Supporting Information for: TMDC-based topological nanospaser: single and double threshold behavior

Rupesh Ghimire,^{*,†} Fatemeh Nematollahi,^{*,†} Jhih-Sheng Wu,^{*,‡} Vadym Apalkov,^{*,†} and Mark .I. Stockman^{*,†}

[†]Center for Nano-Optics (CeNO) and Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA

[‡]Department of Photonics, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan

E-mail: aaryun11@gmail.com; fnematallohi1@gsu.edu; b91202047@gmail.com; vapalkov@gsu.edu; mstockman@gsu.edu

Metallic Oblate Spheroid: Geometry and Modes

We consider an oblate spheroid, which in the Cartesian coordinate system is described by the following equation

$$\frac{x^2 + y^2}{a^2} + \frac{z^2}{c^2} = 1 , \qquad (S.1)$$

where a and c are semi-axes, $\varepsilon = \sqrt{1 - \frac{c^2}{a^2}}$ is the eccentricity of the spheroid.

It is convenient to introduce the spheroidal coordinates, ξ , η and φ , which are related to

the Cartesian coordinates, x, y and z through the following expressio:¹

$$x = f\sqrt{\xi^2 + 1}\sqrt{1 - \eta^2} \cos(\varphi), \qquad (S.2)$$

$$y = f\sqrt{\xi^2 + 1}\sqrt{1 - \eta^2} \sin(\varphi), \qquad (S.3)$$

$$z = f\xi\eta,\tag{S.4}$$

where $0 \leq \xi < \infty$, $-1 \leq \eta \leq 1$, $0 \leq \varphi < 2\pi$ and $f = \varepsilon a$.

Then the surface plasmon eigenmodes of the metal spheroid are described by the quasistatic equation²

$$\nabla \left[\theta(\mathbf{r})\nabla\phi_m\right] = s_{\rm sp}\nabla^2\phi_m,\tag{S.5}$$

where s_{sp} is the eigenvalue of the corresponding mode ϕ_m . Here $\theta(\mathbf{r})$ is the characteristic function that is 1 inside the metal and 0 elsewhere. For oblate spheroid, the eigenmodes are characterized by multipole quantum number l and magnetic quantum number m. For the relevant modes of topological nanospaser, the multipole quantum number is 1, l = 1. Then the corresponding eigenmodes are described by the following expressions

$$\phi_m = C_N P_1^m(\eta) e^{im\phi} \begin{cases} \frac{P_1^m(i\xi)}{P_1^m(i\xi_0)}, & 0 < \xi < \xi_0, \\ \frac{Q_1^m(i\xi)}{Q_1^m(i\xi_0)}, & \xi_0 < \xi, \end{cases}$$
(S.6)

where $P_l^m(x)$ and $Q_l^m(x)$ are the Legendre functions of the first and second kind, respectively, and $\xi_0 = \frac{\sqrt{1-\varepsilon^2}}{\varepsilon}$. The constant C_N is determined by normalization condition,

$$\int_{\text{All Space}} |\nabla \phi(\mathbf{r})_m|^2 d^3 \mathbf{r} = 1.$$
(S.7)

Due to axial symmetry of the nanospheroid, the corresponding eigenvalues, $s_{\rm sp}$, do not

depend on m. They can be also found from the following expression^{3,4}

$$s_{\rm sp} = \frac{\int_{\rm All \ Space} \theta(\mathbf{r}) |\nabla \phi_m(\mathbf{r})|^2 d^3 \mathbf{r}}{\int_{\rm All \ Space} |\nabla \phi_m(\mathbf{r})|^2 d^3 \mathbf{r}}.$$
 (S.8)

Using explicit expression (S.6) for ϕ_m , we derive the final equation for the eigenvalue

$$s_{\rm sp} = \left. \frac{\frac{dP_1^m(x)}{dx}}{\frac{dP_1^m(x)}{dx} - \frac{P_1^m(x)}{Q_1^m(x)} \frac{dQ_1^m(x)}{dx}} \right|_{x=i\xi_0} .$$
(S.9)

To find the plasmon frequency, ω_{sp} , and the plasmon relaxation rate, γ_{sp} , we use the following relations: ^{3,4}

$$s_{\rm sp} = {\rm Re}[s(\omega_{\rm sp})], \tag{S.10}$$

$$r_{\rm sp} = \frac{\rm Im[s(\omega_{\rm sp})]}{s'_{\rm sp}}, \quad s'_{\rm sp} \equiv \frac{d\rm Re[s(\omega)]}{d\omega}\Big|_{\omega=\omega_{\rm sp}}, \tag{S.11}$$

where the Bergman spectral parameter is defined as

$$s(\omega) = \frac{\epsilon_d}{\epsilon_d - \epsilon_m(\omega)} . \tag{S.12}$$

Here ϵ_d is the dielectric constant of surrounding medium, and $\epsilon_m(\omega)$ is the dielectric function of the metal (silver). In our computations, for silver, we use the dielectric function from Ref.⁵

TMDC Parameters

In our calculations the TMDC (MoS_2) monolayer is characterized by its bandgap and the dipole matrix elements between the conduction and valence bands at the K and K' points. To find these parameters we have used a three-band tight binding model.⁶ The calculated values of the transition dipole matrix elements and the bandgap are given in Table S1. The

Fig. S1: Absolute value of the left-rotating chiral dipole component, $\mathbf{d}_{-} = \mathbf{e}_{+}\mathbf{d}$, in MoS_{2}

dipole matrix elements at the K and K' points are purely chiral. They are proportional to $\mathbf{e}_{\pm} = 2^{-1/2} (\mathbf{e}_x \pm i \mathbf{e}_y)$, where \mathbf{e}_x and \mathbf{e}_y are the Cartesian unit vectors. The plot of the absolute value of the chiral dipole, $|\mathbf{d}_{\pm}|$, where $\mathbf{d}_{\pm} = \mathbf{e}_{\pm}^* \mathbf{d}$, is shown in Fig. S1.

TMDC	Semi-principal axis	Dipole elements (D)		Band gap
	$c \ (\mathrm{nm})$	d_{K}	$\mathbf{d}_{\mathbf{K}'}$	(eV)
MoS_2	1.20	$17.68 e_{+}$	$17.68 e_{-}$	1.66
$MoSe_2$	1.45	$19.23e_{+}$	$19.23e_{-}$	1.79
WSe_2	0.85	$18.38e_{+}$	$18.38e_{-}$	1.43
$MoTe_2$	1	$20.08e_{+}$	$20.08 e_{-}$	1.53

Table S1: Parameters employed in the calculations: Semi-principal axes of the spheroids, and the dipole matrix elements and band gaps of the TMDCs.

Stationary solution

For the large radius of TMDC nanopatch and for the gain rate larger than the critical value, in the stationary regime, two types of plasmons, co-rotating (m = -1) and counter-rotating (m = 1), are generated. Although the co-rotating mode is more strongly coupled to the Kvalley of TMDC then the counter-rotating one, the number of generated counter-rotating plasmons is larger then the number of co-rotating ones, $N_{-1} > N_1$. To understand this relation we consider the following approximation for the Rabi frequency dependence on the position within the TMDC nanopatch: (i) the m = 1 plasmon mode is coupled to the Kvalley of TMDC at $r < r_0 \approx 12$ nm and to the K' valley of TMDC at $r_1 > r > r_0$; (ii) the m = -1 plasmon mode is coupled to the K' valley of TMDC at $r < r_0$ and to the Kvalley of TMDC at $r_1 > r > r_0$. Here r_1 is the radius of TMDC nanopatch. Under this approximation, there two uncoupled systems: system "1": m = 1 plasmons, K valley of TMDC at $r < r_0$, and K' valley of TMDC at $r_1 > r > r_0$.

Then the stationary equations for system "1" become (see Eqs. (10)-(12) of the main

text)

$$\begin{split} \gamma_{\rm sp} a_1 &= i\nu \int_{S_0} d^2 \mathbf{r} \rho_K^*(\mathbf{r}) \tilde{\Omega}_{1,K}^*(\mathbf{r}) + i\nu \int_{S_1} d^2 \mathbf{r} \rho_{K'}^*(\mathbf{r}) \tilde{\Omega}_{1,K'}^*(\mathbf{r}) \\ 4 {\rm Im} \left[\rho_K(\mathbf{r}) \tilde{\Omega}_{1,K}(\mathbf{r}) a_1 \right] &= g_K \left[1 - n_K(\mathbf{r}) \right] - \gamma_{2K} \left[1 + n_K(\mathbf{r}) \right] \\ \Gamma_{12} \rho_K(\mathbf{r}) &= i n_K(\mathbf{r}) \tilde{\Omega}_{1,K}^* a_1^* , \\ 4 {\rm Im} \left[\rho_{K'}(\mathbf{r}) \tilde{\Omega}_{1,K'}(\mathbf{r}) a_1 \right] &= -\gamma_{2K} \left[1 + n_{K'}(\mathbf{r}) \right] , \\ \Gamma_{12} \rho_{K'}(\mathbf{r}) &= i n_{K'}(\mathbf{r}) \tilde{\Omega}_{1,K'}^* a_1^* . \end{split}$$

Here S_0 and S_1 are defined by the conditions $r < r_0$ and $r_0 < r < r_1$, respectively. We also take into account that only the K valley is pumped by a circularly polarized light. Similar system of equations can be written for the system "2"

$$\begin{split} \gamma_{\rm sp} a_{-1} &= i\nu \int_{S_1} d^2 \mathbf{r} \rho_K^*(\mathbf{r}) \tilde{\Omega}_{-1,K}^*(\mathbf{r}) + i\nu \int_{S_0} d^2 \mathbf{r} \rho_{K'}^*(\mathbf{r}) \tilde{\Omega}_{-1,K'}^*(\mathbf{r}) \ ,\\ 4 {\rm Im} \left[\rho_K(\mathbf{r}) \tilde{\Omega}_{-1,K}(\mathbf{r}) a_{-1} \right] &= g_K \left[1 - n_K(\mathbf{r}) \right] - \gamma_{2K} \left[1 + n_K(\mathbf{r}) \right],\\ \Gamma_{12} \rho_K(\mathbf{r}) &= in_K(\mathbf{r}) \tilde{\Omega}_{-1,K}^* a_{-1}^* \ ,\\ 4 {\rm Im} \left[\rho_{K'}(\mathbf{r}) \tilde{\Omega}_{-1,K'}(\mathbf{r}) a_{-1} \right] &= -\gamma_{2K} \left[1 + n_{K'}(\mathbf{r}) \right],\\ \Gamma_{12} \rho_{K'}(\mathbf{r}) &= in_{K'}(\mathbf{r}) \tilde{\Omega}_{1,K'}^* a_{-1}^* \ . \end{split}$$

From the above systems of equation, assuming that $|\Omega_{m,\mathcal{K}}|^2 a_m^2 \gg g_K \Gamma_1 2$, we obtain

$$N_1 = |a_1|^2 = \frac{\nu}{4\gamma_{\rm sp}} \left[g_K S_0 - \gamma_{2K} (S_0 + S_1) \right]$$
(S.13)

and

$$N_{-1} = |a_{-1}|^2 = \frac{\nu}{4\gamma_{\rm sp}} \left[g_K S_1 - \gamma_{2K} (S_0 + S_1) \right], \qquad (S.14)$$

where S_0 and S_1 are the areas of the corresponding regions. Thus, above the threshold, the number of generated plasmons is proportional to $S_0 = \pi r_0^2$ for co-rotating plasmons and to $S_1 = \pi (r_1^2 - r_0^2)$ for counter-rotating plasmons. If $r_1 > \sqrt{2}r_0 \approx 16$ nm, i.e., $S_1 > S_0$, then the number of counter-rotating plasmons is larger than the number of co-rotating ones, $N_{-1} > N_1$.

Far-field radiation

The total dipole moment of the spaser can be expressed in the following form

$$\mathbf{d_{total}} = \mathbf{d_{metal}} + \mathbf{d_{tmdc}},\tag{S.15}$$

where $\mathbf{d_{metal}}$ is the dipole moment of the metal nanospheroid and $\mathbf{d_{tmdc}}$ is the dipole moment of the TMDC nanoflake.

Dipole moment of the metal nanospheroid

The electric field inside the metal, which is produced by generated plasmon modes, both m = 1 and m = -1, is uniform and is given by the following expression

$$\mathbf{F}_m(\mathbf{r},t) = -\sum_{m=1,-1} A_{\rm sp} (\nabla \phi_m \hat{a}_m e^{-i\omega t} + \nabla \phi_m^* \hat{a}_m^* e^{i\omega t}), \qquad (S.16)$$

where

$$A_{\rm sp} = \sqrt{\frac{4\pi\hbar s(\omega)}{\epsilon_d s'(\omega)}} \tag{S.17}$$

and

$$\mathbf{s}(\omega) = \frac{\epsilon_d}{\epsilon_d - \epsilon_{m(\omega)}},\tag{S.18}$$

Then the dipole moment of the metal nanospheroid can be found from the following expression

$$\mathbf{d_{metal}} = \int_{V} \mu \mathbf{F}_{\mathbf{m}}(\mathbf{r}, \mathbf{t}) \, dv \tag{S.19}$$

where

$$\mu = \frac{\operatorname{Re}[\epsilon_{metal} - \epsilon_d]}{4\pi}.$$
(S.20)

Taking into account that the electric field inside the metal is a constant, $E_0 = |\nabla \phi_m|$, we derive the following expressions for the dipole moment of the metal nanospheroid

$$\mathbf{d_{metal,x}} = -\mu \mathbf{A_{sp}} \mathbf{E_0} \mathbf{V} \left((\hat{a}_1 e^{-i\omega t} + \hat{a}_1^* e^{i\omega t}) + (\hat{a}_{-1} e^{-i\omega t} + \hat{a}_{-1}^* e^{i\omega t}) \right)$$
(S.21)

$$\mathbf{d_{metal,y}} = -\mu \mathbf{A_{sp}} \mathbf{E_0} \mathbf{V} \left(i(\hat{a}_1 e^{-i\omega t} - \hat{a}_1^* e^{i\omega t}) - i(\hat{a}_{-1} e^{-i\omega t} - \hat{a}_{-1}^* e^{i\omega t}) \right)$$
(S.22)

Dipole moment of TMDC monolayer

The density matrix of TMDC nanoflake has the following structure

$$\hat{\rho}_{\mathcal{K}}(\mathbf{r},t) = \begin{pmatrix} \rho_{\mathcal{K}}^{(c)}(\mathbf{r},t) & \rho_{\mathcal{K}}(\mathbf{r},t)e^{i\omega t} \\ \rho_{\mathcal{K}}^{*}(\mathbf{r},t)e^{-i\omega t} & \rho_{\mathcal{K}}^{(v)}(\mathbf{r},t) \end{pmatrix}.$$
(S.23)

where \mathcal{K} is the valley index, K or K'. The off-diagonal elements, i.e., coherences, determine the dipole moment of TMDC system

$$\mathbf{d_{tmdc}} = \sum_{\mathbf{S}} \sum_{\boldsymbol{\mathcal{K}} = \mathbf{K}, \mathbf{K}'} (\rho_{\boldsymbol{\mathcal{K}}}(\mathbf{r}) \mathbf{d}_{\boldsymbol{\mathcal{K}}} e^{i\omega t} + \rho_{\boldsymbol{\mathcal{K}}}^*(\mathbf{r}) \mathbf{d}_{\boldsymbol{\mathcal{K}}}^* e^{-i\omega t}) + h.c., \qquad (S.24)$$

where \sum_{S} is the sum (integral) over all points **r** of TMDC nanoflake.

The coherences satisfy the following stationary equation (see Eq. (12) of the main text)

$$[-i(\omega - \omega_{21}) - \Gamma_{12}]\rho_{\mathcal{K}}(\mathbf{r}) + in_{\mathcal{K}}(\mathbf{r}) \sum_{m=1,-1} \tilde{\Omega}^*_{m,\mathcal{K}}(\mathbf{r}) a^*_m = 0, \qquad (S.25)$$

where Γ_{12} is the polarization relaxation rate, $n_{\mathcal{K}}$ is the population inversion defined as

$$n_{\mathcal{K}} \equiv \rho_{\mathcal{K}}^{(c)} - \rho_{\mathcal{K}}^{(v)} , \qquad (S.26)$$

and

$$\tilde{\Omega}_{m,\mathcal{K}}(\mathbf{r}) = -\frac{1}{\hbar} A_{\rm sp} \nabla \phi_m(\mathbf{r}) \mathbf{d}_{\mathcal{K}} . \qquad (S.27)$$

From Eq. (S.25) we can find the stationary coherences of TMDC monolayer

$$\rho_{\mathcal{K}}(\mathbf{r}) = -\frac{in_{\mathcal{K}}(\mathbf{r})\sum_{m=1,-1}\tilde{\Omega}_{m,\mathcal{K}}^{*}(\mathbf{r})a_{m}^{*}}{-(\omega-\omega_{21})+i\Gamma_{12}}.$$
(S.28)

We substitute Eq. (S.28) into Eq. (S.24) and obtain the following expression for the dipole moment of TMDC

$$\mathbf{d_{tmdc}} = \mathbf{f_K} \mathbf{d_K} e^{i\omega t} + \mathbf{f_{K'}} \mathbf{d_{K'}} e^{i\omega t} + h.c., \qquad (S.29)$$

where the following notations were introduced

$$\mathbf{f}_{\mathbf{K}} = -\nu \sum_{\mathbf{S}} \frac{i n_{\mathbf{K}}(\mathbf{r}) \sum_{m=1,-1} \tilde{\Omega}_{m,\mathbf{K}}^* a_m^*}{-(\omega - \Delta_{\mathbf{g}}) + i \Gamma_{12}}$$
(S.30)

$$\mathbf{f}_{\mathbf{K}'} = -\nu \sum_{\mathbf{S}} \frac{i n_{\mathbf{K}'}(\mathbf{r}) \sum_{m=1,-1} \tilde{\Omega}^*_{m,\mathbf{K}'} a^*_m}{-(\omega - \Delta_{\mathbf{g}}) + i \Gamma_{12}}.$$
(S.31)

Taking into account that $\mathbf{d}_{\mathbf{K}} = \mathbf{d}_0(1,i)$ and $\mathbf{d}_{\mathbf{K}'} = \mathbf{d}_0(1,-i)$ we obtain the x and y compo-

nents of the dipole moment

$$\mathbf{d_{tmdc,x}} = \mathbf{f_K} \mathbf{d_0} e^{i\omega t} + \mathbf{f_{K'}} \mathbf{d_0} e^{i\omega t} + h.c.$$
(S.32)

$$\mathbf{d_{tmdc,y}} = i\mathbf{f_K}\mathbf{d}_0 e^{i\omega t} - i\mathbf{f_{K'}}\mathbf{d}_0 e^{i\omega t} + h.c.$$
(S.33)

Far field dipole radiation

The total dipole moment of the spaser system is the sum of the dipole moment of the metal nanospheroid and TMDC nanoflake. Its x and y components can be expressed as

$$\mathbf{d_{total,x}} = -\mu \mathbf{A_{sp}} \mathbf{E_0} \mathbf{V} \left(\hat{a}_1 e^{-i\omega t} + \hat{a}_{-1} e^{-i\omega t} + h.c. \right) + \left(\mathbf{f_K} \mathbf{d}_0 e^{i\omega t} + \mathbf{f_{K'}} \mathbf{d}_0 e^{i\omega t} + h.c. \right)$$
(S.34)
$$\mathbf{d_{total,y}} = -\mu \mathbf{A_{sp}} \mathbf{E_0} \mathbf{V} \left(\left(i\hat{a}_1 e^{-i\omega t} - i\hat{a}_{-1} e^{-i\omega t} + h.c. \right) + \left(i\mathbf{f_K} \mathbf{d}_0 e^{i\omega t} - i\mathbf{f_{K'}} \mathbf{d}_0 e^{i\omega t} + h.c. \right)$$
(S.35)

These expressions have the following structure

$$\mathbf{d_{total,x}} = 2\mathrm{Re}\left[B_x e^{i\omega t}\right],\tag{S.36}$$

$$\mathbf{d_{total,y}} = 2\mathrm{Re}\left[B_y e^{i\omega t}\right],\tag{S.37}$$

where,

$$B_x = -\mu A_{sp} E_0 V(\hat{a}_1^* + \hat{a}_{-1}^*) + f_{\mathbf{K}} d_0 + f_{\mathbf{K}'} d_0, \qquad (S.38)$$

$$B_y = i\mu A_{\rm sp} E_0 V(\hat{a}_1^* - \hat{a}_{-1}^*) + i f_{\mathbf{K}} d_0 - i f_{\mathbf{K}'} d_0.$$
(S.39)

The total dipole moment of the system determines the far-field radiation of the spaser. The polarization of radiation is characterized by the x and y components of the far electric field, which are proportional to the corresponding components of the dipole moment, i.e., $\mathbf{d}_{total,x}$ and $\mathbf{d}_{total,y}$, while the total radiation power is given by the following expression

$$I = \frac{4}{3} \left(\frac{\omega}{c_0}\right)^3 \frac{\left(\epsilon_{\rm d}\right)^{1/2}}{\hbar} \langle |\mathbf{d}_{\mathbf{total}}|^2 \rangle$$
$$= \frac{8}{3} \left(\frac{\omega}{c_0}\right)^3 \frac{\left(\epsilon_{\rm d}\right)^{1/2}}{\hbar} (|B_x|^2 + |B_y|^2) \tag{S.40}$$

where $\langle \ldots \rangle$ means the time average.

References

- M. Willatzen and L. C. L. Y. Voon. Oblate spheroidal coordinates. In Separable Boundary-Value Problems in Physics, pages 155–164. Wiley-VCH, Weinheim, Germany, 2011.
- (2) M. I. Stockman, S. V. Faleev, and D. J. Bergman. Localization versus delocalization of surface plasmons in nanosystems: Can one state have both characteristics? *Phys. Rev. Lett.*, 87:167401–1–4, 2001.
- (3) D. J. Bergman and M. I. Stockman. Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems. *Phys. Rev. Lett.*, 90:027402–1–4, 2003.
- (4) M. I. Stockman. The spaser as a nanoscale quantum generator and ultrafast amplifier. Journal of Optics, 12:024004–1–13, 2010.
- (5) P. B. Johnson and R. W. Christy. Optical constants of noble metals. *Phys. Rev. B*, 6:4370–4379, 1972.
- (6) G. B. Liu, W. Y. Shan, Y. G. Yao, W. Yao, and D. Xiao. Three-band tight-binding

model for monolayers of group-VIB transition metal dichalcogenides. *Phys. Rev. B*, 88:085433–1–10, 2013.