Supporting Information

Mechanisms of Hydrogen Evolution Reaction in Two-Dimensional Nitride MXenes using In Situ X-Ray Absorption Spectroelectrochemistry

Abdoulaye Djire^{1,2*}, Hanyu Zhang,¹, Benjamin J. Reinhart,³ O. Charles Nwamba,¹ and Nathan R.

Neale1*

¹Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO,

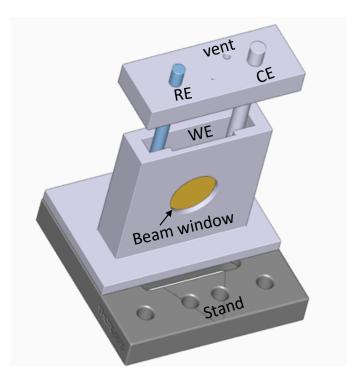
80401, USA

² Artie McFerrin Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX 77843, USA

³ Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA

Corresponding Authors: <u>*adjire@tamu.edu</u>, *nathan.neale@nrel.gov

Experimental Methods


Materials Synthesis

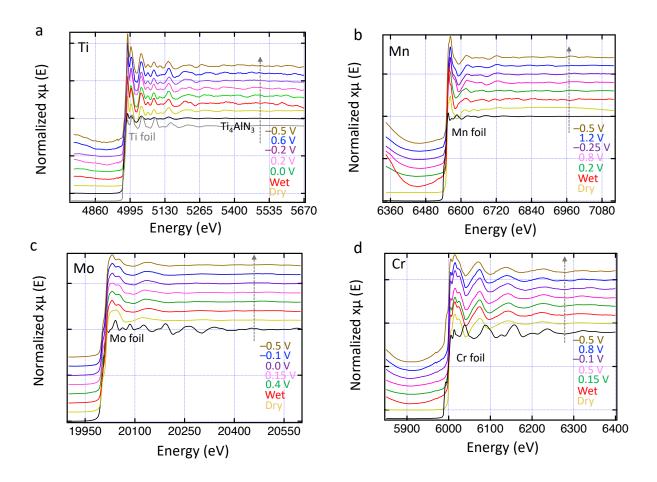
The precursor Ti_4AIN_3 MAX phase, exfoliated $Ti_4N_3T_x$ MXene, and mixed-transition metal nitride M- $Ti_4N_3T_x$ MXenes were synthesized according to the procedure used in our prior publication.¹

In-Situ X-Ray Absorption Spectroscopy

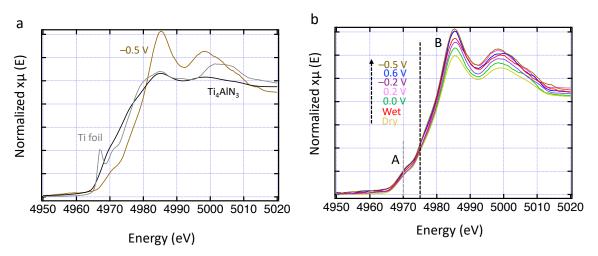
In-situ XAS measurements were performed in a custom-made in-situ electrochemical cell as shown in Figure S1. The working electrodes (Ti₄AlN₃ MAX, pristine Ti₄N₃T_x MXene, and M- $Ti_4N_3T_x$ MXenes) were prepared by membrane filtration process using an ITO substrate. ¹⁻³ The reference and counter electrodes were Ag/AgCl and graphite rod, respectively. XAS measurements were performed in 0.5 M H₂SO₄ electrolytic solution. The electrolyte solution was purged with N₂ (99.998%) for half an hour prior to adding into the in-situ electrochemical reaction cell. XAS measurements were performed in fluorescence mode at the multi-purpose beamline for spectroscopy, 12-BM at APS. A defined beam size of 0.5 x 0.8 mm² using slits and an incident photon flux of $\sim 10^{11}$ photons s⁻¹ were used. For each material, first, we collected XAS spectra on the dried and wet forms (at the open circuit potential) using a Biologic potentiostat SP300. Prior the potential-hold XAS measurements, cyclic voltammograms and linear sweep to voltammograms were acquired for each sample to ensure that the electrochemical features were consistent with previous work.¹ Next, we collected spectra at four (4) different potentials within the voltage window. After that, we measured XAS at -0.5 V vs. Ag/AgCl, which is in the HER activity region for some but not all of the samples. During each measurement, the nitride MXene material in the in-situ electrochemical cell was held at a constant potential for 15 min prior to the XAS measurements and held at this potential during the XAS data acquisition. Each spectrum

shown in Figure S2a-d is the average of three (3) scans or spectra. Additionally, we collected XAS spectra for bare metal foils as references as shown in Figure S2a-d.

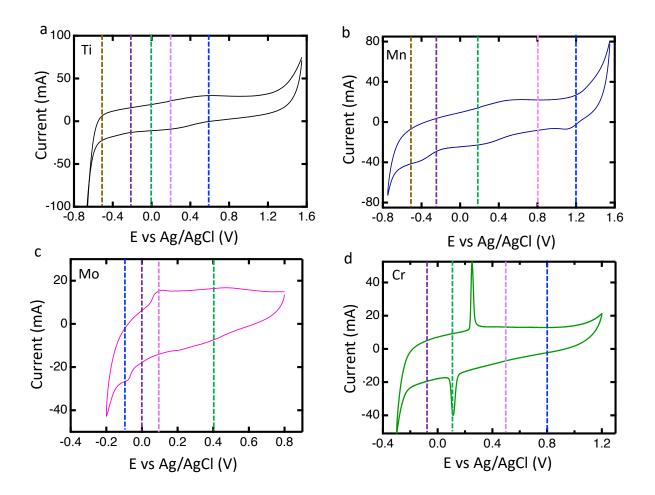
In-situ X-Ray Absorption Spectroelectrochemical Cell

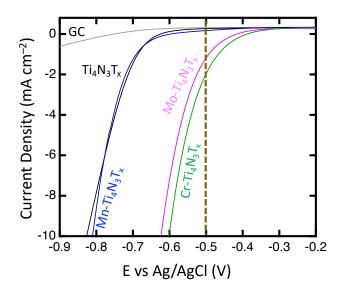

Figure S1. In-situ electrochemical cell for the x-ray absorption spectroelectrochemical experiments. RE and CE are the reference electrode (Ag/AgCl, 6 mm) and counter electrode (graphite rod, 7.5 cm long and 6 mm in diameter), respectively. The working electrode (WE) was comprised of exfoliated $Ti_4N_3T_x$ and $M-Ti_4N_3T_x$ MXenes. Thin coated nitride MXenes on ITO working electrodes (~100 nm thick) were mounted near the window of the in-situ cell. The window was covered with Kapton tape. We observed no scattering from the electrolyte during the XAS measurements.

In-situ X-Ray Absorption Spectroelectrochemical Characterization


We used in-situ x-ray absorption spectroscopy (XAS) technique to elucidate the mechanisms of hydrogen evolution reaction (HER) activity in two-dimensional (2D) nitride MXenes. Figure S2 shows the normalized fluorescence XAS spectra for the Ti₄AlN₃ MAX phase, exfoliated Ti₄N₃T_x MXene, and mixed-metal Mn-Ti₄N₃T_x, Mo-Ti₄N₃T_x, and Cr-Ti₄N₃T_x nitride MXenes. Each spectrum shown in Figure S2a-d is the average of three (3) scans or spectra. Additionally, we collect XAS spectra for bare metal foils as references as shown in Figure S2a-d. The spectra in Figure S2a-d show the absorption k-edge energies for Ti, Mn, Mo, and Cr metals and are normalized to the initial absorption energy, E₀. The k-edge absorption energy μ (E) shown here for the Ti, Mn, Mo, and Cr metals are directly proportional to the ratio of the fluorescence intensity leaving the material, I_f, and the initial intensity going into the material, I₀, according to the following equation: ⁴

$$\mu(E) \propto \frac{l_f}{l_0} \qquad (1)$$


The intensity of the I_0 was measured by using an ion chamber. The XAS spectra in Figure S2a-d are comprised of the x-ray absorption near-edge structure (XANES) and the extended x-ray absorption fine structure (EXAFS) and contain information on the changes in the electronical and structural properties in the nitride MXenes during electrochemical performance and catalytic HER activity. ⁴


Figure S2. Normalized x-ray absorption spectroscopy (XAS) data for (a) pristine $Ti_4N_3T_x$, (b) Mn- $Ti_4N_3T_x$, (c) Mo- $Ti_4N_3T_x$, and (d) Cr- $Ti_4N_3T_x$ MXenes, showing the Ti, Mn, Mo, and Cr k edge energy, respectively. First, we collected XAS spectra for dry and wet samples, then, under operating conditions at different potentials in 0.5 M H₂SO₄ electrolytic solution. For the spectra collected under operating conditions, the pristine $Ti_4N_3T_x$ MXene and M- $Ti_4N_3T_x$ MXenes were held at a constant potential for 15 min before the XAS measurement and held at the set potential while we collected the XAS spectra. The XAS spectrum for the precursor Ti_4AIN_3 MAX phase is also shown (black spectrum in (a)). Additionally, we collected XAS spectra for bare metal foils as references as shown in (a-d). For all the materials, the spectrum (brown color) for the potential hold experiment at -0.5 V versus Ag/AgCl (V) is used to probe the HER XAS. We used Ag/AgCl and graphite rod as reference and counter electrodes, respectively.

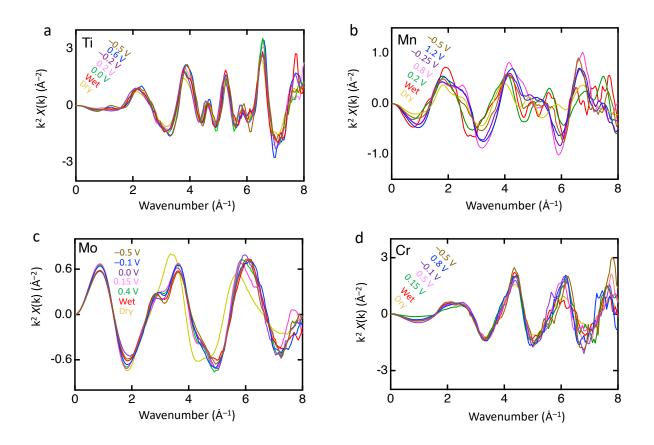

Figure S3. Normalized x-ray absorption near edge structure (XANES) for overlayed normalized XANES spectra for (a) Ti_4AlN_3 MAX phase (grey), dry (gold spectrum), and -0.5 V vs. RHE (V) (brown), and for (b) different potentials in 0.5 M H₂SO₄ electrolyte for pristine $Ti_4N_3T_x$. The grey and black dashed lines denote the pre-edge and edge energies, respectively. We used Ag/AgCl and graphite rod as reference and counter electrodes, respectively.

Figure S4. Cyclic voltammograms for (a) $Ti_4N_3T_x$ (black), (b) Mn- $Ti_4N_3T_x$ (blue), (c) Mo- $Ti_4N_3T_x$ (pink), and (d) Cr- $Ti_4N_3T_x$ (green) in 0.5 M H₂SO₄ electrolyte at 50 mV s⁻¹ adapted from reference. ¹ The in-situ XAS measurements were taken at the dashed lines shown in the voltammograms. The brown dashed line at –0.5 V in panels a and b used for the HER XAS measurement is outside of the voltage window for Cr- and Mo- $Ti_4N_3T_x$ MXenes (panels c and d).

Figure S5. Linear sweep voltammetry for bare glassy carbon (grey), exfoliated $Ti_4N_3T_x$ MXene (black), Mn- $Ti_4N_3T_x$ (blue), Mo- $Ti_4N_3T_x$ (pink), and Cr- $Ti_4N_3T_x$ (green) in 0.5 M H₂SO₄ electrolyte solution at 5 mV s⁻¹ adapted from reference. ¹ The brown dashed line indicates the potential used for the in-situ XAS measurement taken at the HER region for the Mo- $Ti_4N_3T_x$ and Cr- $Ti_4N_3T_x$ samples.

Figure S6. K-space spectra for dry (gold spectrum), wet (red spectrum) and different potentials in 0.5 M H₂SO₄ electrolyte for (a) pristine $Ti_4N_3T_x$, (b) Mn- $Ti_4N_3T_x$, (c) Mo- $Ti_4N_3T_x$, and (d) Cr- $Ti_4N_3T_x$ MXenes. We used Ag/AgCl and graphite rod as reference and counter electrodes, respectively. We used a K weight of 2.

In-situ Extended X-Ray Absorption Fine Structure

The EXAFS spectra for the pristine exfoliated $Ti_4N_3T_x$ nitride MXene were fitted to the EXAFS equation using FEFF and IFEFFIT in Artemis software.⁴

$$\chi(k) = S_0^2 \sum_i N_i \frac{|f_i(k)|}{kR_i^2} e^{(-2\sigma_i^2 k^2)} e^{(-2R_i/\lambda(k))} \sin(2kR_i + 2\delta_i + \varphi_i)$$
(2)

Where S_0^2 is the amplitude reduction factor, N_i is the number of scattering atoms, $f_i(k)$ is the scattering amplitude, R_i is the distance from the central atom to the scattering atom, the exponent terms account for the disorder in the position of the atoms and scattered photoelectron vertically over a short distance, δ_i is the phase shift undergone by the photoelectron at the central atom, and ϕ_i is the phase shift undergone by the photoelectron when it bounces off the scattering atom. ⁴

Table S1. Fitting parameters from the IFFEF simulation from Artemis software for the pristine exfoliated $Ti_4N_3T_x$ MXene at different conditions, R-factor < 0.03.

Electrode	Scattering path &	Amplitude	Bond strength	Distance from Ti R
	Ν	S ₀ ²	(σ ²)	(Å)
Dry	Ti–N (3)	0.703	0.00182	2.06922
	Ti–Ti (6)	0.703	0.00191	2.99781
	Ti-N-Ti-N (3)	0.703	0.00514	4.14660
Wet	Ti–N (3)	0.955	0.00397	2.10830
	Ti–Ti (6)	0.955	0.00141	3.03220
	Ti–N (6)	0.955	0.00512	3.77450

Electrode	Scattering path &	Amplitude	Bond strength	Distance from Ti R
	Ν	S ₀ ²	(σ ²)	(Å)
0 V	Ti–N (3)	0.832	0.00184	2.05137
	Ti–Ti (6)	0.832	0.00153	2.99025
	Ti-N-Ti-N (3)	0.832	0.00573	4.10119
0.2 V	Ti–N (3)	0.926	0.00004	2.06073
	Ti–Ti (6)	0.926	0.00255	2.99493
	Ti-N-Ti-N (3)	0.926	0.00390	4.10213
-0.2 V	Ti-N (3)	0.752	0.00107	2.05940
	Ti–Ti (6)	0.752	0.00045	2.98465
	Ti-N-Ti-N (3)	0.752	0.00321	4.07087
0.6 V	Ti–N (3)	0.917	0.00123	2.07266
	Ti–Ti (6)	0.917	0.00091	3.00772
	Ti-N-Ti-N (3)	0.917	0.00389	4.10476
-0.5 V	Ti–N (3)	1.074	0.00432	2.07050
	Ti–Ti (6)	1.074	0.00487	2.99852
	Ti–N–Ti–N (3)	1.074	0.00553	4.10117

References

- Djire, A.; Wang, X.; Xiao, C.; Nwamba, O. C.; Mirkin, M. V.; Neale, N. R. Basal Plane Hydrogen Evolution Activity from Mixed Metal Nitride MXenes Measured by Scanning Electrochemical Microscopy. *Adv. Funct. Mater.* 2020, *116*, 2001136.
- (2) Djire, A.; Bos, A.; Liu, J.; Zhang, H.; Miller, E. M.; Neale, N. R. Pseudocapacitive Storage in Nanolayered Ti₂NT_x MXene Using Mg-Ion Electrolyte. *ACS Appl. Nano Mater.* 2019, *2*, 2785–2795.
- (3) Djire, A.; Zhang, H.; Liu, J.; Miller, E. M.; Neale, N. R. Electrocatalytic and Optoelectronic Characteristics of the Two-Dimensional Titanium Nitride Ti₄N₃T_x MXene. ACS Appl. Mater. Interfaces 2019, 11, 11812–11823.
- Ravel, B.; Newville, M.; IUCr. ATHENA, ARTEMIS, HEPHAESTUS: Data Analysis for X-Ray Absorption Spectroscopy Using IFEFFIT. J. Synchrotron Rad. 2005, 12, 537–541.