 1T
f gλ∗H̄ − 2H̄λ∗T1 f g

) e
−

w∗tp
2

2σ2
w

2
√

2πσ3
w

. (A.3)

Here, the term e
−

w∗tp
2

2σ2
w

2
√

2πσ3
w

is non-negative. Substituting the optimal answer in H̄λ∗1T
f g− 1T

f gλ∗H̄−

2H̄λ∗T1 f g yields H̄(1 f g H̄−11T
f g)− 1T

f g1 f g. To show that this is positive semi-definite we use

Schur’s complement lemma (see Ref. 2). According to this lemma we need to prove that the

following statement holds H̄(1 f g H̄−11T
f g) 1T

f g

1 f g 1

� 0. (A.4)

Let us define Φ , H̄(1 f g H̄−11T
f g). As H̄ is positive definite, so is H̄−1, which yields 1 f g H̄−11T

f g

0. Hence, Φ is positive definite and invertible. The matrix in (A.4) can be decomposed as

 Φ 1T
f g

1 f g 1

=

 I

1 f gΦ−1

Φ
[

I Φ−11T
f g

]
+

0 0

0 1− 1 f gΦ−11T
f g

 . (A.5)

It can be verified that 1− 1 f gΦ−11T
f g = 0. Considering the positive definiteness of Φ and based

on the equation in (A.5) we conclude that (A.4) holds.
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4 Proof of Corollary 1

Proof. In case that we have no information from the plant and the controller, both u and y are

modeled as random processes where the samples are independent and identically distributed.

Moreover, in the conventional linear filters, u and y were not combined. So to interpret the

conventional approach according to the proposed method we assume that u(k) and y(k) are

the same. Now we have

y(k) =ν(k) + b, (A.6)

u(k) =ν(k) + b, (A.7)

where ν(k),k ∈ {1,2, · · · }, follow a Gaussian distribution and b is defined in (4). By com-

paring (A.6) and (A.7) with (11) and (10) we determine f = 1, g = 1 and α(z−1) f (z−1) −

β(z−1)g(z−1) = 1. From Lemma 1 we find Ψ = I. Furthermore we obtain H f = Gg = I and

hence H̄ =

[
I I
I I

]
; thus the optimal filter is obtained as λ∗ = c [0.5 0.5 · · · 0.5]. This means

that the optimal solution in the conventional framework is the case that all filter coefficients are

equal.

5 Proof of Lemma 3

Proof. The cost function J considering the optimal trip-point is given by

J = ηm

∫ w∗tp

−∞

1√
2πσw

e
− (τ−µw)2

2σ2
w dτ + η f

∫ ∞

w∗tp

1√
2πσw

e
− τ2

2σ2
w dτ. (A.8)

As the alarm signal follows a Gaussian distribution, we have µwc = cµw and σ2
wc = c2σ2

wc , where

µwc and σ2
wc are the mean and the variance of wc, respectively. Furthermore, from (18) we have

w∗tpc
=

cµw

2
− c2σ2

w
cµw

ln
( η f

ηm

)
, (A.9)
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where w∗tpc
corresponds to the optimal trip-point calculated for wc. By comparing (18) and (A.9)

we conclude that w∗tpc
= cw∗tp. Now Jc can be obtained as

Jc = ηm

∫ cw∗tp

−∞

1√
2πcσw

e
− (τ−cµw)2

2c2σ2
w dτ + η f

∫ ∞

cw∗tp

1√
2πcσw

e
− τ2

2c2σ2
w dτ.

After some modification we have

Jc = ηm

∫ cw∗tp

−∞

1√
2πσw

e
− ( τ

c −µw)2

2σ2
w

1
c

dτ + η f

∫ ∞

cw∗tp

1√
2πσw

e
− ( τ

c )
2

2σ2
w

1
c

dτ.

Substituting τc , τ
c yields

Jc = ηm

∫ w∗tp

−∞

1√
2πσw

e
− (τc−µw)2

2σ2
w dτc + η f

∫ ∞

w∗tp

1√
2πσw

e
− τ2

c
2σ2

w dτc. (A.10)

By comparing (A.8) and (A.10) we can infer that Jc = J, and the proof is complete.
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