Supporting Information # Stable Cycle Performance of Phosphorus Negative Electrode in Lithium-Ion Batteries Derived From Ionic Liquid Electrolytes Shubham Kaushik, Kazuhiko Matsumoto*, Rika Hagiwara Graduate School of Energy Science, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan *Corresponding Author E-mail Address: k-matsumoto@energy.kyoto-u.ac.jp Table S1 EIS fitting parameters (R_1 , R_2 , R_3 , R_4 , Q_2 , Q_3 , a_2 , a_3 , and a_4) during charge-discharge cycling for the Li|P/AB half-cell (1st, 3rd, and 10th cycle) using Org_{PF6}, Org_{FSA}, Org_{FEC}, and IL_{2:8} (see Figure S6(c-f) for the spectra). | Electrolyte | | Res | sistance (| 2) | | | | $CPE (F s^{(a-1)})$ | | | | |-------------------|-------|-------|------------|-------|-------|-----------------------|-------|-------------------------|-------|-----------------------|-------| | | Cycle | R_1 | R_2 | R_3 | R_4 | Q_2 | a_2 | Q_3 | a_3 | Q_4 | a_4 | | half-cell Li P/AB | 1 | 9.76 | 3.69 | 13.75 | 0.97 | 6.92×10^{-6} | 0.944 | 0.11×10^{-3} | 0.804 | 3.78×10^{-3} | 0.978 | | Org_{PF6} | 3 | 6.34 | 10.16 | 1.53 | 1.08 | 0.24×10^{-3} | 0.619 | 6.57×10^{-3} | 0.983 | 0.22×10^{-3} | 0.771 | | | 10 | 5.09 | 17.08 | 1.78 | 0.42 | 0.28×10^{-3} | 0.598 | $0.32 \text{x} 10^{-3}$ | 1.000 | 0.14×10^{-2} | 0.495 | | half-cell Li P/AB | 1 | 25.48 | 9.38 | 15.33 | 0.07 | 0.43×10^{-3} | 0.560 | 0.24×10^{-3} | 0.652 | 7.14×10^{-3} | 0.875 | | Org_{FSA} | 3 | 22.40 | 7.01 | 14.15 | 2.29 | 1.04×10^{-3} | 0.550 | 0.25×10^{-3} | 0.622 | 9.54×10^{-2} | 0.883 | | | 10 | 33.49 | 6.45 | 22.56 | 20.42 | 8.89×10^{-5} | 0.996 | 0.14×10^{-3} | 0.659 | 0.74×10^{-6} | 0.865 | | half-cell Li P/AB | 1 | 5.60 | 1.04 | 10.16 | 2.45 | 2.74×10^{-5} | 0.329 | $0.23 \text{x} 10^{-3}$ | 0.634 | 4.30×10^{-2} | 0.512 | | Org_{FEC} | 3 | 6.68 | 0.91 | 5.91 | 2.39 | 2.21×10^{-5} | 0.935 | 0.13×10^{-3} | 0.697 | 3.90×10^{-2} | 0.318 | | | 10 | 7.13 | 0.64 | 8.06 | 1.58 | 6.19×10^{-5} | 0.727 | 2.45×10^{-3} | 0.563 | 5.23×10^{-3} | 0.564 | | half-cell Li P/AB | 1 | 10.84 | 3.88 | 0.91 | 0.25 | 4.57×10^{-5} | 0.835 | $0.30 \text{x} 10^{-3}$ | 0.493 | 0.88×10^{-3} | 0.558 | | $IL_{2:8}$ | 3 | 1.58 | 3.51 | 4.23 | 0.00 | 8.45×10^{-5} | 0.776 | $2.20 \text{x} 10^{-5}$ | 0.012 | 9.94×10^{-2} | 0.016 | | | 10 | 4.76 | 5.31 | 0.99 | 1.52 | 1.91×10^{-5} | 0.845 | 7.81×10^{-3} | 0.952 | 1.95×10^{-2} | 0.449 | **Figure S1.** The EDX spectrum of the P/AB powder prepared by high-energy ball milling of red P and AB (6:4 in weight) at 900 rpm for 3 h. The resulting elemental compositions are summarized in the inset table. **Figure S2.** The dQ/dV plots obtained from the charge-discharge curves of the Li|P/AB half cells using (a) Org_{PF6}, (b) Org_{FSA}, (c) Org_{FEC}, (d) IL_{2:8}, and (e) IL_{5:5}. The corresponding charge-discharge curves are shown in Figure 2. Current density = 250 mA g⁻¹ (1-3 cycles) and 500 mA g⁻¹ (4-50 cycles) and cut-off voltage = 0.005–2.0 V. The capacity is calculated based on the weight of the P/AB composite. **Figure S3**. Cyclic voltammograms of the Li|P/AB cells during the first three cycles using (a) Org_{PF6} , (b) Org_{FSA} , (c) Org_{FEC} , (d) $IL_{2:8}$, and (e) $IL_{5:5}$. Scan rate = 0.1 mV s⁻¹; cut-off voltage = 0.005–2.0 V. **Figure S4**. Galvanostatic charge-discharge curves of the (a) Li|P/AB half cells (current density = $250 \text{ mA g-}(P/AB)^{-1}$ for 1st cycle and $500 \text{ mA g-}(P/AB)^{-1}$ for 50th cycle; cut-off voltage = 0.005– 2.0 V) and (b) P/AB|LiFePO₄ full cells (1st and 50th cycle) using Org_{PF6}, Org_{FSA}, Org_{FEC}, IL_{2:8}, and IL_{5:5} electrolytes (current density = $16 \text{ mA g-}(\text{LiFePO}_4)^{-1}$ for the 1st cycle and 80 mA g-(LiFePO₄)⁻¹ for the 50th cycle; cut-off voltage = 1.6–3.8 V). The curves at the 1st and 50th cycles are shown in continuous and dashed lines, respectively, with the same color. **Figure S5**. Electrochemical performance of Li|P/AB half cells and P/AB|LiFePO₄ full cells using 1 M Li[PF₆] in EC:DMC 3 wt% FEC. Galvanostatic charge-discharge curves of the (a) Li|P/AB half cells (current density = 250 mA g-(P/AB)⁻¹; cut-off voltage = 0.005–2.0 V) and (b) P/AB|LiFePO₄ full cells, (current density = 16 mA g-(LiFePO₄)⁻¹; cut-off voltage = 1.6–3.8 V). Cycle test of the (c) Li|P/AB half cells (Current density: 1-3 cycles = 250 mA (g-P/AB)⁻¹, 4-50 cycles = 500 mA (g-P/AB)⁻¹; cut-off voltage = 0.005–2.0 V) and (d) P/AB|LiFePO₄ full cells, (Current density: 1-3 cycles = 16 mA (g-LiFePO₄)⁻¹, 4-50 cycles = 80 mA (g-LiFePO₄)⁻¹; cut-off voltage = 1.6–3.8 V). **Figure S6.** Electrochemical performance of the Li|P/AB half cell and the results of EIS tests during cycling. (a) Cycle performance with Org_{PF6} , Org_{FSA} , Org_{FEC} , $IL_{2:8}$, and $IL_{5:5}$ (Current density: 1-3 cycles = 250 mA (g-P/AB)⁻¹, 4-200 cycles = 500 mA (g-P/AB)⁻¹; cut-off voltage = 0.005–2.0 V). (b) Rate performance with Org_{FEC} , $IL_{2:8}$ and $IL_{5:5}$ (Current density: 250–1000 mA (g-P/AB)⁻¹; cut-off voltage = 0.005–2.0 V). Nyquist plots with (c) Org_{PF6} , (d) Org_{FSA} , (e) Org_{FEC} , and (f) $IL_{2:8}$. EIS was measured at 0.5 V in the charging step of the 2nd, 4th and 11th cycle. (g) Equivalent circuit used for fitting all the EIS Nyquist plots (see Table S1 for the fitted parameters). ### Discussion related to Figure S6 In the half-cell cycle test (Figure S6a), capacity fades quickly with Org_{PF6} and Org_{FSA}. The capacity retention improves after adding FEC additive retaining 81.2 % capacity after 200 cycles. Among these organic electrolytes, Org_{PF6} exhibits Coulombic efficiencies over 100 %, owing to active material pulverization resulting in electrolyte decomposition, which is in contrast to the case of Org_{FSA} whose Coulombic efficiencies are kept below 100 %. Both the IL_{2:8} and IL_{5:5} provide high capacity retentions of 84.7 and 82.9 % after 200 cycles with an average Coulombic efficiencies of 100 %. This high capacity retention facilitated by the use of IL electrolytes is unprecedented for phosphorus-based materials for LIBs without employing any complicated fabrication. Figure S6b shows similar rate capability with IL_{2:8} and IL_{5:5}, displaying 1473 and 1463 mAh g⁻¹ at 1000 mA g⁻¹. Rate capability with Org_{FEC} is slightly inferior to those with IL electrolytes (1176 mAh g⁻¹ at 1000 mA g⁻¹). Figure S6 (c-f) shows Nyquist plots of the Li|P/AB (1st, 3rd and 10th cycle) half cell using (a) Org_{FFA}, (b) Org_{FSA}, (c) Org_{FEC}, and (d) IL_{2:8}, respectively. The EIS Nyquist plots were fitted using the equivalent circuit shown in Figure S6g and the fitted parameters are listed in Table S1. The circuit consists of four resistances R_1 , R_2 , R_3 , R_4 , and Warburg resistance at low frequency, where R_1 represents the bulk resistance, R_2 denotes the SEI layer resistance at high characteristic frequency (>4000 Hz), and R₃ and R₄ corresponds to the interfacial resistance at medium frequency range (1-500 Hz). Two resistances are used for interfacial behavior for better fitting purpose. In half-cell EIS spectra of Orgpes, Orges, and Orges, the interfacial resistance decreased after the 3rd cycle (Org_{PF6}: $R_2 = 10.16$, $R_3 = 1.53$, $R_4 = 1.08$ ohm; Org_{FSA}: $R_2 = 7.01$, R_3 = 14.15, R_4 = 2.29 ohm; Org_{FEC}: R_2 = 0.91, R_3 = 5.91, R_4 = 2.39 ohm) but increased after 10th cycle (Org_{PF6}: $R_2 = 17.08$, $R_3 = 1.78$, $R_4 = 0.42$ ohm; Org_{FSA}: $R_2 = 6.45$, $R_3 = 22.56$, $R_4 = 20.42$ ohm; Org_{FEC}: $R_2 = 0.64$, $R_3 = 8.06$, $R_4 = 1.58$ ohm), respectively as compared to 1st cycle (Org_{PF6}: $R_2 =$ 3.69, $R_3 = 13.75$, $R_4 = 0.97$ ohm; Org_{FSA} : $R_2 = 9.38$, $R_3 = 15.33$, $R_4 = 0.07$ ohm; Org_{FEC} : $R_2 = 0.64$, $R_3 = 8.06$, $R_4 = 1.58$ ohm), whereas, a constant decrease till 10th cycle was observed IL_{2:8}. **Figure S7.** First cycle galvanostatic charge-discharge curves of the P/AB|LiFePO₄ full-cell with IL_{2:8} in a three-electrode setup. Current density = $16 \text{ mA g-(LiFePO_4)}^{-1}$. The legends, V_{Cell} , $E_{\text{LiFePO_4}}$, and $E_{\text{P-AB}}$, denote the cell voltage and the potentials of the LiFePO₄ positive and P/AB negative electrodes, respectively. **Figure S8.** XPS spectra of the P/AB electrode with Ar etching after (a,b) 1st cycle and (c-e) 50th cycle in the C 1s, F 1s and S 2p regions, respectively, using Org_{PF6}, Org_{FSA}, Org_{FEC} and IL_{2:8} electrolytes in the 1st, 2nd, 3rd, and 4th rows respectively. # **Discussion related to Figure S8** Figure S8a shows the C 1s spectra after 0, 5, 10, and 20-second etching. The surface without etching is mostly covered by C–O species as denoted by a peak at 286.7 eV ¹. Just 5-second etching results in peak shifting to the lower binding energy and C–C (284.6 eV) species are present in different concentrations according to the electrolyte decomposition. The F 1s spectra (Figure S8b) predominantly consist of LiF (685 eV) in all the electrolytes which is commonly observed in the SEI layer in LIBs.² A small peak of S-F present in F 1s spectrum at 0 s was also confirmed in the S 2p spectrum, which indicates the reaction of F from FSA decomposition with organic components. After 50 cycles, further decomposition of electrolytes can be observed. In the C 1s spectra (Figure S8c), a shoulder at 288 eV related to C=O can be observed in Org_{PF6}, Org_{FSA}, and IL_{2:8} but not in Org_{FEC}, indicating that decomposition of FEC in the early stage passivated the electrode and prevented decomposition of carbonate solvents. After etching for 5 s, the C=O layer was stripped off in all the cases, but Org_{PF6}, Org_{FSA}, and Org_{FEC} do not show significant changes with further etching. On the other hand, IL_{2:8} shows evolution of C–C peak with increasing etching time. Figure S8d shows the F1s spectra after 50 cycles for each electrolyte. The spectrum of Org_{PF6} at 0 s shows distinct peaks around 688.5 eV for the P-F bond in $\text{Li}_x \text{F}_v \text{PO}_z$, and around 685 eV for LiF. After 5-second etching, only LiF peak is observed and further etching did not produce any changes. Other F 1s spectra showed C-F bond peak and LiF peak similar to that after 1st cycle at 0 s, and the C-F peak disappears after 5-second etching. In the S 2p spectra after 50 cycles (Figure S8e), Org_{FSA}, and Org_{FEC} show similar spectra to that after 1st cycle, whereas IL_{2:8} shows a relatively stronger peak at a high binding energy compared to that at 1st cycle. However, after etching for 20 s, the peak of S^{2-} is observable, indicating there is a slight increase in the thickness of SEI layer in IL electrolyte after 50 cycles. **Table S2** Binding energies of the chemical species detected in XPS spectra (Figure S8). | Species | | Binding energy / eV | | |----------------------|-------|---------------------|-------| | | C1s | F1s | S2p | | C–C | 284.6 | - | - | | C–O | 286.7 | - | - | | C=O | 288.0 | - | - | | S-F | - | 690.5 | 171.5 | | LiF | - | 685.0 | - | | P–F | - | 688.5 | | | FSO_2- | | 690.5 | 171.5 | | $\mathrm{SO_4}^{2-}$ | - | - | 169.4 | | S^{2-} | - | - | 162.4 | **Figure S9.** Raman spectra of the Org_{FSA}, Org_{FEC}, and IL_{2:8} electrolytes. ### **Discussion related to Figure S9:** This range in Raman spectra corresponds to the ring-bending mode of EC and S-N-S bending mode of FSA⁻ which shift, depending on their coordination states. In Org_{FSA} and Org_{FEC}, the spectrum is deconvoluted into two peaks at 716 and 730 cm⁻¹ assigned to the ring-bending vibration of free EC molecule and Li-ion coordinated EC molecule in the form of Li(EC)₄⁺ (the latter overlaps with the peak for free FSA⁻ as mentioned below).⁴ On the other hand, the Raman spectrum of IL_{2:8} shows four deconvoluted peak at 702, 730, 740, and 758 cm⁻¹ correlated to the C₂C₁im⁺ (at 702 cm⁻¹), free FSA⁻(at 730 cm⁻¹), and Li-coordinated FSA⁻ (contact ion pair (CIP) at 740 and aggregating (AGG) at 758 cm⁻¹), respectively.⁵ It should be noted that the absence of the peaks at 740 and 758 cm⁻¹ in Org_{FEC} and Org_{FSA} suggest that these electrolytes do not contain the Li ion coordinated by FSA⁻. This result suggests that the coordination sphere of Li⁺ ion is different in the organic and IL electrolytes; Li⁺ is coordinated by solvent molecules decreasing its energy of lower unoccupied molecular orbital in the organic electrolyte, promoting reductive decomposition of solvent. On the other hand, the coordination of Li⁺ by FSA⁻ anion in the IL electrolyte, promotes reductive decomposition of FSA⁻ anion enabling sulfur based SEI layer formation as observed in XPS result. **Figure S10.** The P 2p XPS of the P/AB electrode after charging to 0.005 V at various Ar etching time of 2, 5 and 10 minutes. ## References - 1. Shchukarev, A.; Korolkov, D., XPS Study of group IA carbonates. *Open Chemistry* **2004,** *2* (2), 347-362. - 2. Hennessy, J.; Nikzad, S., Atomic Layer Deposition of Lithium Fluoride Optical Coatings for the Ultraviolet. *Inorganics* **2018**, *6* (2), 46. - 3. Wang, L.; Ma, J.; Wang, C.; Yu, X.; Liu, R.; Jiang, F.; Sun, X.; Du, A.; Zhou, X.; Cui, G., A Novel Bifunctional Self-Stabilized Strategy Enabling 4.6 V LiCoO2 with Excellent Long-Term Cyclability and High-Rate Capability. *Adv. Sci.* **2019**, *6* (12), 1900355. - 4. Mukai, K.; Inoue, T.; Kato, Y.; Shirai, S., Superior Low-Temperature Power and Cycle Performances of Na-Ion Battery over Li-Ion Battery. *ACS Omega* **2017**, *2* (3), 864-872. - 5. Kerner, M.; Plylahan, N.; Scheers, J.; Johansson, P., Ionic liquid based lithium battery electrolytes: fundamental benefits of utilising both TFSI and FSI anions? *Phys. Chem. Chem. Phys.* **2015**, *17* (29), 19569-19581.