Supporting Information (SI)

Neural Networks for Analysis of Optical Properties in 2D Layered Hybrid Lead Halide Perovskites

Rayan Chakraborty,*,[‡] Tariq Sheikh,[‡] Prasenjit Ghosh, ^{‡,¶} Angshuman Nag*,[‡]

[‡]Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, 411008, India

[¶]Department of Physics, and Department of Energy Sciences, Indian Institute of Science Education and Research (IISER), Pune, 411008, India

*Corresponding author

Email: RC: rayan.chakraborty@students.iiserpune.ac.in; AN: angshuman@iiserpune.ac.in;

Figure S1: Characterization of (PEA)₂PbI₄ single crystals. (a) PXRD data showing peaks corresponding to (00l) planes. (b) UV-visible absorption spectrum showing the excitonic resonance at 523 nm. α is the absorption coefficient and S is the scattering coefficient. The experimental data are measured in the diffused reflectance mode and then converted to absorption data.

Figure S2: Variation of the excitonic emission peak with temperature in experimental and DNN-generated datasets for (PEA)₂PbI₄ single crystals.

Figure S3: (a-f) Colormap generated from experimentally measured PL spectra measured at seven different temperatures (5.6, 50, 100, 150, 200, 250, and 300 K) for $(CHA)_2Pb(Br_{1-x}I_x)_4$ single crystals with different compositions "x".

Figure S4: Photoluminescence spectrum of (CHA)₂Pb(Br_{0.82}I_{0.18})₄ single crystal at 5.3 K.

Figure S5: UV-visible absorption spectra of $(CHA)_2Pb(Br_{1-x}I_x)_4$ single crystals. The absorption spectra are obtained from the measured diffused reflectance spectra. Here, α is the absorption coefficient and S is the scattering coefficient.