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Metallic Oblate Spheroid: Geometry and Modes

We consider an oblate spheroid, which in the Cartesian coordinate system is described by

the following equation
x2 + y2

a2 + z2

c2 = 1 , (S.1)

where a and c are semi-axes, ε =
√

1− c2

a2 is the eccentricity of the spheroid.

It is convenient to introduce the spheroidal coordinates, ξ, η and ϕ, which are related to
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the Cartesian coordinates, x, y and z through the following expressio:1

x = f
√
ξ2 + 1

√
1− η2 cos(ϕ), (S.2)

y = f
√
ξ2 + 1

√
1− η2 sin(ϕ), (S.3)

z = fξη, (S.4)

where 0 ≤ ξ <∞, −1 ≤ η ≤ 1, 0 ≤ ϕ < 2π and f = εa.

Then the surface plasmon eigenmodes of the metal spheroid are described by the qua-

sistatic equation2

∇ [θ(r)∇φm] = ssp∇2φm, (S.5)

where ssp is the eigenvalue of the corresponding mode φm. Here θ(r) is the characteristic

function that is 1 inside the metal and 0 elsewhere. For oblate spheroid, the eigenmodes are

characterized by multipole quantum number l and magnetic quantum number m. For the

relevant modes of topological nanospaser, the multipole quantum number is 1, l = 1. Then

the corresponding eigenmodes are described by the following expressions

φm = CNP
m
1 (η)eimφ


Pm

1 (iξ)
Pm

1 (iξ0) , 0 < ξ < ξ0,

Qm
1 (iξ)

Qm
1 (iξ0) , ξ0 < ξ,

(S.6)

where Pm
l (x) and Qm

l (x) are the Legendre functions of the first and second kind, respectively,

and ξ0 =
√

1−ε2

ε
. The constant CN is determined by normalization condition,

∫
All Space

|∇φ(r)m|2d3r = 1. (S.7)

Due to axial symmetry of the nanospheroid, the corresponding eigenvalues, ssp, do not
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depend on m. They can be also found from the following expression3,4

ssp =

∫
All Space

θ(r)|∇φm(r)|2d3r∫
All Space

|∇φm(r)|2d3r
. (S.8)

Using explicit expression (S.6) for φm, we derive the final equation for the eigenvalue

ssp =
dPm

1 (x)
dx

dPm
1 (x)
dx
− Pm

1 (x)
Qm

1 (x)
dQm

1 (x)
dx

∣∣∣∣∣∣∣
x=iξ0

. (S.9)

To find the plasmon frequency, ωsp, and the plasmon relaxation rate, γsp, we use the following

relations:3,4

ssp = Re[s(ωsp)], (S.10)

rsp = Im[s(ωsp)]
s′sp

, s′sp ≡
dRe[s(ω)]

dω

∣∣∣∣
ω=ωsp

, (S.11)

where the Bergman spectral parameter is defined as

s(ω) = εd
εd − εm(ω) . (S.12)

Here εd is the dielectric constant of surrounding medium, and εm(ω) is the dielectric function

of the metal (silver). In our computations, for silver, we use the dielectric function from Ref.5

TMDC Parameters

In our calculations the TMDC (MoS2) monolayer is characterized by its bandgap and the

dipole matrix elements between the conduction and valence bands at the K and K ′ points.

To find these parameters we have used a three-band tight binding model.6 The calculated

values of the transition dipole matrix elements and the bandgap are given in Table S1. The
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Fig. S1: Absolute value of the left-rotating chiral dipole component, d− = e+d, in MoS2
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dipole matrix elements at the K and K ′ points are purely chiral. They are proportional

to e± = 2−1/2 (ex ± iey), where ex and ey are the Cartesian unit vectors. The plot of the

absolute value of the chiral dipole, |d±|, where d± = e∗±d, is shown in Fig. S1.

Table S1: Parameters employed in the calculations: Semi-principal axes of the spheroids,
and the dipole matrix elements and band gaps of the TMDCs.

TMDC Semi-principal axis Dipole elements (D) Band gap
c (nm) dK dK′ (eV)

MoS2 1.20 17.68e+ 17.68e− 1.66
MoSe2 1.45 19.23e+ 19.23e− 1.79
WSe2 0.85 18.38e+ 18.38e− 1.43
MoTe2 1 20.08e+ 20.08e− 1.53

Stationary solution

For the large radius of TMDC nanopatch and for the gain rate larger than the critical value,

in the stationary regime, two types of plasmons, co-rotating (m = −1) and counter-rotating

(m = 1), are generated. Although the co-rotating mode is more strongly coupled to the K

valley of TMDC then the counter-rotating one, the number of generated counter-rotating

plasmons is larger then the number of co-rotating ones, N−1 > N1. To understand this

relation we consider the following approximation for the Rabi frequency dependence on the

position within the TMDC nanopatch: (i) the m = 1 plasmon mode is coupled to the K

valley of TMDC at r < r0 ≈ 12 nm and to the K ′ valley of TMDC at r1 > r > r0; (ii)

the m = −1 plasmon mode is coupled to the K ′ valley of TMDC at r < r0 and to the K

valley of TMDC at r1 > r > r0. Here r1 is the radius of TMDC nanopatch. Under this

approximation, there two uncoupled systems: system "1": m = 1 plasmons, K valley of

TMDC at r < r0, and K ′ valley of TMDC at r1 > r > r0; system "2": m = −1 plasmons,

K ′ valley of TMDC at r < r0, and K valley of TMDC at r1 > r > r0.

Then the stationary equations for system "1" become (see Eqs. (10)-(12) of the main
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text)

γspa1 = iν
∫
S0
d2rρ∗K(r)Ω̃∗1,K(r) + iν

∫
S1
d2rρ∗K′(r)Ω̃∗1,K′(r) ,

4Im
[
ρK(r)Ω̃1,K(r)a1

]
= gK [1− nK(r)]− γ2K [1 + nK(r)] ,

Γ12ρK(r) = inK(r)Ω̃∗1,Ka∗1 ,

4Im
[
ρK′(r)Ω̃1,K′(r)a1

]
= −γ2K [1 + nK′(r)] ,

Γ12ρK′(r) = inK′(r)Ω̃∗1,K′a∗1 .

Here S0 and S1 are defined by the conditions r < r0 and r0 < r < r1, respectively. We also

take into account that only the K valley is pumped by a circularly polarized light. Similar

system of equations can be written for the system "2"

γspa−1 = iν
∫
S1
d2rρ∗K(r)Ω̃∗−1,K(r) + iν

∫
S0
d2rρ∗K′(r)Ω̃∗−1,K′(r) ,

4Im
[
ρK(r)Ω̃−1,K(r)a−1

]
= gK [1− nK(r)]− γ2K [1 + nK(r)] ,

Γ12ρK(r) = inK(r)Ω̃∗−1,Ka
∗
−1 ,

4Im
[
ρK′(r)Ω̃−1,K′(r)a−1

]
= −γ2K [1 + nK′(r)] ,

Γ12ρK′(r) = inK′(r)Ω̃∗1,K′a∗−1 .

From the above systems of equation, assuming that |Ωm,K|2a2
m � gKΓ12, we obtain

N1 = |a1|2 = ν

4γsp
[gKS0 − γ2K(S0 + S1)] (S.13)

and

N−1 = |a−1|2 = ν

4γsp
[gKS1 − γ2K(S0 + S1)] , (S.14)

where S0 and S1 are the areas of the corresponding regions. Thus, above the threshold,

the number of generated plasmons is proportional to S0 = πr2
0 for co-rotating plasmons and
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to S1 = π(r2
1 − r2

0) for counter-rotating plasmons. If r1 >
√

2r0 ≈ 16 nm, i.e., S1 > S0,

then the number of counter-rotating plasmons is larger than the number of co-rotating ones,

N−1 > N1.

Far-field radiation

The total dipole moment of the spaser can be expressed in the following form

dtotal = dmetal + dtmdc, (S.15)

where dmetal is the dipole moment of the metal nanospheroid and dtmdc is the dipole moment

of the TMDC nanoflake.

Dipole moment of the metal nanospheroid

The electric field inside the metal, which is produced by generated plasmon modes, both

m = 1 and m = −1, is uniform and is given by the following expression

Fm(r, t) = −
∑

m=1,−1
Asp(∇φmâme−iωt +∇φ∗mâ∗meiωt), (S.16)

where

Asp =

√√√√4πh̄s(ω)
εds′(ω) (S.17)

and

s(ω) = εd
εd − εm(ω)

, (S.18)
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Then the dipole moment of the metal nanospheroid can be found from the following expres-

sion

dmetal =
∫
V
µFm(r, t) dv (S.19)

where

µ = Re[εmetal − εd]
4π . (S.20)

Taking into account that the electric field inside the metal is a constant, E0 = |∇φm|, we

derive the following expressions for the dipole moment of the metal nanospheroid

dmetal,x = −µAspE0V
(

(â1e
−iωt + â∗1e

iωt) + (â−1e
−iωt + â∗−1e

iωt)
)

(S.21)

dmetal,y = −µAspE0V
(
i(â1e

−iωt − â∗1eiωt)− i(â−1e
−iωt − â∗−1e

iωt)
)

(S.22)

Dipole moment of TMDC monolayer

The density matrix of TMDC nanoflake has the following structure

ρ̂K(r, t) =

 ρ
(c)
K (r, t) ρK(r, t)eiωt

ρ∗K(r, t)e−iωt ρ
(v)
K (r, t)

 . (S.23)

where K is the valley index, K or K ′. The off-diagonal elements, i.e., coherences, determine

the dipole moment of TMDC system

dtmdc =
∑

S

∑
K=K,K′

(ρK(r)dKe
iωt + ρ∗K(r)d∗Ke−iωt) + h.c., (S.24)

where ∑S is the sum (integral) over all points r of TMDC nanoflake.
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The coherences satisfy the following stationary equation (see Eq. (12) of the main text)

[−i(ω − ω21)− Γ12]ρK(r) + inK(r)
∑

m=1,−1
Ω̃∗m,K(r)a∗m = 0, (S.25)

where Γ12 is the polarization relaxation rate, nK is the population inversion defined as

nK ≡ ρ
(c)
K − ρ

(v)
K , (S.26)

and

Ω̃m,K(r) = −1
h̄
Asp∇φm(r)dK . (S.27)

From Eq. (S.25) we can find the stationary coherences of TMDC monolayer

ρK(r) = −
inK(r)∑m=1,−1 Ω̃∗m,K(r)a∗m
−(ω − ω21) + iΓ12

. (S.28)

We substitute Eq. (S.28) into Eq. (S.24) and obtain the following expression for the dipole

moment of TMDC

dtmdc = fKdKe
iωt + fK′dK′eiωt + h.c., (S.29)

where the following notations were introduced

fK = −ν
∑

S

inK(r)∑m=1,−1 Ω̃∗m,Ka∗m
−(ω −∆g) + iΓ12

(S.30)

fK′ = −ν
∑

S

inK′(r)∑m=1,−1 Ω̃∗m,K′a∗m
−(ω −∆g) + iΓ12

. (S.31)

Taking into account that dK = d0(1, i) and dK′ = d0(1,−i) we obtain the x and y compo-
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nents of the dipole moment

dtmdc,x = fKd0e
iωt + fK′d0e

iωt + h.c. (S.32)

dtmdc,y = ifKd0e
iωt − ifK′d0e

iωt + h.c. (S.33)

Far field dipole radiation

The total dipole moment of the spaser system is the sum of the dipole moment of the metal

nanospheroid and TMDC nanoflake. Its x and y components can be expressed as

dtotal,x = −µAspE0V
(
â1e
−iωt + â−1e

−iωt + h.c.
)

+
(
fKd0e

iωt + fK′d0e
iωt + h.c.

)
(S.34)

dtotal,y = −µAspE0V
(
(iâ1e

−iωt − iâ−1e
−iωt + h.c.

)
+
(
ifKd0e

iωt − ifK′d0e
iωt + h.c.

)
(S.35)

These expressions have the following structure

dtotal,x = 2Re
[
Bxe

iωt
]
, (S.36)

dtotal,y = 2Re
[
Bye

iωt
]
, (S.37)

where,

Bx = −µAspE0V(â∗1 + â∗−1) + fKd0 + fK′d0, (S.38)

By = iµAspE0V(â∗1 − â∗−1) + ifKd0 − ifK′d0. (S.39)

The total dipole moment of the system determines the far-field radiation of the spaser.

The polarization of radiation is characterized by the x and y components of the far electric
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field, which are proportional to the corresponding components of the dipole moment, i.e.,

dtotal,x and dtotal,y, while the total radiation power is given by the following expression

I = 4
3

(
ω

c0

)3 (εd)1/2

h̄
〈|dtotal|2〉

= 8
3

(
ω

c0

)3 (εd)1/2

h̄
(|Bx|2 + |By|2) (S.40)

where 〈. . .〉 means the time average.
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