Supporting Information

Electrochemically Enabled, Nickel-Catalyzed Dehydroxylative

Cross-Coupling of Alcohols with Aryl Halides

Zijian Li,^{†,§} Wenxuan Sun,^{‡,§} Xianxu Wang,[§] Luyang Li,[§] Yong Zhang,[§] Chao Li^{*,‡,§}

[†]Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China

[‡]Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 100084, China

[§]National Institute of Biological Sciences (NIBS), Beijing, 102206, China

*Correspondence to: lichao@nibs.ac.cn

Table of Contents

General Information	S2
General Procedure for Electrochemical Dehydroxylative Arylation (General	l
Procedure A)	S3
Graphical Supporting Information	S4
Optimization Details	S6
Experimental Procedure and Characterization Data	S15
An Application of the Electrochemical Dehydroxylative Arylation ^[1]	S36
Mechanistic Studies	S37
1. Relative reactivity study	S37
2. Radical ring opening	S39
3. 5- <i>exo</i> -trig type cyclization	S41
4. Enantiopurity erosion	S42
5. Ligand exchange experiments	S44
Cyclic Voltammetry Data	S45
References	S46
Single Crystal X-ray Diffraction Data	S47
NMR Spectra	\$53

General Information

NMR spectra were recorded on Varian 400 MHz instruments at ambient temperature with CDCl₃ as the solvent unless otherwise stated. Chemical shifts are reported in parts per million relative to CDCl₃ (¹H, δ 7.26 for CDCl₃; ¹³C, δ 77.16 for CDCl₃ unless otherwise stated). Data for ¹H NMR are reported as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t =triplet, q = quartet, m = multiplet, and br = broad), coupling constants (Hz), and integration. High resolution mass spectra (HRMS) were recorded at NIBS Metabolomics Center using an Thermo Scientific Q Exactive HF-X Hybrid Quadrupole-Orbitrap MS. Optical rotations were recorded on an AUTOPOL III digital polarimeter at 589 nm and are recorded as $\left[\alpha\right]_{D}^{20}$ (concentration in grams/100 mL solvent). Chiral HPLC analysis was performed on an Agilent 1220 series. Analytical thin layer chromatography was performed using 0.25 mm silica gel 60-F plates. Column chromatography was performed using 300-400 mesh silica gel. Yields refer to chromatographically and spectroscopically pure materials, unless otherwise stated. All reactions were carried out under an inert argon atmosphere with dry solvents under anhydrous conditions unless otherwise stated. All glassware was dried in a drying oven before using. Anhydrous NMP (N-methyl-2-pyrrolidone), DMF (N, N-dimethylformamide), and DMA (N, N-dimethylacetamide) were purchased from ACROS or Sigma-Aldrich[®]. The Peking University X-ray Diffraction Laboratory collected and analyzed all X-ray diffraction data.

General Procedure for Electrochemical Dehydroxylative Arylation

(General Procedure A)

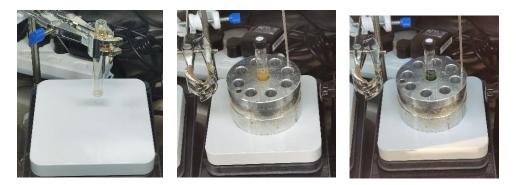
Part I. Preparation of NiBr2•2dtbbpy solution (0.02 M based on Ni).

A screw-capped culture tube charged with a magnetic stir bar was moved into a glove box. $NiBr_2$ (21.9 mg, 0.1 mmol), L1 (53.9 mg, 0.2 mmol), and anhydrous NMP (5 mL) were added. The resulting mixture was stirred at 100 °C until a clear green solution was afforded (usually 2 h). (*Note 1*).

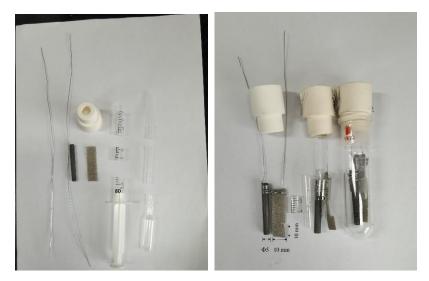
Part II. Electrochemical dehydroxylative cross-coupling. (Note 2)

A reaction tube charged with a magnetic stir bar was moved into a glove box. LiBr (17.4 mg, 0.2 mmol, 1.0 equiv), PPh₃ (7.0 or 3.0 equiv), DIPEA (39.7 μ L, 0.24 mmol, 1.2 equiv), aryl bromide (0.6 mmol, 3.0 equiv), alcohol (0.2 mmol, 1.0 equiv), and anhydrous NMP (2 mL) were added. The resulting mixture was stirred until all reactants were completely dissolved (*ca.* 5 minutes). The NiBr₂•2dtbbpy solution (1 mL) was added before the electrodes were installed (*Note 3*), and the reaction mixture was stirred under a constant current of 4 mA for 14 hours.

The electrodes were rinsed with EtOAc (7 mL). The crude reaction mixture was further diluted with EtOAc (30 mL) (*Note 4*). The resulting mixture was washed with water (40×2 mL) and brine (40 mL) sequentially whereby the aqueous layers were back-extracted with EtOAc (1×40 mL). The combined organic layers were dried over Na₂SO₄ and concentrated *in vacuo*. Purification by column chromatography followed by further purification by preparative TLC or preparative HPLC afforded the desired product.


Note 1: Freshly prepared NiBr₂•2dtbbpy solution provides the best yield of coupling product.

Note 2: This dehydroxylative arylation is recommended to be operated in a glove box, since the reaction is sensitive to the moisture. Otherwise, the PPh_3 could be oxidized on the anode with H_2O .


Note 3: Low density graphite anode was used.

Note 4: If the product is not sensitive to H_2O_2 , a few drops of aq. H_2O_2 could be added after the completion of the reaction to help the removal of the excess PPh₃.

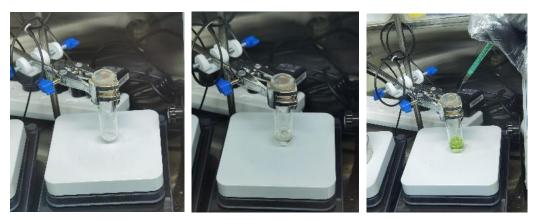

Graphical Supporting Information

Figure S1. Preparation of NiBr₂•2dtbbpy solution: (1) A screw-capped culture tube was charged with NiBr₂ and dtbbpy; (2) The suspension of NiBr₂ and dtbbpy in NMP was heated to 100 °C; (3) After 2 h stirring, the solution was cooled to room temperature.

Figure S2. Preparation of the electrode: (1) Materials for making the electrodes (from left to right): iron wire, graphite rod, nickel foam, rubber plug, plastic syringe, and plastic pipes; (2) The assembled electrodes.

Figure S3. From left to right: (1) A reaction tube was charged with LiBr, PPh₃, DIPEA, PhBr, and alcohol; (2) NMP was added, and the mixture was stirred until all reactants were completely dissolved; (3) The solution of NiBr₂•2dtbbpy was added.

Figure S4. From left to right: (1) Starting the reaction on an electrochemical equipment with a constant current of 4 mA (10 mm electrodes were immerged into the reaction solution); (2) After 2 min stirring, the reaction mixture turned black; (3) After 10 h stirring.

Figure S5. From left to right: (1) The reaction mixture; (2) Diluted with EtOAc (adding the aq. H_2O_2 was optional); (3) Extraction.; (4) TLC: Lane a: the reaction mixture; Lane b: the reaction mixture after treatment with H_2O_2 .

Optimization Details

All reactions were conducted at 0.2 mmol sacle.

 Table S1. Screening of the bases.

PhOH	20 m	iol% Ni(COD) ₂ mol% dtbbpy	
т Т Ме	+ PhBr PPh ₃ (3 ec	uiv), LiBr (2 equiv)	Ph ²
1	2 base (1.1 e	equiv), DMA (4 mL)	3
(1 equiv)	(3 equiv) 5 mA,	+)C/(–)Ni, 12 h	
Entry	I	Base	Yield (%) ^{<i>a</i>}
1	\mathbf{w}/\mathbf{v}	o base	44
2	Li	$_2CO_3$	45
3	Na	a ₂ CO ₃	34
4	K	$_2CO_3$	23
5	Cs	$2^{2}CO_{3}$	27
6	Na	12	
7	K	3PO4	0
8	K ₂	HPO ₄	0
9	Ι)BU	40
10	2,6-	lutidine	42
11	2,6-di-tert-	butyl pyridine	46
12	2,4,6-	collidine	45
13	D	MAP	50
14	N, N'-tetran	ethylguanidine	51
15	1,4-diaza [2.2	.2] bicyclooctane	46
16	7	TEA	52
17	D	IPEA	58

	PhOH		10 mmol% Ni(COD) ₂ 20 mmol% dtbbpy	Me
	Ŭ ↓ Me	+ PhBr -	PPh ₃ (3 equiv), electrolyte (2 equiv)	Ph ²
	1	2	DIPEA (1.1 equiv), DMA (4 mL)	3
	(1 equiv)	(3 equiv)	5 mA, (+)C/(–)Ni, 12 h	
_	Entry		Electrolyte	Yield (%) ^a
	1		Et ₄ NBr	51
	2		LiCl	0
	3		LiBr	55
	4		LiI	55
	5		LiClO ₄	50
	6		LiBF ₄	36
	7		LiPF ₆	49

Table S2. Screening of the electrolytes.

"Yields were determined by GC-MS with dodecane as the internal standard.

Table S3. Optimization of the equivalent of electrolytes.

PhOH		10 mmol% Ni(COD) ₂ 20 mmol% dtbbpy	Me
↓ Me	+ PhBr —	PPh ₃ (3 equiv), LiBr (<mark>x equiv</mark>)	Ph ()
1	2	DIPEA (1.1 equiv), DMA (4 mL)	3
(1 equiv)	(3 equiv)	5 mA, (+)C/(–)Ni, 12 h	-
Entry	F	Equivalent of Electrolyte	Yield (%) ^{<i>a</i>}
1		0.5	59
2		1.0	64
3		2.0	60
4		3.0	63

^aYields were determined by GC-MS with dodecane as the internal standard.

Table S4. Optimization of the reaction time.

PhOH		10 mmol% Ni(COD) ₂ 20 mmol% dtbbpy	Me
Т Ме	+ PhBr —	PPh ₃ (3 equiv), LiBr (1 equiv)	Ph' 🗸
1	2	DIPEA (1.1 equiv), DMA (4 mL)	3
(1 equiv)	(3 equiv)	5 mA, (+)C/(–)Ni, <mark>x h</mark>	
Entry		Time (h)	Yield (%) ^{<i>a</i>}
1		2.5 (≈2 F/mmol)	12
2		4.0 (≈4 F/mmol)	35
3		6.5 (≈6 F/mmol)	51
4		10.5 (≈10 F/mmol)	60
5		12.0 (≈11 F/mmol)	57
6		21.5 (≈20 F/mmol)	59

Ph、OH		10 mmol% Ni(COD) ₂ 20 mmol% dtbbpy	Me
Ŭ ↓ Me	+ PhBr —	PPh ₃ (3 equiv), LiBr (1 equiv)	Ph [*] V
1	2	DIPEA (<mark>x equiv</mark>), DMA (4 mL)	3
(1 equiv)	(3 equiv)	5 mA, (+)C/(–)Ni, 10 h	·
Entry		Equivalent of Base	Yield (%) ^{<i>a</i>}
<u>Entry</u> 1		Equivalent of Base 0.0	Yield (%) ^{<i>a</i>} 38
Entry 1 2		*	
1		0.0	38

^aYields were determined by GC-MS with dodecane as the internal standard.

Table S6. Screening of the catalysts.

PhOH		10 mmol% <mark>catalyst</mark> 20 mmol% dtbbpy	Me
T Me	+ PhBr -	PPh ₃ (3 equiv), LiBr (1 equiv)	Ph ²
1	2	DIPEA (1.2 equiv), DMA (4 mL)	3
(1 equiv)	(3 equiv)	5 mA, (+)C/(–)Ni, 10 h	
Entry		Catalyst	Yield (%) ^{<i>a</i>}
1		Ni(COD) ₂	57
2		Ni(acac) ₂	49
3		$Co(acac)_2$	0
4		$Cu(acac)_2$	0
5		Fe(acac) ₃	0
6		NiCl ₂	50
7		NiBr ₂	58
8		Ni(NO ₃) ₂	38
9		Ni(OAc) ₂	35
10		Ni(ClO ₄) ₂	47

Table S7. Screening of PPh3 analogs.

Ph		10 mmol% Ni(COD) ₂ 20 mmol% dtbbpy	Me
▼ Ĭ Me	+ PhBr -	PPh ₃ (3 equiv), LiBr (1 equiv)	Ph ²
1	2	DIPEA (1.2 equiv), DMA (4 mL)	3
(1 equiv)	(3 equiv)	5 mA, (+)C/(–)Ni, 10 h	-
Entry		PPh ₃ Analogs	Yield (%) ^{<i>a</i>}
1		PPh ₃	58
2		P(OPh) ₃	0
3		P(OEt) ₃	0
4		<i>n</i> Bu ₃ P	0
5		tris(<i>p</i> -tolyl)phosphine	62
6	tris(4-	methoxyphenyl)phosphine (4)	44
7	tris(4	4-fluorophenyl)phosphine (5)	48

"Yields were determined by GC-MS with dodecane as the internal standard.

 Table S8. Optimization of the reaction concentration.

PhOH		10 mmol% NiBr ₂ 20 mmol% dtbbpy	
Ŭ Me	+ PhBr –	PPh ₃ (3 equiv), LiBr (1 equiv)	Ph' 🖌 🎽
1	2	DIPEA (1.2 equiv), DMA (<mark>x mL</mark>)	3
(1 equiv)	(3 equiv)	5 mA, (+)C/(–)Ni, 10 h	-
Entry	Volume of	Solvent (concentration of 1)	Yield (%) ^{<i>a</i>}
1		3.0 mL (67 mM)	64
2		3.5 mL (57 mM)	61
3		4.0 mL (50 mM)	60
4		4.5 mL (44 mM)	59
5		5.0 mL (40 mM)	58

PhOF		10 mmol% NiBr ₂ 20 mmol% dtbbpy		Me
т Ме	+ PhBr —	PPh ₃ (x equi	v), LiBr (1 equiv)	Ph ²
1	2 [DIPEA (1.2 ec	ιuiv), DMA (3 mL)	3
(1 equiv)	(3 equiv)	5 mA, (+)	C/(–)Ni, 10 h	-
Entry	Equivalent	of PPh ₃	Yield 1(%) ^{<i>a</i>, <i>b</i>}	Yield 2(%) ^{<i>a</i>, <i>c</i>}
1	2.0		-	48
2	3.0		63	57
3	4.0		76	67
4	5.0		80	67
5	6.0		81	72
6	7.0		84	81
7	8.0		82	76
8	9.0		76	-

Table S9. Optimization of the equivalent of PPh3.

^{*a*}Yields were determined by GC-MS with dodecane as the internal standard; ^{*b*}PPh₃ was used;

1 1 113 was used,

^ctris(*p*-tolyl)phosphine was used.

PhOH		10 mmol% NiBr ₂ 20 mmol% dtbbpy	
Ŭ ↓ Me	+ PhBr -	PPh ₃ (7 equiv), LiBr (1 equiv)	Ph [*] V
1	2	DIPEA (1.2 equiv), DMA (3 mL)	3
(1 equiv)	(x equiv)	5 mA, (+)C/(–)Ni, 10 h	-
Entry	E	quivalent of PhBr	Yield (%) ^a
1		1.0	75
2		2.0	81
3		3.0	82
4		4.0	81
5		5.0	82

Ph		x mmol% NiBr ₂ 2x mmol% dtbbpy	
Ŭ ∐ Me	+ PhBr -	PPh ₃ (7 equiv), LiBr (1 equiv)	Ph [*] V
1	2	DIPEA (1.2 equiv), DMA (3 mL)	3
(1 equiv)	(3 equiv)	5 mA, (+)C/(–)Ni, 10 h	-
Entry	Equiva	alent of NiBr ₂ •2dtbbpy	Yield (%) ^{<i>a</i>}
1		3%	38
2		5%	67
3		7%	79
4		10%	81
5		15%	76

Table S11. Optimization of	the equivalent of NiBr ₂ •2dtbbpy.
----------------------------	---

^aYields were determined by GC-MS with dodecane as the internal standard.

 Table S12. Optimization of the current.

Ph OH		10 mmol% NiBr ₂ 20 mmol% dtbbpy	Me
Ť Me	+ PhBr -	PPh ₃ (7 equiv), LiBr (1 equiv)	Ph [*]
1	2	DIPEA (1.2 equiv), DMA (3 mL)	3
(1 equiv)	(3 equiv)	x mA, (+)C/(–)Ni, y h	
Entry		Current (mA)	Yield (%) ^{<i>a</i>}
1		3(18.5 h)	75
2		4 (14.0 h)	89
3		5 (10.5 h)	81
4		6 (9.0 h)	68
5		7 (8.0 h)	74
6		8 (7.0 h)	79
7		9 (6.5 h)	71
8		10 (5.5 h)	36

Table S13. Screening of the solvents.

Ph OH		10 mmol% NiBr ₂ 20 mmol% dtbbpy	
т́ Ме	+ PhBr	PPh ₃ (7 equiv), LiBr (1 equiv)	Ph [*]
1	2	DIPEA (1.2 equiv), solvent (3 mL)	3
(1 equiv)	(3 equiv)) 4 mA, (+)C/(–)Ni, 14 h	
Entry		Solvent	Yield (%) ^{<i>a</i>}
1		DMA	89
2		DMF	36
3		MeCN	33
4		DMSO	0
5		THF	0
6		NMP	92

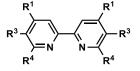
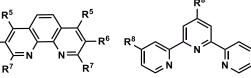
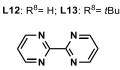

^aYields were determined by GC-MS with dodecane as the internal standard.

Table S14. Screening of the ligands.


	Ph OH			0 mmol% NiBr ₂) mmol% <mark>ligand</mark>	l j	Me	
	т Ме	+ PhBr -	PPh ₃ (7	equiv), LiBr (1	equiv)	``	
	1	2	2 DIPEA (1.2 equiv), NMP (3 mL)			3	
	(1 equiv)	(3 equiv)	4 m/	A, (+)C/(−)Ni, 14	4 h		
Entry	Ligand	Yield	(%) ^a	Entry	Ligand	Yield (%) ^{<i>a</i>}	
1	L1	92		8	L8	58	
2	L2	80		9	L9	0	
3	L3	88		10	L10	0	
4	L4	86	5	11	L11	44	
5	L5	76		12	L12	0	
6	L6	0		13	L13	0	
7	L7	66	Ő	14	L14	5	

^aYields were determined by GC-MS with dodecane as the internal standard.


R⁶

L1: R¹= *t*Bu, R³= H, R⁴= H L2: R¹= H, R³= H, R⁴= H L3: R¹= OMe, R³= H, R⁴= H L4: R¹= Me, R³= H, R⁴= H L5: R¹= H, R³= Me, R⁴= H L6: R¹= H, R³= H, R⁴= Me

L7: R^5 = H, R^6 = H, R^7 = H **L8**: R^5 = Ph, R^6 = H, R^7 = H **L9**: R^5 = H, R^6 = H, R^7 = Me **L10**: R^5 = Ph, R^6 = H, R^7 = Me **L11**: R^5 = Me, R^6 = Me, R^7 = H

R⁸

PhOH Me	+ PhBr	10 mmol% NiBr ₂ 20 mmol% dtbbpy PPh ₃ (7 equiv), LiBr (1 equiv)	Ph
1 (1 equiv)	2 (3 equiv)	DIPEA (1.2 equiv), NMP (3 mL) 4 mA, (+)C/(-)Ni, 14 h	3
Entry		condition	Yield (%) ^{<i>a</i>}
1		above	92
2		no electricity	0
3		w/o NiBr ₂	0
4		w/o L1	0
5		w/o PPh ₃	0
6	RV	C instead of graphite	14
7		2 mA, 28 h	94
8		6 mA, 9 h	84
9	Li	ClO ₄ instead of LiBr	86
10	Et	4NBr instead of LiBr	84
11	Ni(C	COD)2 instead of NiBr2	85
12		L2 instead of L1	80
13		L3 instead of L1	88
14		10 mmol% L1	80
15		w/o DIPEA	47
16		PPh ₃ (3 equiv)	70
17		4 instead of PPh ₃	78
18		5 instead of PPh ₃	57
19	D	MA instead of NMP	89
20		PhBr (2 equiv)	89
21]	PhOTf instead of 2	92
22		PhCl instead of 2	36
23		PhI instead of 2	63

Table S15. Other conditions.

The major byproduct in the electrochemical dehydroxylative arylation of alcohol 1

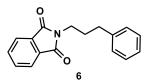
Physical state: colorless oil;

TLC: $R_f = 0.57$ (silica gel, Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.32–7.27 (m, 2H), 7.24–7.17 (m, 3H), 4.12–4.04 (m, 1H), 2.90–2.83 (m, 1H), 2.79–2.71 (m, 1H), 2.19–2.00 (m, 2H), 1.73 (d, *J* = 6.7 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ 141.0, 128.6, 128.6, 126.2, 51.0, 42.8, 34.1, 26.7 ppm; **HRMS** (APCI): Calcd for C₁₀H₁₇BrN [M+NH₄]⁺: 230.0539; found 230.0537.

Experimental Procedure and Characterization Data

On 0.2 mmol scale, **General Procedure A** was followed with 4-phenylbutan-2-ol, bromobenzene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, Petroleum Ether) afforded crude **3**. Further purification by preparative TLC (silica gel, Petroleum ether) afforded **3** (37.8 mg, 90%).


Physical state: colorless oil;

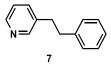
TLC: $R_f = 0.57$ (silica gel, Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.36–7.26 (m, 4H), 7.25–7.11 (m, 6H), 2.77–2.68 (m, 1H), 2.57–2.45 (m, 2H), 2.01–1.82 (m, 2H), 1.28 (d, *J* = 7.0 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 147.4, 142.7, 128.5, 128.5, 128.4, 127.2, 126.1, 125.8, 40.1, 39.6, 34.1, 22.7 ppm;

HRMS (ESI): Calcd for C₁₆H₁₉ [M+H]⁺: 211.1481; found 211.1483.

On 0.2 mmol scale, **General Procedure A** was followed with 3-phthalimido-1-propanol, bromobenzene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, CH_2Cl_2) afforded crude **6**. Further purification by preparative TLC (silica gel, 1:4, EtOAc:Petroleum ether) afforded **6** (30.2 mg, 57%).


Physical state: white amorphous solid;

TLC: $R_f = 0.50$ (silica gel, 1:10, EtOAc:Petroleum Ether, UV);

¹**H** NMR (400 MHz, CDCl₃): δ 7.84–7.80 (m, 2H), 7.73–7.67 (m, 2H), 7.28–7.22 (m, 2H), 7.22–7.18 (m, 2H), 7.17–7.11 (m, 1H), 3.75 (t, *J* = 7.2, 2H), 2.69 (t, *J* = 8.1, 2H), 2.07–1.99 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 168.6, 141.2, 134.0, 132.3, 128.5, 128.4, 126.1, 123.3, 38.0, 33.3, 30.0 ppm;

HRMS (ESI): Calcd for C₁₇H₁₆NO₂ [M+H]⁺: 266.1176; found 266.1175.

On 0.2 mmol scale, without treatment by hydrogen peroxide, **General Procedure A** was followed with 3-pyridinylethanol, bromobenzene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, 0:100 to 2:3 EtOAc: Petroleum Ether) afforded crude 7. Further purification by preparative TLC (silica gel, 2:3, EtOAc:Petroleum ether) afforded 7 (26.4 mg, 72%). **Physical state:** white amorphous solid;

TLC: $R_f = 0.51$ (silica gel, 2:3, EtOAc:Petroleum Ether, UV);

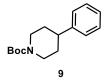
¹**H NMR** (400 MHz, CDCl₃): δ 8.46–8.41 (m, 2H), 7.43 (dt, *J* = 7.8, 2.0 Hz, 1H), 7.31–7.25 (m, 2H), 7.23–7.17 (m, 2H), 7.17–7.12 (m, 2H), 2.92 (s, 4H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 149.7, 147.2, 140.8, 137.1, 136.4, 128. 6, 126.3, 123.4, 37.5, 35.0 ppm;

HRMS (ESI): Calcd for C₁₃H₁₄N [M+H]⁺: 184.1121; found 184.1121.

On 0.2 mmol scale, **General Procedure A** was followed with 4-hydroxycyclohexanone, bromobenzene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, 0:100 to $1:1 \text{ CH}_2\text{Cl}_2$:Petroleum Ether) afforded **8** (21.3 mg, 61%).

Physical state: white amorphous solid;

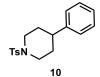

TLC: $R_f = 0.50$ (silica gel, CH₂Cl₂, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.36–7.29 (m, 2H), 7.28–7.20 (m, 3H), 3.03 (tt, *J* = 12.2, 3.7 Hz,

1H), 2.58–2.44 (m, 4H), 2.32–2.19 (m, 2H), 2.01–1.89 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 211.4, 144.9, 128.7, 126.8, 126.7, 42.9, 41.5, 34.1 ppm;

HRMS (ESI): Calcd for $C_{12}H_{15}O$ [M+H]⁺: 175.1117; found 175.1117.


On 0.2 mmol scale, **General Procedure A** was followed with *N*-Boc-4-piperidinol, bromobenzene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, CH₂Cl₂) afforded crude **9**. Further purification by preparative TLC (silica gel, 1:9, EtOAc:Petroleum ether) afforded **9** (29.8 mg, 57%).

Physical state: colorless oil;

TLC: $R_f = 0.46$ (silica gel, 1:9, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.34–7.28 (m, 2H), 7.24–7.18 (m, 3H), 4.25 (d, *J* = 13.3 Hz, 2H), 2.80 (dt, *J* = 13.0, 2.6 Hz, 2H), 2.64 (tt, *J* = 12.2, 3.6 Hz, 1H), 1.86–1.78 (m, 2H), 1.69–1.56 (m, 2H), 1.48 (s, 9H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 155.0, 145.9, 128.6, 126.9, 126.5, 79.6, 44.5, 42.9, 33.3, 28.6 ppm; HRMS (ESI): Calcd for C₁₆H₂₃NNaO₂ [M+ Na]⁺: 284.1621; found 284.1619.

On 0.2 mmol scale, without treatment by hydrogen peroxide, **General Procedure A** was followed with 1-(4-methylphenyl)sulfonylpiperidin-4-ol, bromobenzene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, 0:100 to 1:9 EtOAc:Petroleum Ether) afforded

crude 10, which was further treated by *m*-CPBA to removal of the alkene byproduct. Further purification by preparative TLC (silica gel, 1:4, EtOAc:Petroleum ether) afforded 10 (25.9 mg, 41%).

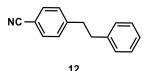
Physical state: white amorphous solid;

TLC: $R_f = 0.50$ (silica gel, 1:4, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.70–7.67 (m, 2H), 7.37–7.33 (m, 2H), 7.32–7.27 (m, 2H), 7.24–7.18 (m, 1H), 7.16–7.12 (m, 2H), 3.97–3.91 (m, 2H), 2.45 (s, 3H), 2.44–2.39 (m, 1H), 2.39–2.30 (m, 2H), 1.93–1.78 (m, 4H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): δ 145.0, 143.6, 133.2, 129.8, 128.7, 127.9, 126.8, 126.7, 47.0, 42.0, 32.7, 21.7 ppm;

HRMS (ESI): Calcd for C₁₈H₂₂NO₂S [M+H]⁺: 316.1366; found 316.1367.


On 0.2 mmol scale, **General Procedure A** was followed with 4,4-ethylene-dioxycyclohexan-1-ol, bromobenzene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, 0:100 to 1:10 EtOAc:Petroleum Ether) afforded crude **11**. Further purification by preparative TLC (silica gel, 1:10, EtOAc:Petroleum ether) afforded **11** (19.6 mg, 45%).

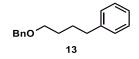
Physical state: white amorphous solid;

TLC: $R_f = 0.45$ (silica gel, 1:10, EtOAc:Petroleum Ether, Phosphomolybdic Acid);

¹**H NMR** (400 MHz, CDCl₃): δ 7.35–7.26 (m, 2H), 7.26–7.16 (m, 3H), 3.99 (s, 4H), 2.61–2.49 (m, 1H), 1.91–1.84 (m, 4H), 1.83–1.74 (m, 2H), 1.74–1.65 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 146.7, 128.5, 127.0, 126.2, 108.6, 64.5, 64.4, 43.5, 35.3, 31.7 ppm; HRMS (ESI): Calcd for C₁₄H₁₉O₂ [M+H]⁺: 219.1380; found 219.1381.

On 0.2 mmol scale, without treatment by hydrogen peroxide, **General Procedure A** was followed with 2-(4-cyanophenyl)ethanol, bromobenzene, and triphenylphosphine (3.0 equiv). Purification by column chromatography (silica gel, 0:100 to 3:17 EtOAc: Petroleum Ether) afforded crude **12**. Further purification by preparative TLC (silica gel, 1:9, EtOAc:Petroleum ether) afforded **12** (24.9 mg, 60%).


Physical state: white amorphous solid;

TLC: $R_f = 0.68$ (silica gel, 1:4, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.57–7.53 (m, 2H), 7.30–7.27 (m, 1H), 7.26–7.24 (m, 2H), 7.23–7.18 (m, 2H), 7.14–7.11 (m, 2H), 3.03–2.89 (m, 4H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): δ 147.3, 140.7, 132.3, 129.5, 128.6, 128.5, 126.4, 119.2, 109.9, 38.0, 37.3 ppm;

HRMS (ESI): Calcd for C₁₅H₁₄N [M+H]⁺: 208.1121; found 208.1119.

On 0.2 mmol scale, **General Procedure A** was followed with 4-benzyloxy-butan-1-ol, bromobenzene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, 0:100 to 1:19 EtOAc:Petroleum Ether) afforded crude **13**. Further purification by preparative HPLC (83% to 98% CH₃CN/water) afforded **13** (20.2 mg, 42%).

Physical state: colorless oil;

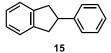
TLC: $R_f = 0.47$ (silica gel, 1:19, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.40–7.32 (m, 4H), 7.31–7.25 (m, 3H), 7.20–7.15 (m, 3H), 4.50 (s, 2H), 3.49 (t, *J* = 6.2 Hz, 2H), 2.63 (t, *J* = 7.3 Hz, 2H), 1.76–1.63 (m, 4H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 142.6, 138.8, 128.6, 128.5, 128.4, 127.8, 127.7, 125.8, 73.1, 70.4, 35.9, 29.6, 28.2 ppm;

HRMS (ESI): Calcd for C₁₇H₂₄NO [M+NH₄]⁺: 258.1852; found 258.1853.

On 0.2 mmol scale, without treatment by hydrogen peroxide, **General Procedure A** was followed with 3-hydroxytetrahydrofuran, bromobenzene, and triphenylphosphine (3.0 equiv). Purification by column chromatography (silica gel, hexane) afforded crude 14. Further purification by preparative TLC (silica gel, 3:97, EtOAc:Petroleum ether) afforded 14 (19.6 mg, 66%).

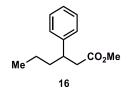

Physical state: yellow oil;

TLC: $R_f = 0.50$ (silica gel, 1:9, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.35–7.29 (m, 2H), 7.28–7.21 (m, 3H), 4.16 (dd, *J* = 8.4, 7.5 Hz, 1H), 4.08 (dt, *J* = 8.3, 4.5 Hz, 1H), 3.93 (dt, *J* = 8.3, 7.3 Hz, 1H), 3.74 (dd, *J* = 8.4, 7.6 Hz, 1H), 3.46–3.36 (m, 1H), 2.42–2.31 (m, 1H), 2.07–1.97 (m, 1H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): δ 142.8, 128.7, 127.4, 126.6, 74.8, 68.7, 45.1, 34.8 ppm;

HRMS (ESI): Calcd for C₁₀H₁₁O [M–H]⁻: 147.0815; found 147.0820.

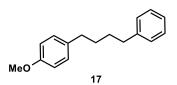

On 0.2 mmol scale, **General Procedure A** was followed with indan-2-ol, bromobenzene, and triphenylphosphine (3.0 equiv). Purification by column chromatography (silica gel, Petroleum Ether) afforded crude **15**. Further purification by preparative TLC (silica gel, Petroleum Ether) afforded **15** (28.8 mg, 74%).

Physical state: colorless oil;

TLC: $R_f = 0.49$ (silica gel, Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.32 (d, *J* = 4.4 Hz, 4H), 7.28–7.22 (m, 3H), 7.22–7.16 (m, 2H), 3.75–3.65 (m, 1H), 3.36 (dd, *J* = 15.3, 8.2 Hz, 2H), 3.10 (dd, *J* = 15.5, 9.0 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 145.6, 143.1, 128.6, 127.2, 126.6, 126.3, 124.5, 45.7, 41.1 ppm; HRMS (ESI): Calcd for C₁₅H₁₄Na [M+Na]⁺: 217.0988; found 217.0979.


On 0.2 mmol scale, **General Procedure A** was followed with methyl 3-hydroxy-hexanoate, bromobenzene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, 0:100 to 3:47 EtOAc:Petroleum Ether) afforded **16** (30.1 mg, 73%).

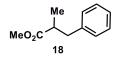
Physical state: yellow oil;

TLC: $R_f = 0.53$ (silica gel, 1:19, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.32–7.27 (m, 2H), 7.23–7.15 (m, 3H), 3.58 (s, 3H), 3.15–3.07 (m, 1H), 2.68–2.54 (m, 2H), 1.66–1.55 (m, 2H), 1.24–1.12 (m, 2H), 0.86 (t, *J* = 7.3 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ 173.1, 144.3, 128.5, 127.6, 126.5, 51.6, 42.1, 41.8, 38.5, 20.6, 14.1 ppm;

HRMS (ESI): Calcd for C₁₃H₁₉O₂ [M+H]⁺: 207.1380; found 207.1380.

On 0.2 mmol scale, **General Procedure A** was followed with 4-(4-methoxyphenyl) butan-1-ol, bromobenzene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, 0:100 to 1:99 EtOAc:hexane) afforded crude **17**. Further purification by preparative TLC (silica gel, hexane) afforded **17** (25.0 mg, 52%).

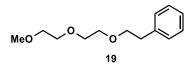

Physical state: white amorphous solid;

TLC: $R_f = 0.40$ (silica gel, 1:99, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.30–7.24 (m, 2H), 7.20–7.15 (m, 3H), 7.10–7.06 (m, 2H), 6.87–6.79 (m, 2H), 3.79 (s, 3H), 2.67–2.55 (m, 4H), 1.70–1.58 (m, 4H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 157.8, 142.8, 134.8, 129.4, 128.6, 128.4, 125.8, 113.8, 55.4, 36.0, 35.0, 31.5, 31.2 ppm;

HRMS (ESI): Calcd for C₁₇H₂₁O [M+H]⁺: 241.1587; found 241.1584.


On 0.2 mmol scale, **General Procedure A** was followed with 3-hydroxy-2-methyl propionate, bromobenzene, and triphenylphosphine (3.0 equiv). Purification by column chromatography (silica gel, CH_2Cl_2) afforded crude **18**. Further purification by preparative TLC (silica gel, 1:19, EtOAc:Petroleum ether) afforded **18** (14.2 mg, 40%).

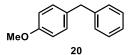
Physical state: colorless oil;

TLC: $R_f = 0.58$ (silica gel, 1:9, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.31–7.25 (m, 2H), 7.23–7.19 (m, 1H), 7.19–7.13 (m, 2H), 3.64 (s, 3H), 3.03 (dd, *J* = 13.1, 6.5 Hz, 1H), 2.80–2.62 (m, 2H), 1.16 (d, *J* = 6.8 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 176.7, 139.5, 129.1, 128.5, 126.5, 51.7, 41.6, 39.8, 16.9 ppm; HRMS (ESI): Calcd for C₁₁H₁₅O₂ [M+H]⁺: 179.1067; found 179.1066.

On 0.2 mmol scale, **General Procedure A** was followed with triethylene glucol monomethyl ether, bromobenzene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, 1:5, EtOAc:Petroleum Ether) afforded **19** (32.9 mg, 73%).


Physical state: yellow oil;

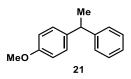
TLC: $R_f = 0.57$ (silica gel, 2:3, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.33–7.24 (m, 2H), 7.24–7.16 (m, 3H), 3.69 (t, *J* = 7.3 Hz, 2H), 3.67–3.61 (m, 6H), 3.56–3.53 (m, 2H), 3.38 (s, 3H), 2.91 (t, *J* = 7.3 Hz, 2H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): δ 139.0, 129.0, 128.4, 126.3, 72.4, 72.1, 70.7, 70.7, 70.4, 59.1, 36.4 ppm;

HRMS (ESI): Calcd for C₁₃H₂₁O₃ [M+H]⁺: 225.1485; found 225.1485.

On 0.2 mmol scale, without treatment by hydrogen peroxide, **General Procedure A** was followed with 4-methoxybenzyl alcohol, bromobenzene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, 0:100 to 1:33 EtOAc: Petroleum Ether) afforded **20** (37.3 mg, 94%).


Physical state: yellow oil;

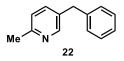
TLC: $R_f = 0.34$ (silica gel, 1:33, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.34–7.28 (m, 2H), 7.25–7.19 (m, 3H), 7.16–7.12 (m, 2H), 6.89–6.84 (m, 2H), 3.96 (s, 2H), 3.81 (s, 3H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): δ 158.1, 141.7, 133.4, 130.0, 128.9, 128.6, 126.1, 114.0, 55.4, 41.2 ppm;

HRMS (ESI): Calcd for C₁₄H₁₅O [M+H]⁺: 199.1117; found 199.1115.

On 0.2 mmol scale, **General Procedure A** was followed with 1-(4-methoxyphenyl)-ethanol, bromobenzene, and triphenylphosphine (3.0 equiv). Purification by column chromatography (silica gel, 1:99 CH₂Cl₂:Petroleum Ether) afforded crude **21**. Further purification by preparative TLC (silica gel, 1:19, EtOAc:Petroleum ether) afforded **21** (26.7 mg, 63%).


Physical state: yellow oil;

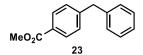
TLC: $R_f = 0.60$ (silica gel, 1:19, EtOAc:Petroleum Ether, UV);

¹H NMR (400 MHz, CDCl₃): δ 7.32–7.26 (m, 2H), 7.24–7.18 (m, 3H), 7.17–7.13 (m, 2H),

6.86–6.82 (m, 2H), 4.12 (q, *J* = 7.2 Hz, 1H), 3.79 (s, 3H), 1.63 (d, *J* = 7.2 Hz, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃): δ 158.0, 146.9, 138.7, 128.6, 128.5, 127.7, 126.1, 113.8, 55.4, 44.1, 22.2 ppm;

HRMS (ESI): Calcd for C₁₅H₁₇O [M+H]⁺: 213.1274; found 213.1275.

On 0.2 mmol scale, without treatment by hydrogen peroxide, **General Procedure A** was followed with 6-methyl-3-pyridinemethanol, bromobenzene, and triphenyl-phosphine (3.0 equiv). Purification by column chromatography (silica gel, 0:100 to 1:3 EtOAc:Petroleum Ether) afforded **22** (34.8 mg, 95%).


Physical state: white amorphous solid;

TLC: $R_f = 0.42$ (silica gel, 2:3, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 8.39 (d, *J* = 2.4 Hz, 1H), 7.40 (dd, *J* = 7.9, 2.4 Hz, 1H), 7.32–7.27 (m, 2H), 7.24–7.14 (m, 3H), 7.09 (d, *J* = 8.0 Hz, 1H), 3.95 (s, 2H), 2.55 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 156.2, 149.2, 140.2, 137.0, 133.5, 128.9, 128.7, 126.5, 123.2, 38.7, 24.0 ppm;

HRMS (ESI): Calcd for C₁₃H₁₄N [M+H]⁺: 184.1121; found 184.1120.

On 0.2 mmol scale, **General Procedure A** was followed with 4-(methoxycarbonyl) benzyl alcohol, bromobenzene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, 0:100 to 1:19 EtOAc:Petroleum Ether) afforded crude **23**. Further purification by preparative TLC (silica gel, 1:49, EtOAc:Petroleum ether) afforded **23** (38.9 mg, 86%).

Physical state: colorless oil;

TLC: $R_f = 0.74$ (silica gel, 1:24, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.98–7.94 (m, 2H), 7.32–7.26 (m, 3H), 7.25–7.21 (m, 2H), 7.21–7.14 (m, 2H), 4.03 (s, 2H), 3.90 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 167.2, 146.7, 140.3, 130.0, 129.1, 128.7, 128.2, 126.5, 52.1, 42.0 ppm;

HRMS (ESI): Calcd for C₁₅H₁₅O₂ [M+H]⁺: 227.1067; found 227.1065.

On 0.2 mmol scale, **General Procedure A** was followed with 3-hydroxyoxolan-2-one, bromobenzene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, CH_2Cl_2) afforded **24** (30.8 mg, 95%).

Physical state: yellow oil;

TLC: $R_f = 0.19$ (silica gel, 1:4, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.41–7.35 (m, 2H), 7.34–7.27 (m, 3H), 4.52–4.45 (m, 1H), 4.36 (dt, J = 9.2, 6.7 Hz, 1H), 3.82 (dd, J = 10.2, 8.9 Hz, 1H), 2.77–2.68 (m, 1H), 2.51–2.40 (m, 1H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ 177.5, 136.8, 129.1, 128.0, 127.8, 66.6, 45.6, 31.7 ppm; **HRMS** (ESI): Calcd for C₁₀H₁₁O₂ [M+H]⁺: 163.0754; found 163.0754.

On 0.2 mmol scale, **General Procedure A** was followed with benzyl lactate, bromobenzene, and triphenylphosphine (3.0 equiv). Purification by column chromatography (silica gel, 1:20 EtOAc: Petroleum Ether) afforded crude **25**. Further purification by preparative TLC (silica gel, 1:20, EtOAc:Petroleum ether) afforded **25** (37.9 mg, 79%).

Physical state: colorless oil;

TLC: $R_f = 0.49$ (silica gel, 1:30, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.35–7.22 (m, 10H), 5.11 (q, *J* = 12.5 Hz, 2H), 3.78 (q, *J* = 7.2 Hz, 1H), 1.52 (d, *J* = 7.2 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 174.4, 140.5, 136.1, 128.7, 128.6, 128.2, 128.0, 127.6, 127.3, 66.5, 45.6, 18.6 ppm;

HRMS (ESI): Calcd for $C_{16}H_{17}O_2$ [M+H]⁺: 241.1223; found 241.1223.

On 0.2 mmol scale, **General Procedure A** was followed with benzyl glycolate, bromobenzene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, 1:19 EtOAc: Petroleum Ether) afforded crude **26**. Further purification by preparative TLC (silica gel, 1:19, EtOAc:Petroleum ether) afforded **26** (38.5 mg, 85%).


Physical state: colorless oil;

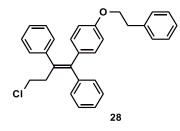
TLC: $R_f = 0.40$ (silica gel, 1:19, EtOAc:Petroleum Ether, UV);

¹H NMR (400 MHz, CDCl₃): δ 7.40–7.26 (m, 10H), 5.15 (s, 2H), 3.69 (s, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 171.5, 136.0, 134.0, 129.4, 128.7, 128.7, 128.3, 128.3, 127.3, 66.7, 41.5 ppm;

HRMS (ESI): Calcd for C₁₅H₁₅O₂ [M+H]⁺: 227.1067; found 227.1067.

On 0.2 mmol scale, **General Procedure A** was followed with cinnamyl alcohol, bromobenzene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, hexane) afforded crude **27**. Further purification by preparative TLC (silica gel, hexane) afforded **27** (27.6 mg, 71%).


Physical state: colorless oil;

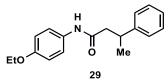
TLC: $R_f = 0.40$ (silica gel, *n*-hexane, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.42–7.21 (m, 10H), 6.52–6.46 (m, 1H), 6.43–6.34 (m, 1H), 3.58 (dd, *J* = 6.6, 1.2 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 140.3, 137.6, 131.2, 129.4, 128.8, 128.6, 127.2, 126.3, 126.3, 39.5 ppm;

HRMS (ESI): Calcd for C₁₅H₁₅ [M+H]⁺: 195.1168; found 195.1168.

On 0.2 mmol scale, **General Procedure A** was followed with ospemifene, bromobenzene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, CH₂Cl₂) afforded crude **28**. Further purification by preparative TLC (silica gel, 1:19, EtOAc:Petroleum ether) afforded **28** (50.0 mg, 57%).


Physical state: white amorphous solid;

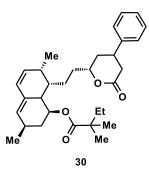
TLC: $R_f = 0.45$ (silica gel, 1:19, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.41–7.35 (m, 2H), 7.32–7.27 (m, 5H), 7.25–7.18 (m, 5H), 7.17–7.11 (m, 3H), 6.84–6.72 (m, 2H), 6.64–6.51 (m, 2H), 4.04 (t, *J* = 7.1 Hz, 2H), 3.42 (t, *J* = 7.5 Hz, 2H), 3.02 (t, *J* = 7.1 Hz, 2H), 2.93 (t, *J* = 7.5 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 157.1, 143.0, 141.9, 141.1, 138.3, 135.3, 134.9, 131.8, 129.7, 129.5, 129.1, 128.6, 128.5, 128.4, 127.1, 126.7, 126.7, 113.6, 68.5, 43.0, 38.7, 35.9 ppm;

HRMS (ESI): Calcd for C₃₀H₂₈ClO [M+H]⁺: 439.1823; found 439.1820.

On 0.2 mmol scale, **General Procedure A** was followed with bucetin, bromobenzene, and triphenylphosphine (3.0 equiv). Purification by column chromatography (silica gel, 0:100 to 1:4, EtOAc:Petroleum Ether) afforded crude **29**. Further purification by preparative TLC (silica gel, 3:7, EtOAc:Petroleum ether) afforded **29** (41.9 mg, 74%).


Physical state: white amorphous solid;

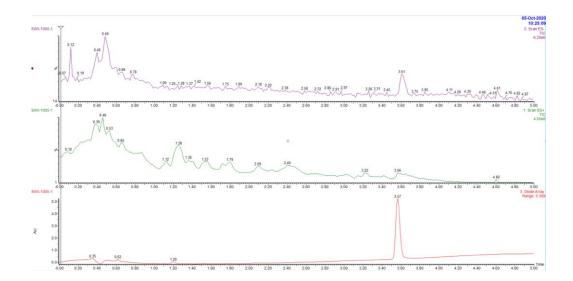
TLC: $R_f = 0.55$ (silica gel, 2:3, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.36–7.28 (m, 2H), 7.28–7.17 (m, 5H), 6.87 (*br*, s, 1H), 6.81–6.76 (m, 2H), 3.97 (q, *J* = 7.0 Hz, 2H), 3.41–3.31 (m, 1H), 2.64–2.51 (m, 2H), 1.38 (t, *J* = 6.8 Hz, 3H), 1.37 (d, *J* = 6.8 Hz, 3H) ppm;

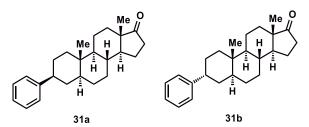
¹³C NMR (101 MHz, CDCl₃): δ 169.9, 155.9, 145.9, 130.7, 128.9, 127.0, 126.7, 122.1, 114.8, 63.8, 46.8, 37.3, 21.8, 15.0 ppm;

HRMS (ESI): Calcd for C₁₈H₂₂NO₂ [M+H]⁺: 284.1645; found 284.1645.

On 0.2 mmol scale, without treatment by hydrogen peroxide, **General Procedure A** was followed with simvastatin, bromobenzene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, 1:4 EtOAc:Petroleum Ether) afforded **30** as two inseparable diastereomers (d.r. = 1.5:1, 70.8 mg, 74%).


Physical state: white amorphous solid;

TLC: $R_f = 0.37$ (silica gel, 1:4, EtOAc:Petroleum Ether, UV);


¹**H NMR** (400 MHz, CDCl₃): δ 7.38–7.32 (m, 2H), 7.31–7.23 (m, 1H), 7.22–7.17 (m, 2H), 5.99 (dd, J = 9.7, 3.3 Hz, 1H), 5.81–5.74 (m, 1H), 5.52–5.48 (m, 1H), 5.37–5.31 (m, 1H), 4.38–4.27 (m, 1H), 3.41–3.27 (m, 1H), 3.23–3.12 (m, 0.5H), 2.92 (ddd, J = 17.7, 6.0, 1.9 Hz, 0.5H), 2.85–2.66 (m, 2H), 2.53 (dd, J = 17.8, 11.3 Hz, 1H), 2.46–2.39 (m, 1H), 2.39–2.32 (m, 1H), 2.30–2.20 (m, 1H), 2.20–2.12 (m, 1H), 2.09–1.99 (m, 2H), 1.98–1.91 (m, 2H), 1.93–1.82 (m, 1H), 1.73–1.62 (m, 1H), 1.58–1.30 (m, 2H), 1.08 (dt, J = 7.4, 5.0 Hz, 9H), 0.89 (t, J = 7.6 Hz, 3H), 0.78 (dt, J = 16.5, 7.5 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 177.8, 177.8, 171.8, 170.8, 143.3, 143.1, 133.0, 133.0, 131.7, 131.7, 129.9, 129.1, 129.1, 128.6, 127.3, 127.2, 126.7, 126.5, 81.2, 78.3, 68.1, 68.1, 43.1, 37.7, 37.7, 36.9, 36.7, 36.3, 35.5, 34.9, 33.9, 33.2, 33.2, 33.1, 33.0, 33.0, 30.8, 27.4, 24.9, 24.8, 24.8, 24.8, 24.6, 23.2, 14.1, 9.4, 9.4 ppm;

HRMS (ESI): Calcd for C₃₁H₄₃O₄ [M+H]⁺: 479.3156; found 479.3160. *The purity of* **30** *was further determined by UPLC-MS.*

On 0.2 mmol scale, General Procedure A was followed with epiandrosterone, bromobenzene, and triphenylphosphine (3.0 equiv). Purification by column chromatography (silica gel, CH₂Cl₂) afforded crude **31**. Further purification by preparative TLC (silica gel, 1:9, EtOAc:Petroleum ether) afforded **31a** and **31b** (d.r. = 1:1, 34.4 mg, 49%).

For characterization, these two diastereomers were further separated by preparative HPLC (100% CH₃CN).

31a:

Physical state: white solid;

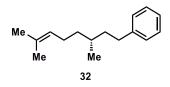
Melting point: 167.5–167.9 °C;

TLC: $R_f = 0.23$ (silica gel, 1:19, EtOAc:Petroleum Ether, UV);

¹H NMR (400 MHz, CDCl₃): δ 7.32–7.27 (m, 2H), 7.24–7.15 (m, 3H), 2.61–2.51 (m, 1H), 2.45 (ddd, J = 19.1, 8.9, 1.0 Hz, 1H), 2.08 (dt, J = 19.1, 9.0 Hz, 1H), 1.99-1.90 (m, 1H), 1.86-1.78 (m, 10.10), 1.99-1.90 (m, 10.10), 1.86-1.78 (m, 10.10), 1.99-1.90 (m, 10.10), 1.99-3H), 1.78–1.67 (m, 2H), 1.67–1.60 (m, 1H), 1.59–1.56 (m, 1H), 1.55–1.45 (m, 3H), 1.38–1.25 (m, 6H), 1.11 (dt, J = 13.0, 4.3 Hz, 1H), 1.08–0.99 (m, 1H), 0.91 (s, 3H), 0.88 (s, 3H), 0.84–0.74 (m, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 221.7, 147.6, 128.4, 126.9, 126.0, 54.9, 51.7, 48.0, 47.2, 44.9, 39.0, 36.7, 36.1, 36.0, 35.3, 31.8, 31.1, 29.9, 28.7, 21.9, 20.5, 14.0, 12.6 ppm;

HRMS (ESI): Calcd for C₂₅H₃₅O [M+H]⁺: 351.2682; found 351.2675.


31b:

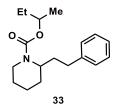
Physical state: white amorphous solid;

TLC: $R_f = 0.23$ (silica gel, 1:19, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.40–7.34 (m, 2H), 7.34–7.29 (m, 2H), 7.20–7.15 (m, 1H), 3.09 (t, J = 6.0 Hz, 1H), 2.41 (ddd, J = 19.1, 8.9, 1.1 Hz, 1H), 2.14–2.07 (m, 1H), 2.06–1.94 (m, 2H), 1.94–1.81 (m, 2H), 1.80–1.70 (m, 3H), 1.67–1.51 (m, 3H), 1.50–1.40 (m, 1H), 1.35–1.13 (m, 7H), 0.97-0.83 (m, 1H), 0.91 (d, J = 0.6 Hz, 3H), 0.85 (d, J = 0.5 Hz, 3H), 0.70-0.62 (m, 1H) ppm; ¹³C NMR (101 MHz, CDCl₃): 8 221.7, 145.5, 128.2, 127.7, 125.3, 54.8, 51.6, 48.0, 40.9, 36.5, 36.0, 35.1, 34.5, 33.3, 31.7, 30.8, 28.7, 25.1, 21.9, 20.1, 14.0, 12.2 ppm;

HRMS (ESI): Calcd for C₂₅H₃₅O [M+H]⁺: 351.2682; found 351.2678.

On 0.2 mmol scale, General Procedure A was followed with citronellol, bromo-benzene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, pentane) afforded crude 32. Further purification by preparative TLC (silica gel, Petroleum ether) afforded 32 (25.5 mg, 59%).


Physical state: colorless oil;

TLC: $R_f = 0.62$ (silica gel, Petroleum ether, UV);

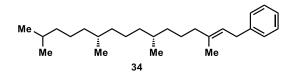
¹**H NMR** (400 MHz, CDCl₃): δ 7.30–7.25 (m, 2H), 7.20–7.12 (m, 3H), 5.13–5.07 (m, 1H), 2.70–2.51 (m, 2H), 2.07–1.89 (m, 2H), 1.68 (d, *J* = 1.3 Hz, 3H), 1.67–1.62 (m, 1H), 1.60 (d, *J* = 1.2 Hz, 3H), 1.52–1.33 (m, 3H), 1.25–1.14 (m, 1H), 0.94 (d, *J* = 6.3 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 143.3, 131.3, 128.5, 128.4, 125.7, 125.1, 39.1, 37.1, 33.6, 32.3, 25.9, 25.6, 19.7, 17.8 ppm;

HRMS (ESI): Calcd for C₁₆H₂₅ [M+H]⁺: 217.1951; found 217.1956.

On 0.2 mmol scale, without treatment by hydrogen peroxide, **General Procedure A** was followed with icaridin, bromobenzene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, 1:19 EtOAc:Petroleum Ether) afforded crude **33**. Further purification by preparative TLC (silica gel, 1:9, EtOAc:Petroleum ether) afforded **33** (48.6 mg, 84%).

Note: The starting material icaridin was used as a mixture of diastereomers.


Physical state: yellow oil;

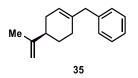
TLC: $R_f = 0.50$ (silica gel, 1:9, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.34–7.25 (m, 2H), 7.22–7.16 (m, 3H), 4.82–4.72 (m, 1H), 4.35 (*br*, s, 1H), 4.06 (d, *J* = 13.5 Hz, 1H), 2.84 (dt, *J* = 13.2, 2.4 Hz, 1H), 2.66–2.48 (m, 2H), 2.09–1.96 (m, 1H), 1.78–1.68 (m, 1H), 1.68–1.48 (m, 7H), 1.47–1.37 (m, 1H), 1.21 (dd, *J* = 6.2, 0.7 Hz, 3H), 0.91 (dt, *J* = 7.4, 5.0 Hz, 3H) ppm;

¹³C NMR (400 MHz, CDCl₃): δ 155.9, 142.3, 128.5, 128.5, 125.9, 73.0, 72.9, 50.6, 50.5, 39.1, 39.0, 33.0, 32.9, 32.0, 29.3, 29.3, 28.6, 25.7, 20.0, 20.0, 19.2, 9.9, 9.9 ppm;

HRMS (ESI): Calcd for C₁₈H₂₈NO₂ [M+H]⁺: 290.2115; found 290.2115.

On 0.2 mmol scale, **General Procedure A** was followed with phytol, bromobenzene, and triphenylphosphine (3.0 equiv). Purification by column chromatography (silica gel, CH_2Cl_2) afforded **34** (53.5 mg, 75%).


Physical state: colorless oil;

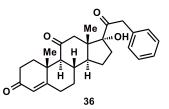
TLC: $R_f = 0.71$ (silica gel, Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.34–7.27 (m, 2H), 7.23–7.17 (m, 3H), 5.39–5.32 (m, 1H), 3.39 (d, *J* = 7.3 Hz, 2H), 2.09–1.97 (m, 2H), 1.73 (t, *J* = 1.5 Hz, 3H), 1.60–1.50 (m, 1H), 1.50–1.37 (m, 4H), 1.36–1.24 (m, 8H), 1.19–1.14 (m, 2H), 1.11–1.03 (m, 4H), 0.89 (d, *J* = 6.8 Hz, 6H), 0.88 (d, *J* = 1.9 Hz, 3H), 0.87 (d, *J* = 1.9 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 142.0, 136.8, 128.5, 125.8, 122.9, 40.2, 39.5, 37.6, 37.6, 37.5, 36.8, 34.4, 33.0, 32.8, 28.1, 25.5, 25.0, 24.6, 22.9, 22.8, 19.9, 16.2 ppm;

HRMS (ESI): Calcd for C₂₆H₄₅ [M+H]⁺: 357.3516; found 357.3527.

On 0.2 mmol scale, **General Procedure A** was followed with perillol, bromobenzene, and triphenylphosphine (3.0 equiv). Purification by column chromatography (silica gel, CH_2Cl_2) afforded crude **35**. Further purification by preparative TLC (silica gel, Petroleum ether) afforded **35** (23.4 mg, 55%).


Physical state: colorless oil;

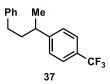
TLC: $R_f = 0.67$ (silica gel, Petroleum Ether, UV);

¹**H** NMR (400 MHz, CDCl₃): δ 7.34–7.25 (m, 2H), 7.23–7.14 (m, 3H), 5.53–5.45 (m, 1H), 4.75–4.67 (m, 2H), 3.27 (s, 2H), 2.20–2.07 (m, 2H), 2.03–1.92 (m, 3H), 1.82–1.76 (m, 1H), 1.73 (t, *J* = 1.2 Hz, 3H), 1.51–1.40 (m, 1H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): δ 150.3, 140.5, 137.1, 129.0, 128.3, 126.0, 122.6, 108.6, 44.4, 41.3, 31.0, 28.7, 28.0, 20.9 ppm;

HRMS (ESI): Calcd for C₁₆H₂₁ [M+H]⁺: 213.1638; found 213.1638.

On 0.2 mmol scale, **General Procedure A** was followed with cortisone, bromobenzene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, 1:2, EtOAc:Petroleum ether) afforded crude **36**. Further purification by preparative TLC (silica gel, 1:1, EtOAc:Petroleum ether) afforded **36** (51.3 mg, 61%).


Physical state: white solid;

Melting point: 210.4–213.5 °C;

TLC: $R_f = 0.39$ (silica gel, 1:1, EtOAc:Petroleum Ether, UV);

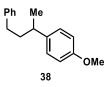
¹**H NMR** (400 MHz, CDCl₃): δ 7.35–7.29 (m, 2H), 7.28–7.22 (m, 1H), 7.19–7.13 (m, 2H), 5.72 (s, 1H), 4.02 (d, *J* = 16.0 Hz, 1H), 3.72 (d, *J* = 16.0 Hz, 1H), 2.91–2.72 (m, 3H), 2.52–2.35 (m, 3H), 2.33–2.25 (m, 2H), 2.12 (d, *J* = 12.4 Hz, 1H), 2.02–1.89 (m, 4H), 1.73–1.58 (m, 2H), 1.52–1.42 (m, 1H), 1.41 (s, 3H), 1.35–1.22 (m, 1H), 0.75 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 209.7, 209.6, 200.0, 168.9, 133.8, 129.7, 128.7, 127.2, 124.7, 89.4, 62.7, 51.7, 50.4, 49.7, 46.3, 38.3, 36.6, 34.8, 34.5 33.8, 32.4, 32.4, 23.6, 17.3, 16.4 ppm; HRMS (ESI): Calcd for C₂₇H₃₃O₄ [M+H]⁺: 421.2373; found 421.2374.

On 0.2 mmol scale, General Procedure A was followed with 4-phenylbutan-2-ol, 1-bromo-4-

trifluoromethylbenzene, and triphenylphosphine (10.0 equiv). Purification by column chromatography (silica gel, Petroleum Ether) afforded crude **37**. Further purification by preparative TLC (silica gel, pentane) afforded **37** (33.4 mg, 60%).

Physical state: colorless oil;


TLC: $R_f = 0.80$ (silica gel, Petroleum Ether, UV);

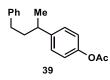
¹**H NMR** (400 MHz, CDCl₃): δ 7.59–7.54 (m, 2H), 7.34–7.29 (m, 2H), 7.28–7.24 (m, 2H), 7.21–7.15 (m, 1H), 7.14–7.09 (m, 2H), 2.85–2.74 (m, 1H), 2.58–2.45 (m, 2H), 1.97–1.90 (m, 2H), 1.29 (d, *J* = 6.9 Hz, 3H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): δ 151.5, 142.2, 128.5, 128.5, 127.6, 126.0, 125.5 (q, *J* = 4.0 Hz), 124.5 (q, *J* = 273 Hz), 39.8, 39.5, 33.9, 22.4 ppm;

¹⁹**F NMR** (376 MHz, CDCl₃): δ 62.28 ppm;

HRMS (APCI): Calcd for C₁₇H₂₁F₃N [M+NH₄]⁺: 296.1621; found 296.1635.

On 0.2 mmol scale, **General Procedure A** was followed with 4-phenylbutan-2-ol, 1-bromo-4methoxy-benzene, and triphenylphosphine (3.0 equiv). Purification by column chromatography (silica gel, Petroleum Ether) afforded crude **38**. Further purification by preparative TLC (silica gel, Petroleum ether) afforded **38** (29.2 mg, 61%).


Physical state: colorless oil;

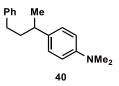
TLC: $R_f = 0.39$ (silica gel, Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.32–7.25 (m, 2H), 7.22–7.18 (m, 1H), 7.18–7.10 (m, 4H), 6.93–6.83 (m, 2H), 3.82 (s, 3H), 2.76–2.64 (m, 1H), 2.58–2.47 (m, 2H), 1.97–1.84 (m, 2H), 1.27 (d, *J* = 6.9 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 157.9, 142.7, 139.5, 128.5, 128.4, 128.0, 125.7, 113.9, 55.4, 40.3, 38.8, 34.1, 22.9 ppm;

HRMS (ESI): Calcd for C₁₇H₂₁O [M+H]⁺: 241.1587; found 241.1586.

On 0.2 mmol scale, **General Procedure A** was followed with 4-phenylbutan-2-ol, 4-bromophenyl acetate, and triphenylphosphine (3.0 equiv). Purification by column chromatography (silica gel, CH_2Cl_2) afforded crude **39**. Further purification by preparative TLC (silica gel, 1:9, EtOAc: Petroleum ether) afforded **39** (22.0 mg, 41%).

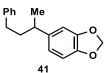

Physical state: colorless oil;

TLC: $R_f = 0.37$ (silica gel, 1:19, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.29–7.24 (m, 2H), 7.22–7.16 (m, 3H), 7.16–7.11 (m, 2H), 7.05–7.01 (m, 2H), 2.78–2.68 (m, 1H), 2.58–2.46 (m, 2H), 2.30 (s, 3H), 1.97–1.85 (m, 2H), 1.27 (d, *J* = 6.9 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 169.8, 148.9, 144.9, 142.5, 128.5, 128.4, 128.1, 125.8, 121.5, 40.1,

39.1, 34.0, 22.6, 21.3 ppm; **HRMS** (ESI): Calcd for C₁₈H₂₁O₂ [M+H]⁺: 269.1536; found 269.1535.



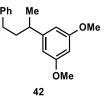
On 0.2 mmol scale, without treatment by hydrogen peroxide, **General Procedure A** was followed with 4-phenylbutan-2-ol, 4-bromo-*N*,*N*-dimethylaniline, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, hexane) afforded crude **40**. Further purification by preparative TLC (silica gel, 1:9, EtOAc: Petroleum ether) afforded **40** (31.0 mg, 62%). **Physical state:** yellow oil;

TLC: $R_f = 0.42$ (silica gel, 1:19, EtOAc:Petroleum Ether, UV);

¹H NMR (400 MHz, CDCl₃): δ 7.30–7.23 (m, 2H), 7.20–7.07 (m, 5H), 6.77 (*br*, s, 2H), 2.94 (s, 6H), 2.70–2.60 (m, 1H), 2.52 (t, *J* = 8.0 Hz, 2H), 1.95–1.81 (m, 2H), 1.24 (d, *J* = 6.9 Hz, 3H) ppm;
¹³C NMR (101 MHz, CDCl₃): δ 148.7, 142.9, 128.5, 128.3, 127.8, 125.7, 113.5, 41.3, 40.3, 38.6, 34.1, 22.9 ppm;

HRMS (ESI): Calcd for C₁₈H₂₄N [M+H]⁺: 254.1903; found 254.1903.

On 0.2 mmol scale, without treatment by hydrogen peroxide, **General Procedure A** was followed with 4-phenylbutan-2-ol, 1,2-(methylenedioxy)-4-bromobenzene, and triphenylphosphine (3.0 equiv). Purification by column chromatography (silica gel, 1:19 EtOAc:Petroleum Ether) afforded crude **41**. Further purification by preparative TLC (silica gel, 100:1:1, Petroleum ether: EtOAc:CH₂Cl₂) afforded **41** (32.0 mg, 63%).


Physical state: yellow oil;

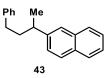
TLC: $R_f = 0.60$ (silica gel, 1:19, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.32–7.24 (m, 2H), 7.21–7.13 (m, 3H), 6.78 (d, *J* = 8.0 Hz, 1H), 6.74 (d, *J* = 1.7 Hz, 1H), 6.69–6.65 (m, 1H), 5.95 (s, 2H), 2.72–2.62 (m, 1H), 2.57–2.48 (m, 2H), 1.93–1.84 (m, 2H), 1.25 (d, *J* = 6.9 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 147.8, 145.7, 142.6, 141.4, 128.5, 128.4, 125.8, 120.1, 108.2, 107.4, 100.9, 40.3, 39.4, 34.0, 22.9 ppm;

HRMS (APCI): Calcd for C₁₇H₁₉O₂ [M+H]⁺: 255.1380; found 255.1388.

On 0.2 mmol scale, **General Procedure A** was followed with 4-phenylbutan-2-ol, 1-bromo-3,5dimethoxybenzene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, 1:19 EtOAc:Petroleum Ether) afforded crude **42**. Further purification by preparative TLC (silica gel, 1:19, EtOAc:Petroleum ether) afforded **42** (31.0 mg, 57%).


Physical state: colorless oil;

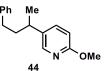
TLC: $R_f = 0.55$ (silica gel, 1:24, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.31–7.23 (m, 2H), 7.20–7.12 (m, 3H), 6.38 (d, *J* = 2.3 Hz, 2H), 6.33 (t, *J* = 2.3 Hz, 1H), 3.80 (s, 6H), 2.71–2.61 (m, 1H), 2.53 (t, *J* = 8.0 Hz, 2H), 1.98–1.81 (m, 2H), 1.26 (d, *J* = 6.9 Hz, 3H) ppm;

¹³**C NMR** (101 MHz, CDCl₃): δ 160.9, 150.1, 142.7, 128.5, 128.4, 125.8, 105.4, 97.7, 55.4, 40.0, 39.9, 34.1, 22.6 ppm;

HRMS (ESI): Calcd for C₁₈H₂₃O₂ [M+H]⁺: 271.1693; found 271.1693.

On 0.2 mmol scale, **General Procedure A** was followed with 4-phenylbutan-2-ol, 2-bromonaphthalene, and triphenylphosphine (10.0 equiv). Purification by column chromatography (silica gel, CH_2Cl_2) afforded crude **43**. Further purification by preparative TLC (silica gel, pentane) afforded **43** (23.5 mg, 45%).

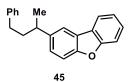

Physical state: colorless oil;

TLC: $R_f = 0.32$ (silica gel, Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.85–7.78 (m, 3H), 7.63 (d, *J* = 1.7 Hz, 1H), 7.49–7.40 (m, 2H), 7.38 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.29–7.23 (m, 2H), 7.20–7.10 (m, 3H), 2.96–2.84 (m, 1H), 2.61–2.48 (m, 2H), 2.18–1.86 (m, 2H), 1.36 (d, *J* = 6.9 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 144.8, 142.7, 133.8, 132.4, 128.5, 128.4, 128.2, 127.8, 127.7, 126.0, 125.9, 125.8, 125.5, 125.3, 40.0, 39.8, 34.1, 22.7 ppm;

HRMS (ESI): Calcd for C₂₀H₂₁ [M+H]⁺: 261.1638; found 261.1639.


On 0.2 mmol scale, without treatment by hydrogen peroxide, **General Procedure A** was followed with 4-phenylbutan-2-ol, 2-methoxy-5-bromopyridine, and triphenylphosphine (10.0 equiv). Purification by column chromatography (silica gel, 100:3:3, Petroleum ether:EtOAc:CH₂Cl₂) afforded crude **44**. Further purification by preparative TLC (silica gel, 100:5:5, Petroleum ether:EtOAc:CH₂Cl₂) afforded **44** (31.4 mg, 65%).

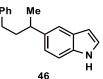
Physical state: colorless oil;

TLC: $R_f = 0.30$ (silica gel, 3:97, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.99 (dd, J = 2.5, 0.6 Hz, 1H), 7.43 (dd, J = 8.5, 2.5 Hz, 1H), 7.29–7.23 (m, 2H), 7.20–7.14 (m, 1H), 7.14–7.09 (m, 2H), 6.72 (dd, J = 8.6, 0.6 Hz, 1H), 3.93 (s, 3H), 2.74–2.63 (m, 1H), 2.50 (t, J = 8.0 Hz, 2H), 1.96–1.80 (m, 2H), 1.25 (d, J = 6.9 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ 162.9, 145.5, 142.2, 137.3, 135.0, 128.5, 125.9, 110.8, 53.4, 39.9, 36.2, 33.9, 22.6 ppm;

HRMS (ESI): Calcd for C₁₆H₂₀NO [M+H]⁺: 242.1539; found 242.1540.

On 0.2 mmol scale, **General Procedure A** was followed with 4-phenylbutan-2-ol, 2-bromodibenzofuran, and triphenylphosphine (3.0 equiv). Purification by column chromatography (silica gel, Petroleum Ether) afforded crude **45**. Further purification by preparative TLC (silica gel, Petroleum ether) afforded **45** (24.0 mg, 40%).

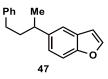

Physical state: colorless oil;

TLC: $R_f = 0.30$ (silica gel, Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 8.00–7.92 (m, 1H), 7.79–7.75 (m, 1H), 7.55 (dt, *J* = 8.2, 0.8 Hz, 1H), 7.50 (dd, *J* = 8.4, 0.6 Hz, 1H), 7.46–7.41 (m, 1H), 7.36–7.22 (m, 4H), 7.19–7.11 (m, 3H), 2.95–2.83 (m, 1H), 2.62–2.47 (m, 2H), 2.08–1.93 (m, 2H), 1.36 (d, *J* = 7.0 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 156.6, 155.0, 142.6, 142.0, 128.5, 128.4, 127.1, 126.5, 125.8, 124.5, 124.4, 122.7, 120.7, 118.8, 111.8, 111.5, 40.6, 39.7, 34.1, 23.2 ppm;

HRMS (ESI): Calcd for C₂₂H₂₁O [M+H]⁺: 301.1587; found 301.1585.

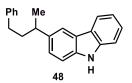

On 0.2 mmol scale, without treatment by hydrogen peroxide, **General Procedure A** was followed with 4-phenylbutan-2-ol, 5-bromo-1H-indole, and triphenylphosphine (3.0 equiv). Purification by column chromatography (silica gel, 1:9 EtOAc:Petroleum Ether) afforded crude **46**. Further purification by preparative TLC (silica gel, 1:9, EtOAc:toluene) afforded **46** (21.4 mg, 43%). **Physical state:** colorless oil;

TLC: $R_f = 0.58$ (silica gel, 1:4, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 8.08 (*br*, s, 1H), 7.52–7.45 (m, 1H), 7.35 (d, *J* = 8.3 Hz, 1H), 7.29–7.23 (m, 2H), 7.22–7.12 (m, 4H), 7.08 (dd, *J* = 8.4, 1.7 Hz, 1H), 6.54–6.51 (m, 1H), 2.88–2.77 (m, 1H), 2.60–2.48 (m, 2H), 2.06–1.88 (m, 2H), 1.33 (d, *J* = 6.9 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 143.1, 138.9, 134.6, 128.6, 128.4, 128.1, 125.7 124.4, 121.7, 118.7, 111.0, 102.5, 40.7, 39.8, 34.2, 23.4 ppm;

HRMS (ESI): Calcd for C₁₈H₂₀N [M+H]⁺: 250.1590; found 250.1592.



On 0.2 mmol scale, **General Procedure A** was followed with 4-phenylbutan-2-ol, 5-bromobenzofuran, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, CH_2Cl_2) afforded crude 47. Further purification by preparative TLC (silica gel, Petroleum ether) afforded 47 (33.0 mg, 66%). Physical state: colorless oil;

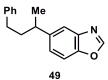
TLC: $R_f = 0.35$ (silica gel, Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.61 (d, J = 2.2 Hz, 1H), 7.45 (dt, J = 8.5, 0.8 Hz, 1H), 7.43 (dd, J = 1.5, 1.0 Hz, 1H), 7.29–7.24 (m, 2H), 7.20–7.16 (m, 1H), 7.16–7.12 (m, 3H), 6.74 (dd, J = 2.2, 1.0 Hz, 1H), 2.89–2.78 (m, 1H), 2.59–2.45 (m, 2H), 2.02–1.91 (m, 2H), 1.32 (d, J = 6.9 Hz, 3H) ppm; ¹³**C NMR** (101 MHz, CDCl₃): δ 153.8, 145.2, 142.7, 142.0, 128.5, 128.4, 127.6, 125.8, 123.7, 119.3, 111.3, 106.7, 40.6, 39.6, 34.1, 23.3 ppm;

HRMS (ESI): Calcd for C₁₈H₁₉O [M+H]⁺: 251.1430; found 251.1430.

On 0.2 mmol scale, **General Procedure A** was followed with 4-phenylbutan-2-ol, 3-bromo-9H-carbazole, and triphenylphosphine (3.0 equiv). Purification by column chromatography (silica gel, 1:19, EtOAc:Petroleum ether) afforded **48** (37.1 mg, 62%).

Physical state: white solid;


Melting point: 129.0–131.01°C;

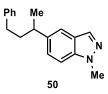
TLC: $R_f = 0.62$ (silica gel, 1:4, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 8.11–8.06 (m, 1H), 7.96 (*br*, s, 1H), 7.91 (d, *J* = 1.6 Hz, 1H), 7.45–7.40 (m, 2H), 7.39–7.36 (m, 1H), 7.30-7.25 (m, 3H), 7.25-7.21 (m, 1H), 7.20–7.13 (m, 3H), 2.98–2.85 (m, 1H), 2.64–2.50 (m, 2H), 2.11–1.95 (m, 2H), 1.39 (d, *J* = 7.0 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 142.9, 140.0, 138.7, 138.2, 128.6, 128.4, 125.8, 125.7, 125.4, 123.6, 123.5, 120.4, 119.4, 118.5, 110.7, 110.6, 40.7, 39.8, 34.2, 23.4 ppm;

HRMS (ESI): Calcd for C₂₂H₂₂N [M+H]⁺: 300.1747; found 300.1747.

On 0.2 mmol scale, **General Procedure A** was followed with 4-phenylbutan-2-ol, 5-bromo-1,3benzoxazole, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, 1:20 EtOAc:Petroleum Ether) afforded crude **49**. Further purification by preparative TLC (silica gel, 1:15, EtOAc:Petroleum ether) followed by preparative HPLC (85% to 90% CH₃CN/water) afforded **49** (33.7 mg, 67%).


Physical state: yellow oil;

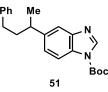
TLC: $R_f = 0.34$ (silica gel, 1:10, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 8.09 (s, 1H), 7.63 (d, *J* = 1.7 Hz, 1H), 7.52 (dd, *J* = 8.4, 0.6 Hz, 1H), 7.29–7.22 (m, 3H), 7.19–7.14 (m, 1H), 7.14–7.10 (m, 2H), 2.92–2.81 (m, 1H), 2.58–2.45 (m, 2H), 2.02–1.92 (m, 2H), 1.33 (d, *J* = 6.9 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 152.9, 148.6, 144.3, 142.4, 140.4, 128.5, 128.4, 125.8, 125.1, 118.7, 110.7, 40.4, 39.6, 34.0, 23.1 ppm;

HRMS (ESI): Calcd for C₁₇H₁₈NO [M+H]⁺: 252.1383; found 252.1383.

On 0.2 mmol scale, without treatment by hydrogen peroxide, **General Procedure A** was followed with 4-phenylbutan-2-ol, 5-bromo-1-methyl-benzoimidazole, and triphenylphosphine (3.0 equiv). Purification by column chromatography (silica gel, 0:100 to 1:4 EtOAc:Petroleum Ether) afforded crude **50**. Further purification by preparative TLC (silica gel, 1:4, EtOAc:Petroleum ether) followed by preparative HPLC (85% to 95% CH₃CN/water) afforded **50** (31.2 mg, 59%).


Physical state: white amorphous solid;

TLC: $R_f = 0.33$ (silica gel, 1:4, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.93 (d, *J* = 0.9 Hz, 1H), 7.54–7.52 (m, 1H), 7.36 (dt, *J* = 8.7, 0.9 Hz, 1H), 7.30–7.23 (m, 3H), 7.19–7.14 (m, 1H), 7.14 –7.10 (m, 2H), 4.07 (s, 3H), 2.92–2.78 (m, 1H), 2.60–2.45 (m, 2H), 2.04–1.91 (m, 2H), 1.33 (d, *J* = 6.9 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 142.6, 139.7, 139.1, 132.4, 128.5, 128.4, 126.4, 125.8, 124.4, 118.6, 109.1, 40.4, 39.5, 35.7, 34.1, 23.1 ppm;

HRMS (ESI): Calcd for C₁₈H₂₁N₂ [M+H]⁺: 265.1699; found 265.1700.

On 0.2 mmol scale, without treatment by hydrogen peroxide, **General Procedure A** was followed with 4-phenylbutan-2-ol, *tert*-butyl 5-bromo-benzimidazole-1-carboxylate, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, 0:100 to 1:9 EtOAc:Petroleum Ether) afforded crude **51**. Further purification by preparative TLC (silica gel, 1:4, EtOAc:Petroleum ether) followed by preparative HPLC (90% to 95% CH₃CN/water) afforded **51** (34.3 mg, 49%). **Physical state:** colorless oil;

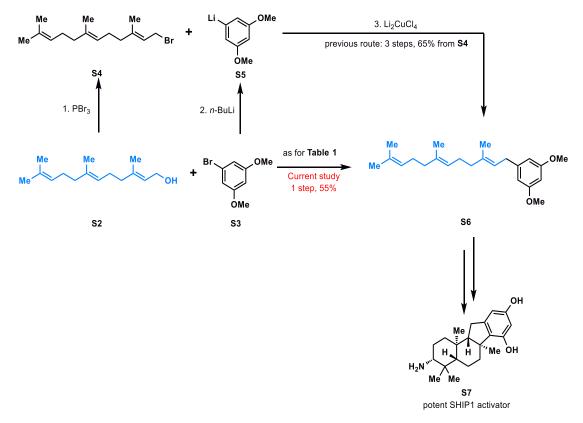
TLC: $R_f = 0.46$ (silica gel, 1:4, EtOAc:Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 8.43 (s, 1H), 7.91 (d, *J* = 8.4 Hz, 1H), 7.64 (d, *J* = 1.5 Hz, 1H), 7.28–7.23 (m, 3H), 7.19–7.14 (m, 1H), 7.14–7.10 (m, 2H), 2.92–2.81 (m, 1H), 2.56–2.45 (m, 2H), 2.02–1.92 (m, 2H), 1.70 (s, 9H), 1.33 (d, *J* = 7.0 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 148.2, 144.4, 144.0, 142.6, 142.2, 129.8, 128.5, 128.4, 125.8, 124.9, 118.7, 114.3, 85.7, 40.4, 39.6, 34.0, 28.2, 23.1 ppm;

HRMS (ESI): Calcd for C₂₂H₂₇N₂O₂ [M+H]⁺: 351.2067; found 351.2062.

On 0.2 mmol scale, **General Procedure A** was followed with 4-phenylbutan-2-ol, 1bromocyclohex-1-ene, and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, 1:19 CH_2Cl_2 :Petroleum Ether) afforded crude **52**. Further purification by preparative TLC (silica gel, pentane) afforded **52** (23.6 mg, 55%).


Physical state: colorless oil;

TLC: $R_f = 0.70$ (silica gel, Petroleum Ether, UV);

¹**H NMR** (400 MHz, CDCl₃): δ 7.29-7.23 (m, 2H), 7.19–7.12 (m, 3H), 5.45–5.40 (m, 1H), 2.58–2.46 (m, 2H), 2.11–2.03 (m, 1H), 2.03–1.98 (m, 2H), 1.95–1.83 (m, 2H), 1.74–1.65 (m, 1H), 1.65–1.50 (m, 5H), 1.01 (d, *J* = 6.9 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃): δ 143.3, 141.6, 128.5, 128.4, 125.6, 120.9, 41.2, 37.0, 34.1, 25.4, 24. 9, 23.3, 23.1, 19.9 ppm;

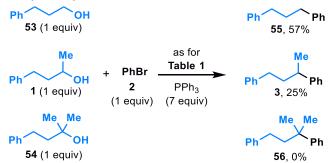
HRMS (ESI): Calcd for $C_{16}H_{23}$ [M+H]⁺: 215.1794; found 215.1796.

An Application of the Electrochemical Dehydroxylative Arylation^[1]

On 0.2 mmol scale, **General Procedure A** was followed with (E,E)-farnesol (**S2**), 1-bromo-3,5dimethoxybenzene, and triphenylphosphine (3.0 equiv). Purification by column chromatography (silica gel, 0:100 to 1:9 EtOAc:Petroleum Ether) afforded crude **S6**. Further purification by preparative HPLC (80% to 91% CH₃CN/water) afforded **S6** (37.7 mg, 55%).

Physical state: colorless oil;

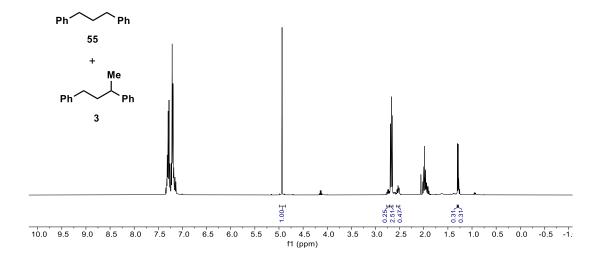
TLC: $R_f = 0.42$ (silica gel, 3:47 EtOAc:Petroleum Ether, UV);

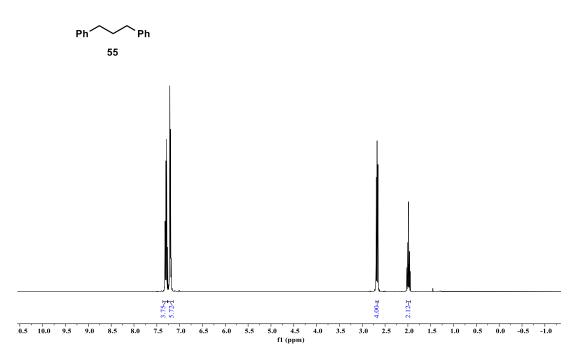

¹**H NMR** (400 MHz, CDCl₃): δ 6.35 (d, *J* = 2.3 Hz, 2H), 6.30 (t, *J* = 2.3 Hz, 1H), 5.36–5.30 (m, 1H), 5.16–5.06 (m, 2H), 3.77 (s, 6H), 3.30 (d, *J* = 7.3 Hz, 2H), 2.16–2.01 (m, 6H), 2.01–1.94 (m, 2H), 1.71 (d, *J* = 0.8 Hz, 3H), 1.68 (d, *J* = 1.3 Hz, 3H), 1.60 (s, 6H) ppm;

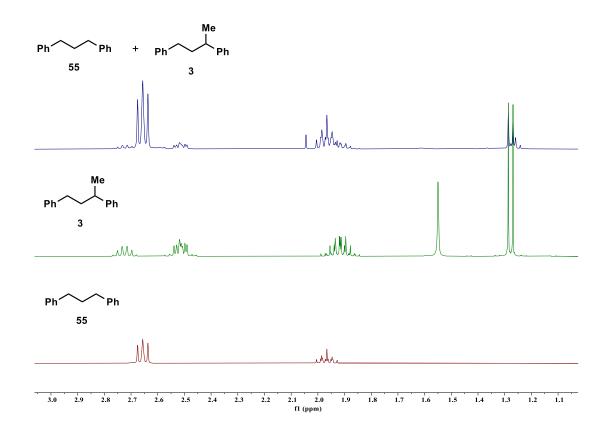
¹³C NMR (101 MHz, CDCl₃): δ 160.9, 144.4, 136.7, 135.3, 131.4, 124.5, 124.2, 122.8, 106.6, 97.8, 55.4, 39.9, 34.6, 26.9, 26.8, 25.9, 17.8, 16.4, 16.2 ppm;

HRMS (ESI): Calcd for C₂₃H₃₅O₂ [M+H]⁺: 343.2632; found 343.2631.

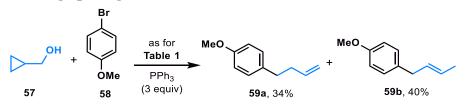
Mechanistic Studies

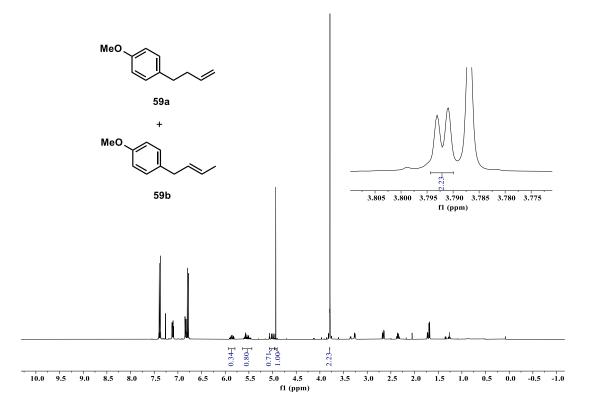

1. Relative reactivity study

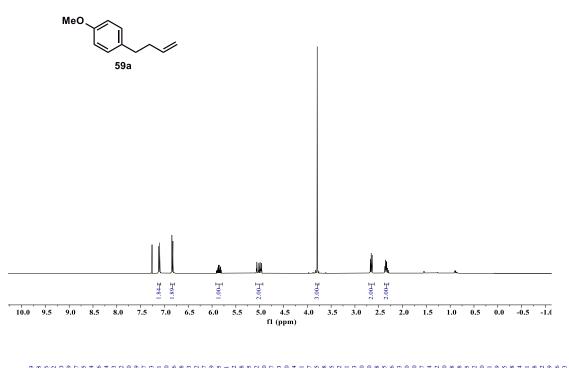


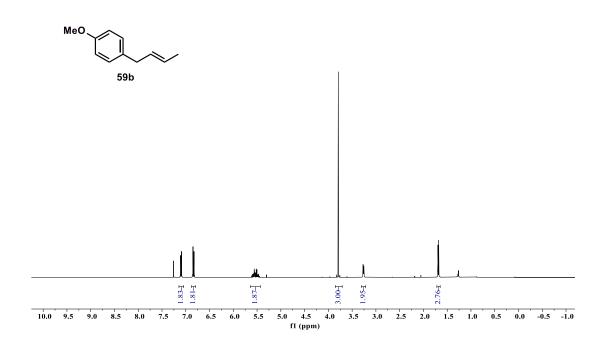

On 0.2 mmol scale, **General Procedure A** was followed with **53** (1.0 equiv), **1** (1.0 equiv), **54** (1.0 equiv), bromobenzene (1.0 equiv), and triphenylphosphine (7.0 equiv). Purification by column chromatography (silica gel, Petroleum Ether) followed by preparative TLC (silica gel, 1:1, CH_2Cl_2 : Petroleum ether) afforded a mixture of **55** and **3**.

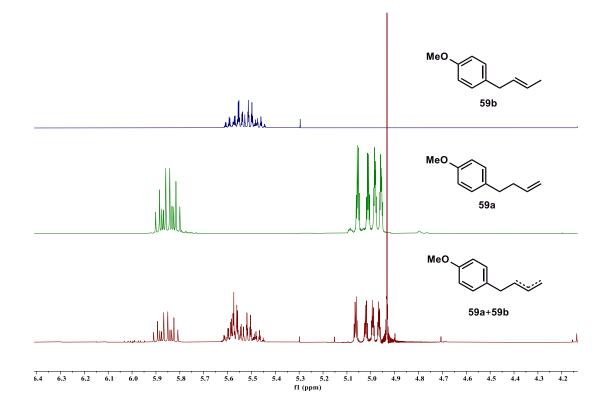
The yields of 55 and 3 was determined by ¹H NMR with CH₂Br₂ (0.1 mmol) as internal standard.

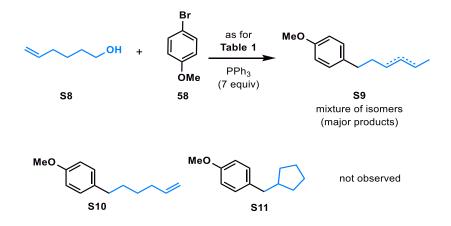

The standard sample of 55 was purchased from Alfa Aesar.

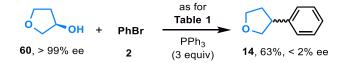

2. Radical ring opening


On 0.2 mmol scale, **General Procedure A** was followed with **57**, 4-bromoanisole (**58**), and triphenylphosphine (3.0 equiv). Purification by column chromatography (silica gel, Petroleum Ether) afforded a mixture of **59a** and **59b**.


The yield of **59a** and **59b** was determined by ¹H NMR with CH₂Br₂ (0.1 mmol) as internal standard.


The standard sample of **59a** was prepared according to Konig's procedure;^[2] the standard sample of **59b** was prepared according to Gong's procedure.^[3]



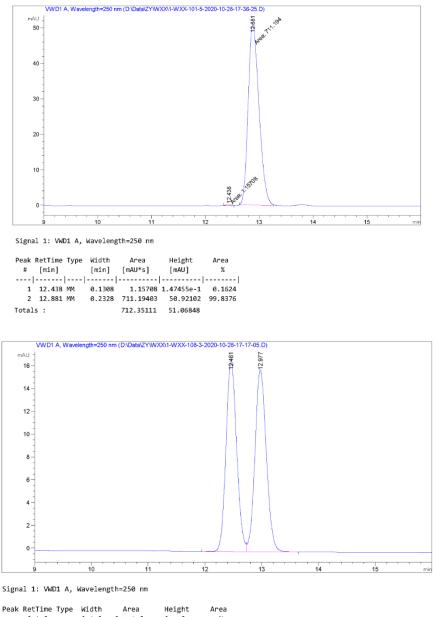


3. 5-exo-trig type cyclization

It was found that the monosubstituted alkenes could easily undergo migration before the 5-*exo*-trig cyclization. The desired cyclized product was not observed in this reaction conditions.

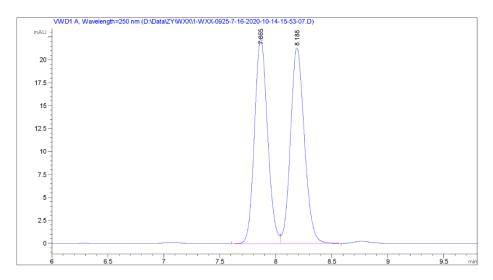
4. Enantiopurity erosion

The *ee* value of **60** was determined by its benzoate ester.

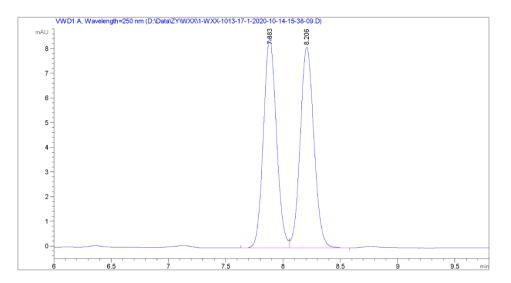

Method for determining the ee of the **R-60** benzoate and **Rac-60** benzoate:

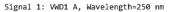
Column: Chiralpak® IE

Dimensions: 4.6 ×250 mm


Eluent: *n*-hexane:IPA = 99:1

Flow rate: 1.0 mL/min

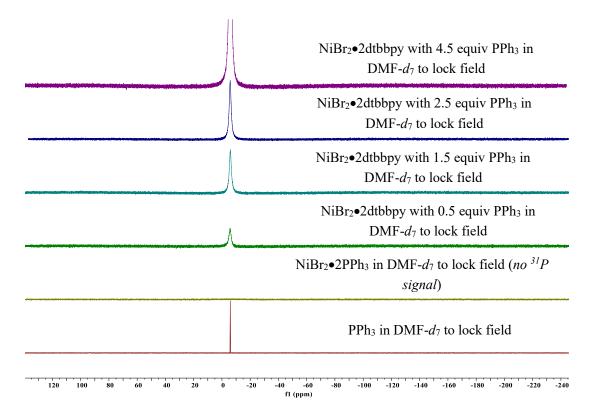

					[mAU]	
1	12.461	BV	0.2025	218.47711	16.71409	49.6626
2	12.977	VB	0.2147	221.44586	15.97765	50.3374
Total	s :			439,92297	32,69174	


Method for determining the ee value of the coupling products from **R-60** and **Rac-60**: Column: Chiralpak® IE Dimensions: 4.6 ×250 mm Eluent: *n*-hexane:IPA = 99.5:0.5 Flow rate: 1.0 mL/min

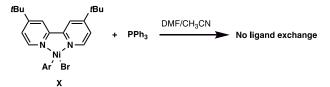
Signal 1: VWD1 A, Wavelength=250 nm

		~ `		Area [mAU*s]	Height [mAU]	
1	7.865	BV	0.1267	181.28423	22.34322	49.6946
2	8.188	VB	0.1333	183.51257	21.35150	50.3054
Totals	:			364.79680	43.69472	

#		,,	[min]	Area [mAU*s]		
1	7.883 8.206	BV		67.17370 67.81274		49.7633
Totals	:			134.98644	16.63220	


5. Ligand exchange experiments

NiBr₂ + dtbbpy $\xrightarrow{DMF-d_7}$ NiBr₂•2dtbbpy $\xrightarrow{PPh_3}$ (0.5 to 4.5 equiv) no ligand exchange (1 equiv) (2 equiv) $\xrightarrow{100 \text{ °C}, 2 \text{ h}}$ NiBr₂•2dtbbpy $\xrightarrow{r.t., 2 \text{ h}}$


A screw-capped culture tube charged with a magnetic stir bar was moved into a glove box. NiBr₂ (21.9 mg, 0.1 mmol), dtbbpy (L1, 53.9 mg, 0.2 mmol), and DMF- d_7 (1 mL) were added. The resulting mixture was stirred at 100 °C for 2 hours and then cooled to room temperature.

PPh₃ was added, and the mixture was stirred for additional 2 hours at room temperature.

The reaction mixture was detected by ³¹P NMR. ³¹P NMR (162 MHz, DMF- d_7) δ –5.87 (PPh₃). It was shown that the addition of PPh₃ didn't result in the ligand exchange.

Additionally, according to the study from the group of Xie,^[4] the ligand exchange between Ni(II) aryl complex and PPh₃ was deemed unlikely to occur.

Moreover, given that: 1) this coupling reaction did not proceed in the absence of dtbbpy (**L1**, Table 1, entry 3); 2) not all of the bipyridyl ligands worked fine (e.g. **L6** in Table S14), the possibility that ligand exchange occurred in the reaction conditions could be further ruled out.

Cyclic Voltammetry Data

All cyclic voltammetry studies were performed in a glovebox with the IKA ElectraSyn 2.0. Measurements were performed in 0.1 M LiClO₄ in anhydrous NMP. Reference electrode: Ag/AgCl (Ag wire in aqueous 3 M KCl); Working electrode: glassy carbon disc electrode; Counter electrode: platinum plate electrode Scan rate = 100 mV/s.

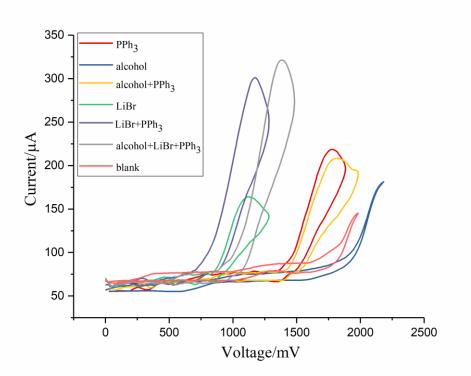


Figure S6. Cyclic voltammetry studies

References

- Meimetis, L. G.; Nodwell, M.; Yang, L.; Wang, X.; Wu, J.; Harwig, C.; Stenton, G. R.; Mackenzie, L. F.; MacRury, T.; Patrick, B. O.; Ming Lum, A.; Ong, C. J.; Krystal, G.; Mui, A. L. F.; Andersen, R. J., Synthesis of SHIP1-Activating Analogs of the Sponge Meroterpenoid Pelorol. *Eur. J. Org. Chem.* 2012, 2012, 5195–5207.
- [2] Meng, Q. Y.; Schirmer, T. E.; Katou, K.; König, B., Controllable Isomerization of Alkenes by Dual Visible-Light-Cobalt Catalysis. *Angew. Chem. Int. Ed.* **2019**, *58*, 5723–5728.
- [3] Cui, X.; Wang, S.; Zhang, Y.; Deng, W.; Qian, Q.; Gong, H., Nickel-catalyzed reductive allylation of aryl bromides with allylic acetates. *Org. Biomol. Chem.* **2013**, *11*, 3094–3097.
- [4] Ruzi, R.; Liu, K.; Zhu, C.; Xie, J., Upgrading ketone synthesis direct from carboxylic acids and organohalides. *Nat. Commun.* **2020**, *11*, 3312.

Single Crystal X-ray Diffraction Data

X-ray crystallographic data for 31a

Table S16. Crystal data and structure refinement for 31a.

210 2100 21 3 3 3 3	
Identification code	CCDC 2049258
Empirical formula	$C_{25}H_{34}O$
Formula weight	350.52
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	P21
a/Å	10.4271(2)
b/Å	6.24210(10)
c/Å	15.6044(4)
$\alpha/^{\circ}$	90
β/°	105.739(2)
$\gamma^{/\circ}$	90
Volume/Å ³	977.56(4)
Z	2
$\rho_{calc}g/cm^3$	1.191
μ/mm^{-1}	0.527
F(000)	384.0
Crystal size/mm ³	$0.34 \times 0.05 \times 0.03$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	8.81 to 147.454
Index ranges	$-11 \le h \le 12, -7 \le k \le 7, -19 \le l \le 19$
Reflections collected	17733
Independent reflections	$3857 [R_{int} = 0.1191, R_{sigma} = 0.0665]$
Data/restraints/parameters	3857/1/237
Goodness-of-fit on F ²	1.095
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0481, wR_2 = 0.1258$
Final R indexes [all data]	$R_1 = 0.0541, wR_2 = 0.1323$
Largest diff. peak/hole / e Å ⁻³	0.19/-0.29

Flack parameter

0.0(3)

Atom	1 <i>x</i>	У	Z	U(eq)
025	2772.4(19)	1168(4)	-105.0(13)	28.0(5)
C5	3044(2)	5960(4)	2407.0(15)	13.6(5)
C18	2472(2)	6238(4)	6633.3(16)	15.6(5)
C13	2484(2)	4280(4)	2942.7(16)	13.8(5)
C23	2571(2)	8340(4)	6932.1(16)	16.2(5)
C9	3080(2)	2730(4)	368.5(16)	18.4(6)
C4	4165(2)	7280(4)	3018.5(16)	16.0(5)
C21	2217(2)	7254(5)	8336.1(16)	18.6(5)
C22	2447(2)	8849(5)	7781.2(16)	19.1(5)
C7	4181(2)	5992(5)	1071.4(16)	18.8(6)
C6	3512(2)	4786(4)	1689.0(16)	15.7(5)
C1	2027(2)	5303(4)	3720.9(16)	13.8(5)
C15	1407(2)	4386(4)	5166.4(16)	17.8(5)
C10	2382(2)	3526(4)	1050.8(16)	15.9(5)
C2	3240(2)	6526(4)	4314.4(16)	14.7(5)
C16	1636(2)	3540(4)	4297.9(16)	16.6(5)
C12	1405(2)	2870(4)	2328.4(16)	17.0(5)
C11	1858(2)	1820(4)	1569.7(16)	18.4(6)
C19	2250(3)	4661(5)	7208.6(17)	22.1(6)
C3	3732(2)	8264(4)	3789.4(16)	17.2(5)
C14	2637(2)	5567(4)	5732.7(16)	15.3(5)
C17	3009(2)	7374(4)	5184.2(17)	16.7(5)
C24	825(2)	6800(5)	3362.9(17)	19.2(6)
C26	1232(2)	4952(5)	510.8(17)	20.3(6)
C20	2114(3)	5156(5)	8046.9(18)	23.9(6)
C8	4221(2)	4272(5)	375.9(17)	21.1(6)

Table S17. Fractional Atomic Coordinates (×104) and Equivalent Isotropic DisplacementParameters (Å²×103) for **31.** Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.

X-ray crystallographic data for 36

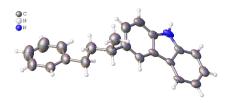
Table S18. Crystal data and structure refinement for 36.

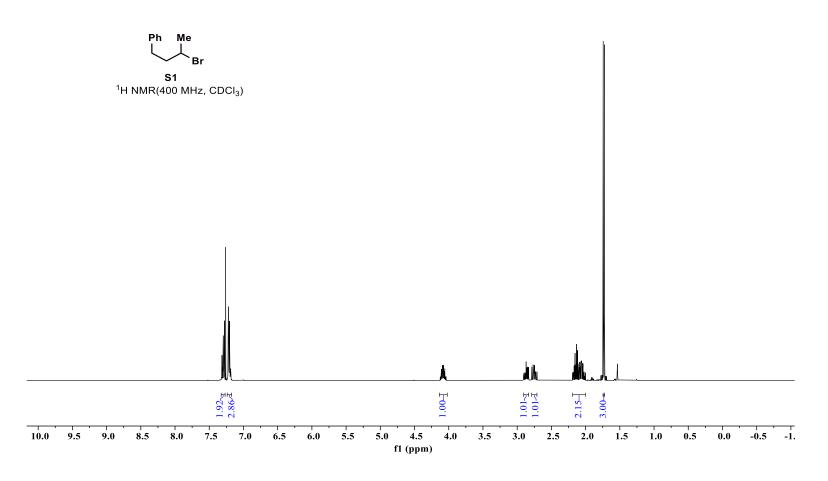
<u> </u>	
Identification code	CCDC 2049257
Empirical formula	C ₂₇ H ₃₂ O ₄
Formula weight	420.553
Temperature/K	100.00(10)
Crystal system	orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	8.0345(1)
b/Å	12.2693(1)
c/Å	22.3318(2)
α'°	90
β/°	90
$\gamma^{/\circ}$	90
Volume/Å ³	2201.42(4)
Ζ	4
$ ho_{calc}g/cm^3$	1.269
μ/mm^{-1}	0.666
F(000)	906.8
Crystal size/mm ³	$0.17 \times 0.17 \times 0.12$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	7.92 to 150.3
Index ranges	$-7 \le h \le 10, -14 \le k \le 15, -28 \le l \le 27$
Reflections collected	25049
Independent reflections	4454 [$R_{int} = 0.0383$, $R_{sigma} = 0.0214$]
Data/restraints/parameters	4454/0/283
Goodness-of-fit on F ²	1.046
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0327, wR_2 = 0.0835$
Final R indexes [all data]	$R_1 = 0.0337, wR_2 = 0.0844$
Largest diff. peak/hole / e Å ⁻³	0.15/-0.19
Flack parameter	-0.13(13)

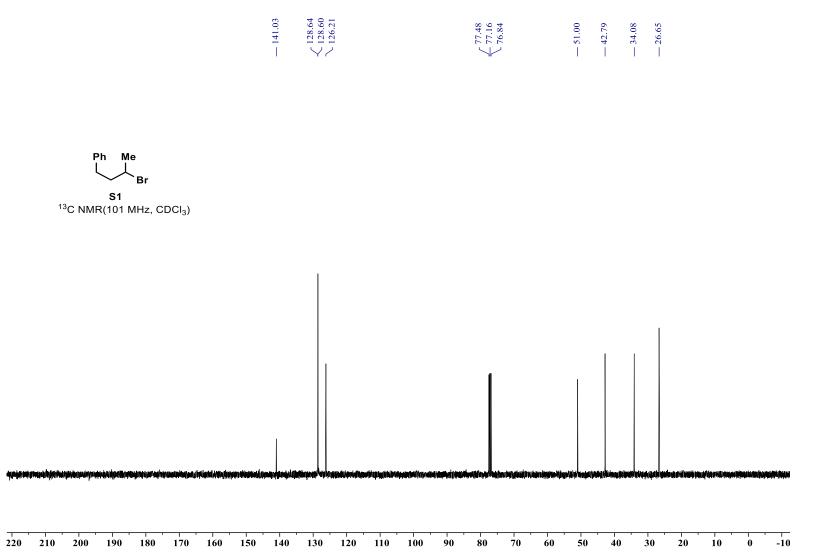
Atom	x	У	z	U(eq)
O23	5235.7(12)	4310.5(8)	4484.7(4)	24.7(2)
O21	2770.7(12)	7953.5(8)	3739.8(5)	29.3(2)
O22	6419.2(14)	12292.1(8)	4826.9(5)	32.2(2)
O19	4838.9(13)	3230.7(9)	3046.9(4)	32.4(2)
C15	3951.8(16)	7444.2(11)	3933.5(6)	20.9(3)
C4	6920.5(15)	6133.5(11)	3995.4(5)	20.3(3)
C18	4402.0(17)	3677.3(10)	3502.5(6)	23.1(3)
C10	6162.7(19)	11383.8(11)	4613.2(6)	26.0(3)
C1	5571.4(16)	4427.3(11)	3860.6(5)	21.5(3)
C24	5262.1(17)	5832.0(11)	3031.6(6)	24.4(3)
C8	7350.1(16)	9655.7(11)	4240.3(6)	23.4(3)
C17	5328.1(15)	5657.4(10)	3712.4(5)	19.5(2)
C13	5665.9(16)	9232.4(11)	4029.0(5)	20.0(2)
C3	8297.2(16)	5361.7(12)	3779.9(6)	25.2(3)
С9	7519.4(18)	10620.9(12)	4517.2(6)	28.3(3)
C5	7129.0(15)	7348.8(11)	3886.1(6)	20.3(3)
C12	4288.7(17)	9790.2(11)	4398.1(6)	25.1(3)
C14	5585.5(16)	7976.6(10)	4128.7(5)	19.0(2)
C26	1446.4(16)	3005.5(11)	3328.0(6)	25.0(3)
C31	866.9(18)	3565.1(13)	2829.0(6)	29.2(3)
C20	2651.1(16)	3531.4(11)	3755.4(6)	24.3(3)
C6	8685.6(16)	7786.6(11)	4196.1(7)	27.9(3)
C16	3825.4(16)	6216.0(11)	4005.6(6)	21.6(3)
C2	7432.7(16)	4235.2(12)	3720.6(6)	25.5(3)
C30	-279.6(18)	3106.0(15)	2443.6(6)	34.6(3)
C25	5499.4(18)	9517.4(11)	3357.8(5)	26.1(3)
C7	8880.7(17)	9007.1(12)	4089.1(7)	31.9(3)
C11	4462.2(18)	11030.9(11)	4416.3(6)	27.0(3)
C29	-862(2)	2067.8(16)	2548.0(8)	44.1(4)
C27	837(2)	1966.8(14)	3432.7(9)	43.0(4)
C28	-310(3)	1500.9(15)	3042.4(10)	55.3(5)

Table S19. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **36**. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

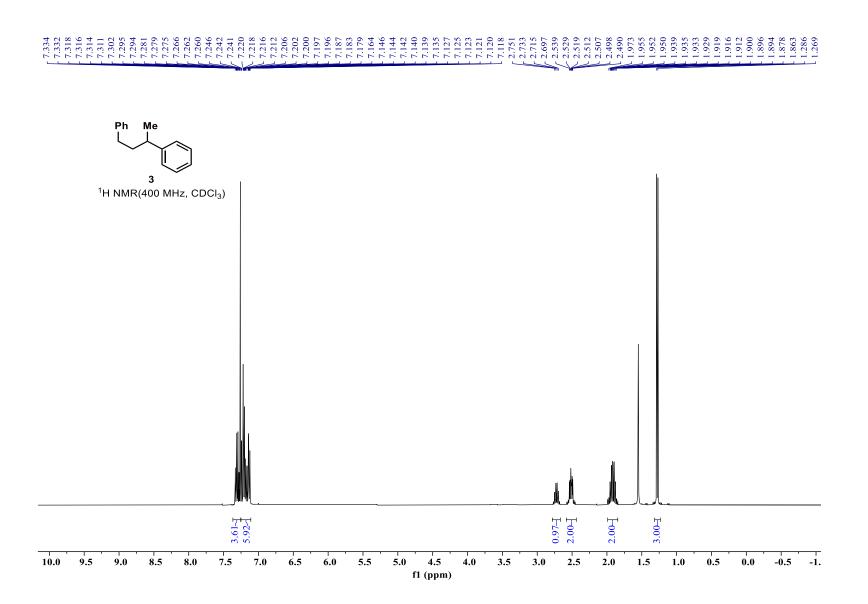
X-ray crystallographic data for 48

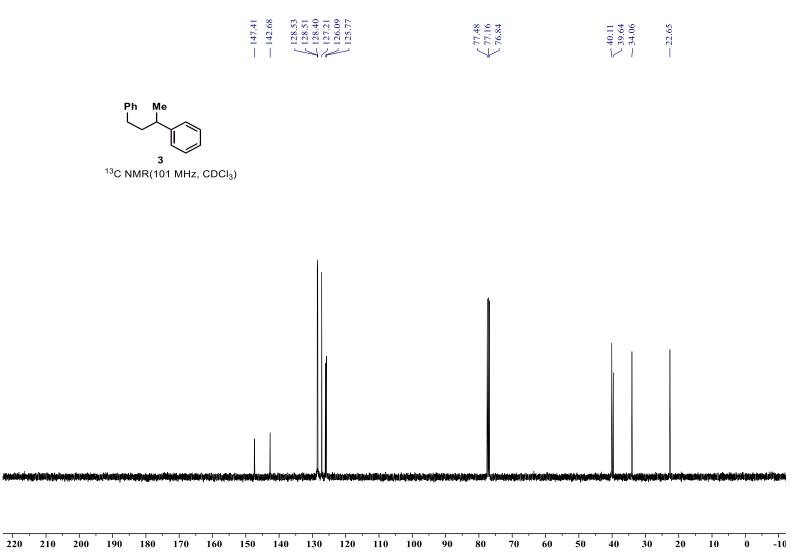


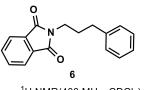

 Table S20. Crystal data and structure refinement for 48.

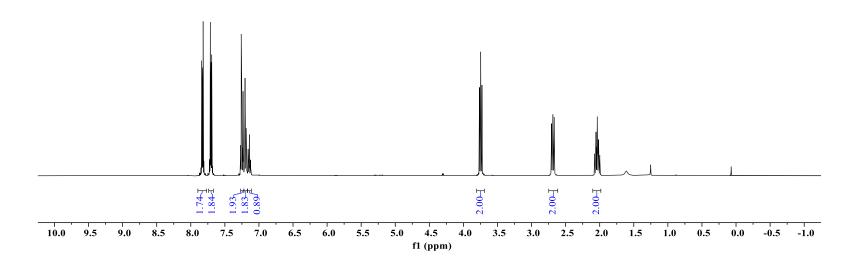

5	
Identification code	CCDC 2049256
Empirical formula	$C_{22}H_{21}N$
Formula weight	299.40
Temperature/K	100.00(10)
Crystal system	orthorhombic
Space group	$Pca2_1$
a/Å	11.6809(3)
b/Å	19.0963(6)
c/Å	7.3771(2)
$\alpha ^{\prime \circ}$	90
β/°	90
$\gamma^{/\circ}$	90
Volume/Å ³	1645.55(8)
Z	4
$ ho_{calc}g/cm^3$	1.208
μ/mm^{-1}	0.526
F(000)	640.0
Crystal size/mm ³	$0.41 \times 0.32 \times 0.02$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	8.874 to 151.154
Index ranges	$-14 \le h \le 14, -23 \le k \le 23, -8 \le l \le 7$
Reflections collected	22045
Independent reflections	2752 [$R_{int} = 0.0623$, $R_{sigma} = 0.0243$]
Data/restraints/parameters	2752/1/209
Goodness-of-fit on F ²	1.031
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0604, \mathrm{wR}_2 = 0.1608$
Final R indexes [all data]	$R_1 = 0.0644, wR_2 = 0.1666$
Largest diff. peak/hole / e Å ⁻³	0.37/-0.20
Flack parameter	-0.2(5)

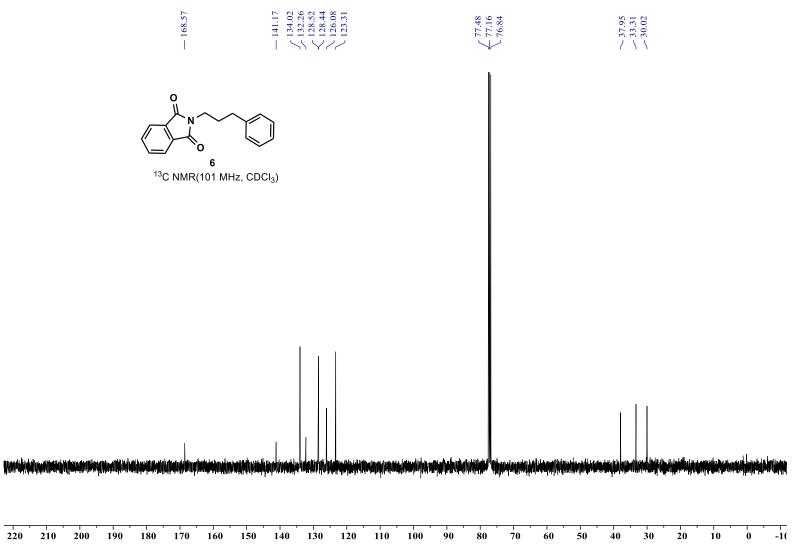
Atom	x	У	z	U(eq)
N9	2516(3)	4440.7(17)	8897(4)	47.8(8)
C2	4101(3)	4839.2(19)	7469(5)	37.9(8)
C1	3054(3)	5040(2)	8297(5)	41.0(8)
C3	4164(3)	4093(2)	7588(5)	41.2(8)
C13	4832(3)	5364(2)	6814(5)	44.6(9)
C8	3178(3)	3862(2)	8522(5)	45.8(9)
C4	4995(3)	3601(2)	7062(6)	46.2(9)
C12	4505(4)	6056(2)	6976(5)	51.2(10)
C18	4563(4)	1340(2)	2993(6)	56.2(11)
C10	2731(3)	5729(2)	8439(5)	50.9(10)
C7	3036(4)	3163(3)	8944(6)	60.9(12)
C11	3463(4)	6230(2)	7765(6)	54.6(10)
C5	4875(3)	2917(2)	7440(6)	56.8(11)
C6	3907(4)	2700(2)	8420(6)	63.9(12)
C23	5274(4)	903(2)	2005(7)	60.1(11)
C22	4860(5)	333(2)	1056(8)	72.3(14)
C14	5838(4)	2396(2)	6986(7)	61.4(11)
C16	5012(4)	1962(2)	3993(7)	62.5(12)
C15	5418(5)	1774(2)	5903(7)	71.1(14)
C17	6437(4)	2159(3)	8679(8)	72.8(14)
C19	3420(4)	1169(3)	3032(8)	71.4(14)
C21	3699(6)	186(3)	1105(10)	92.0(19)
C20	3002(5)	604(3)	2066(11)	91.9(19)

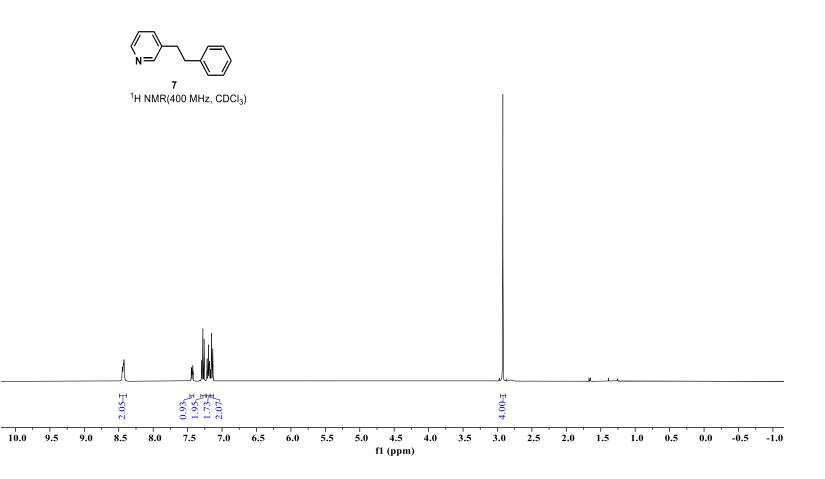

Table S21. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **49**. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

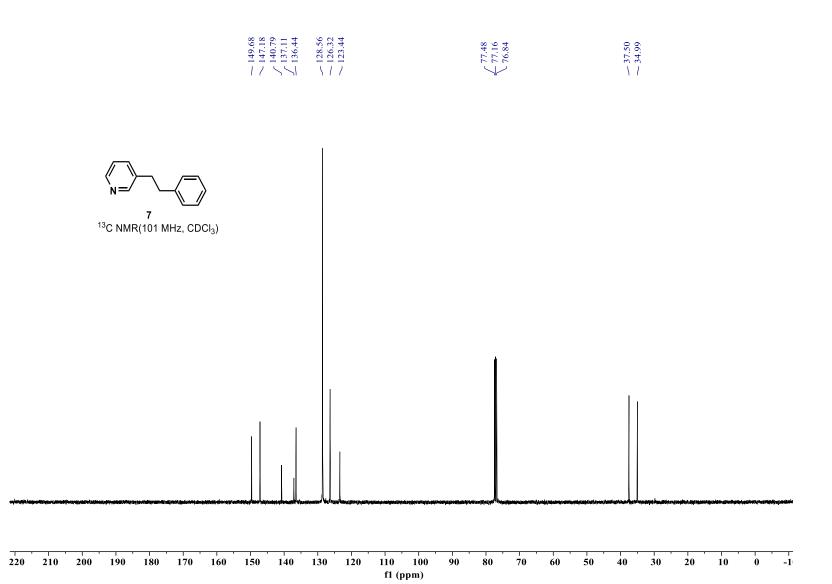


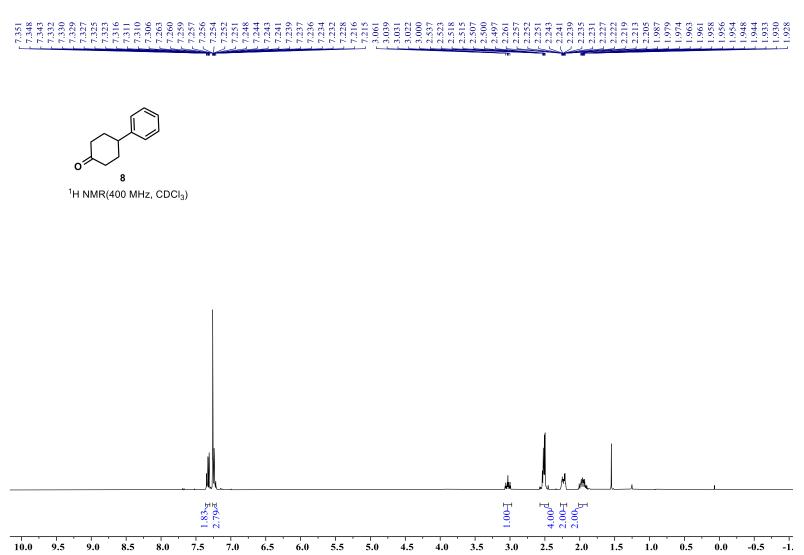


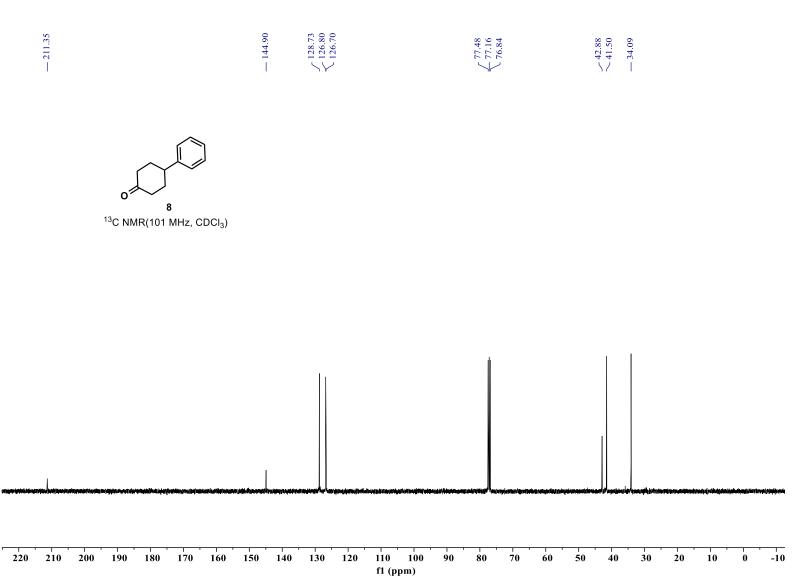


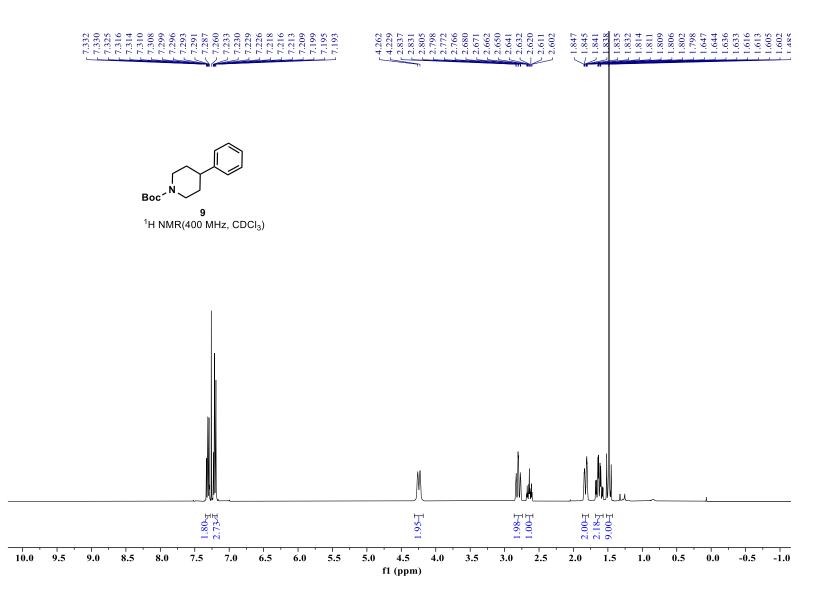


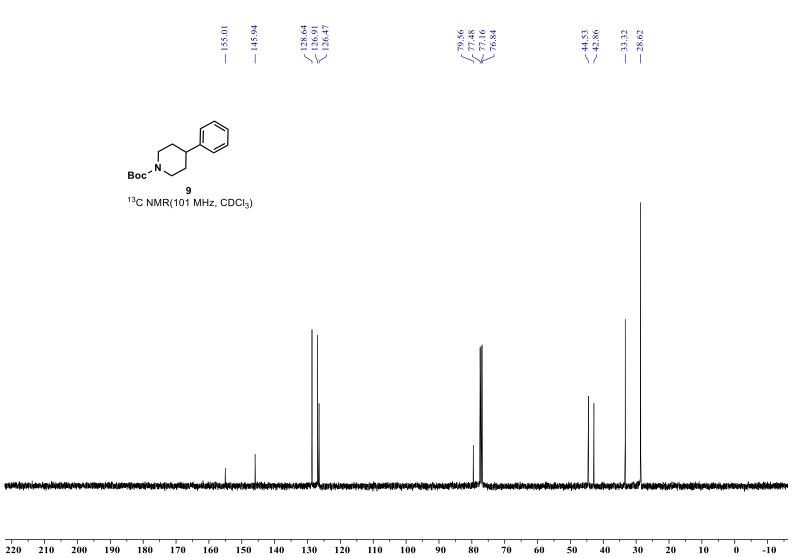

¹H NMR(400 MHz, CDCl₃)

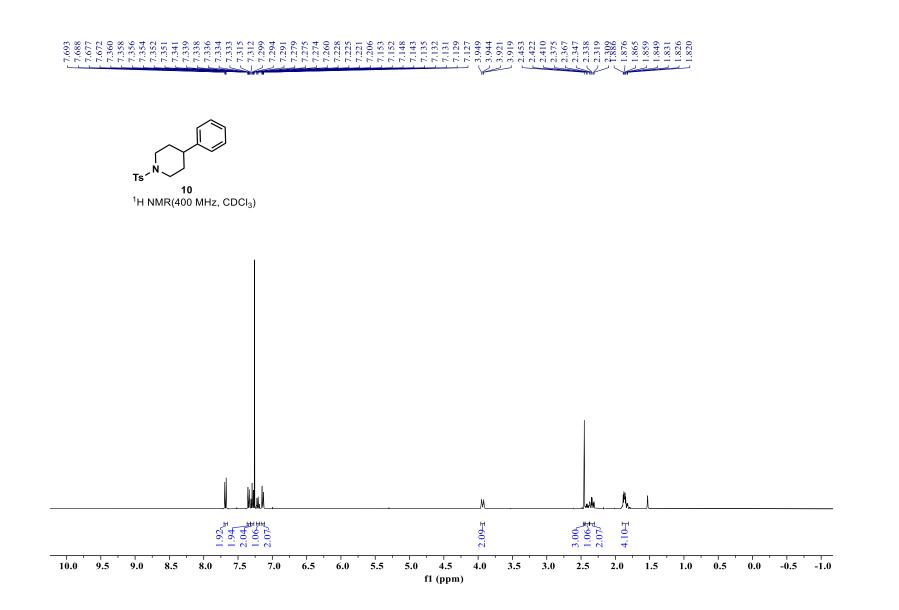


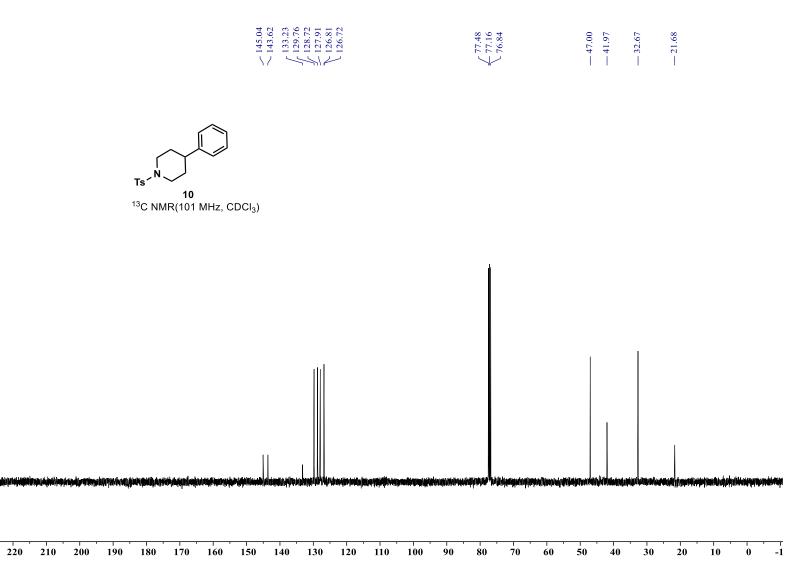


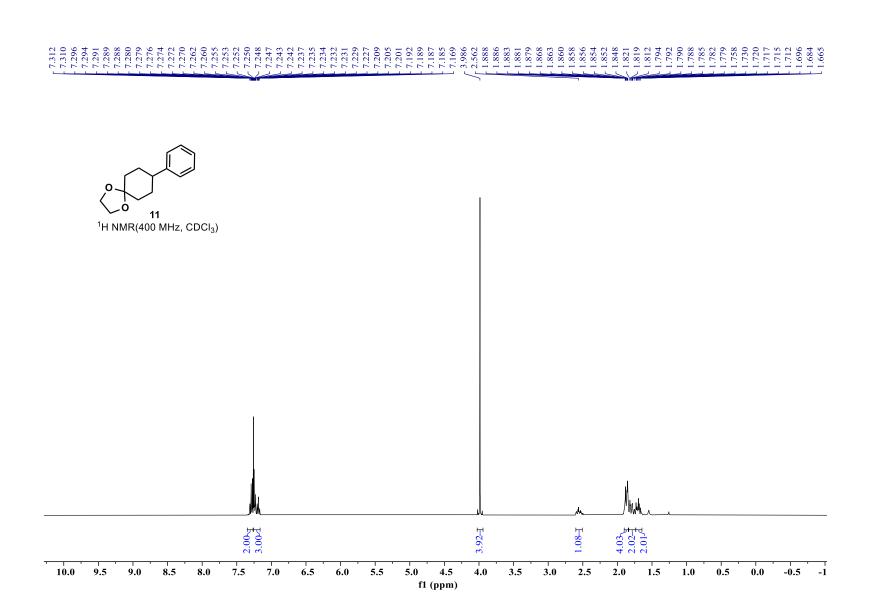


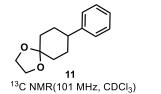


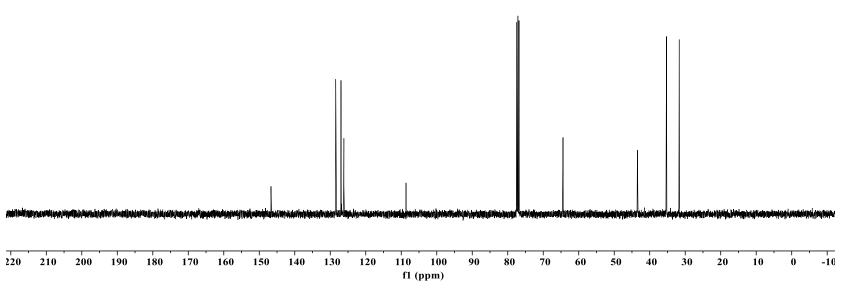


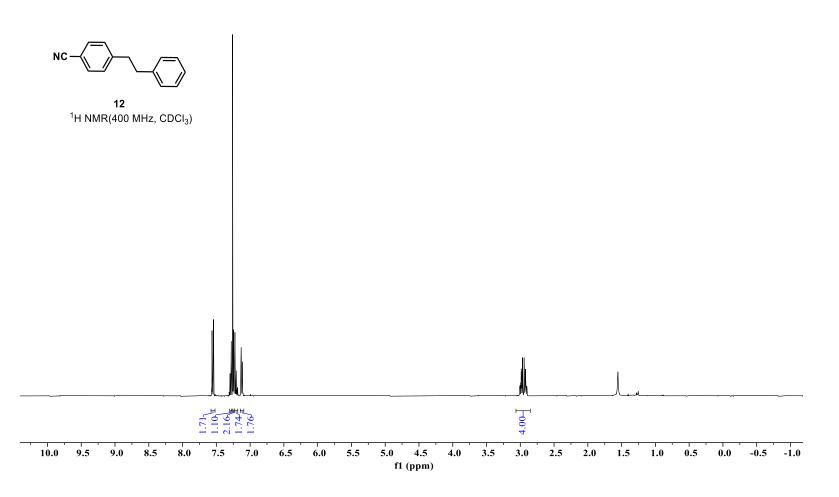


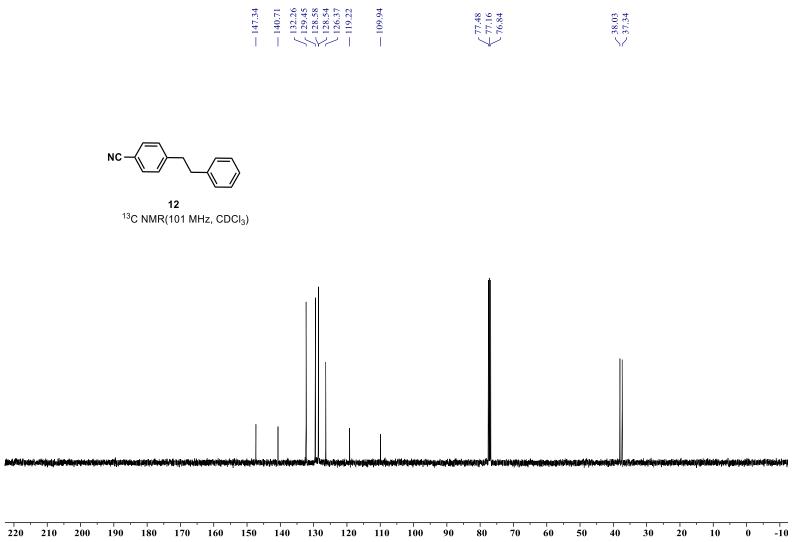


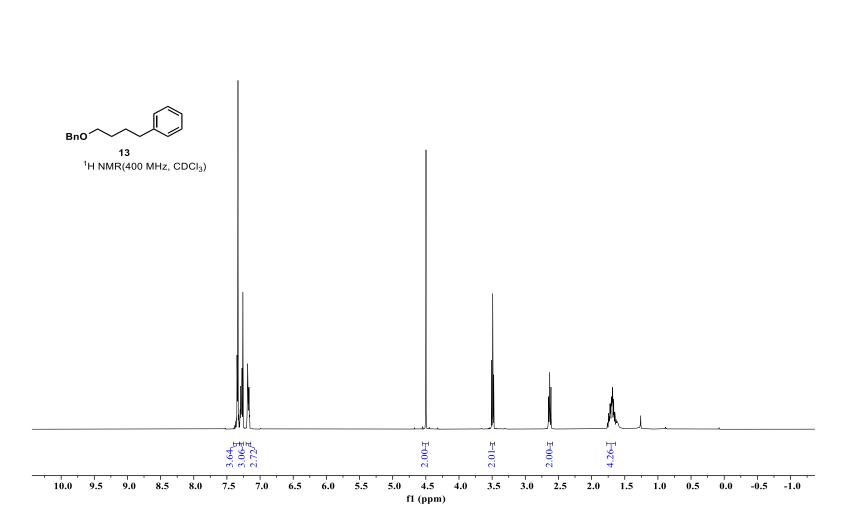


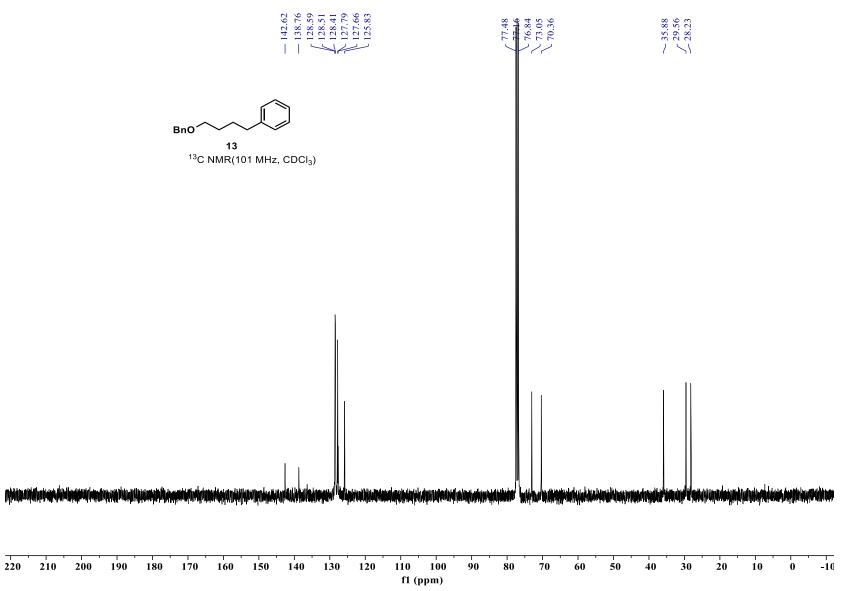


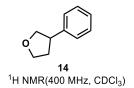


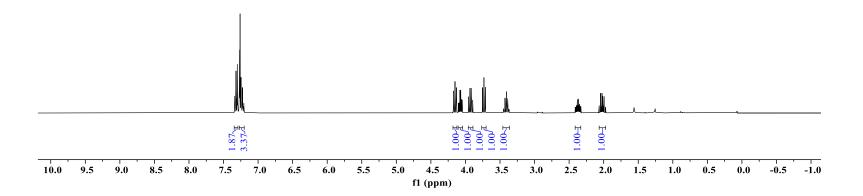


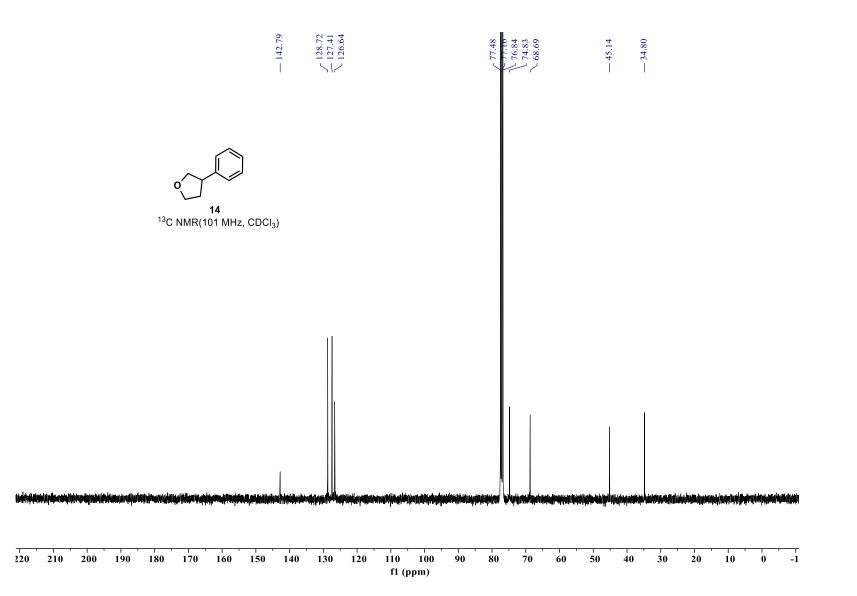


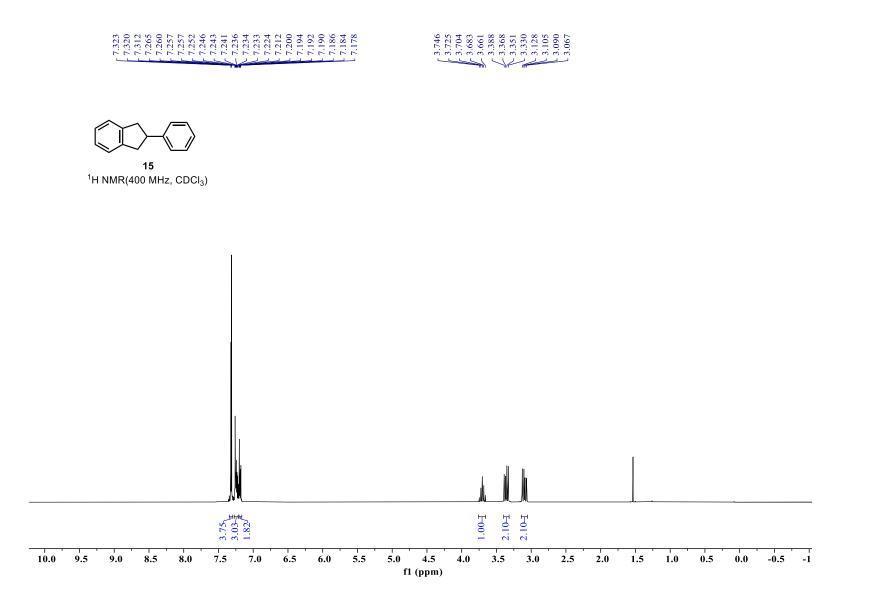


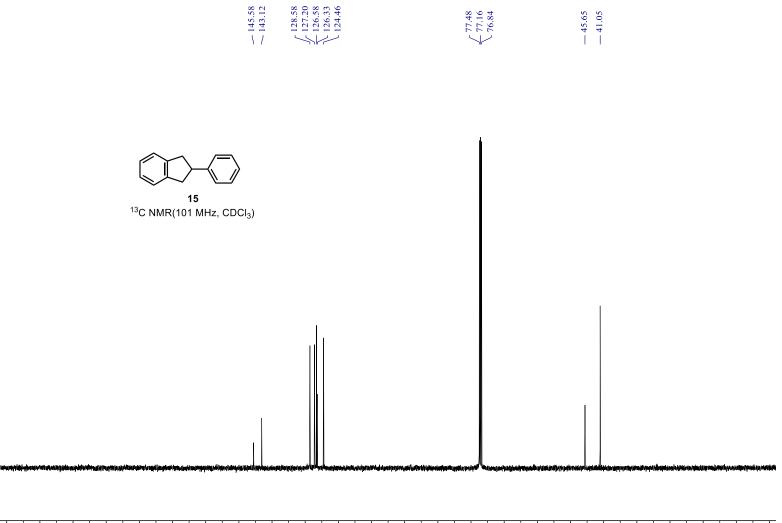




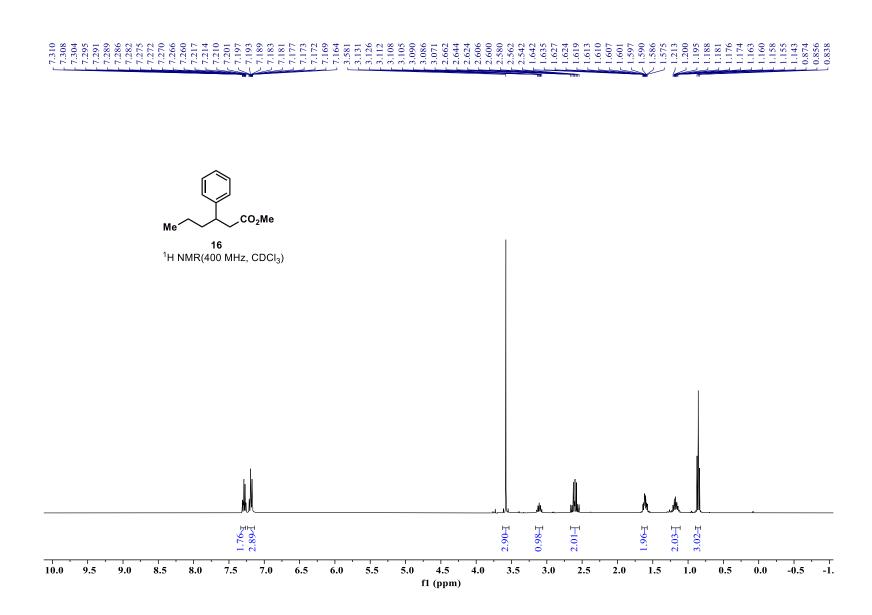


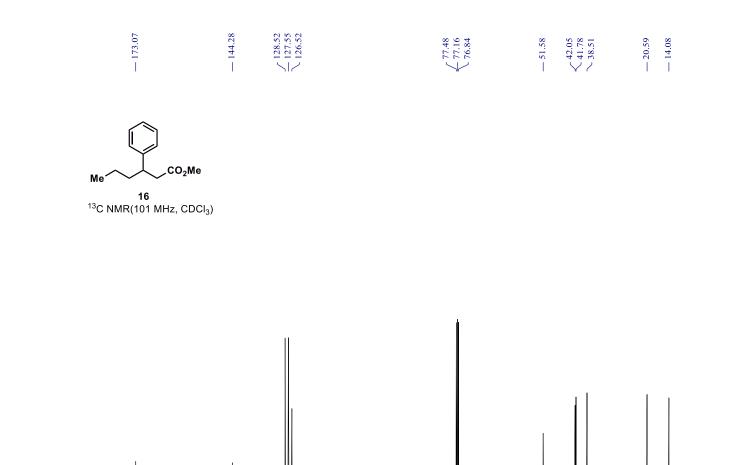


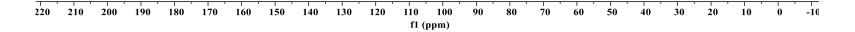


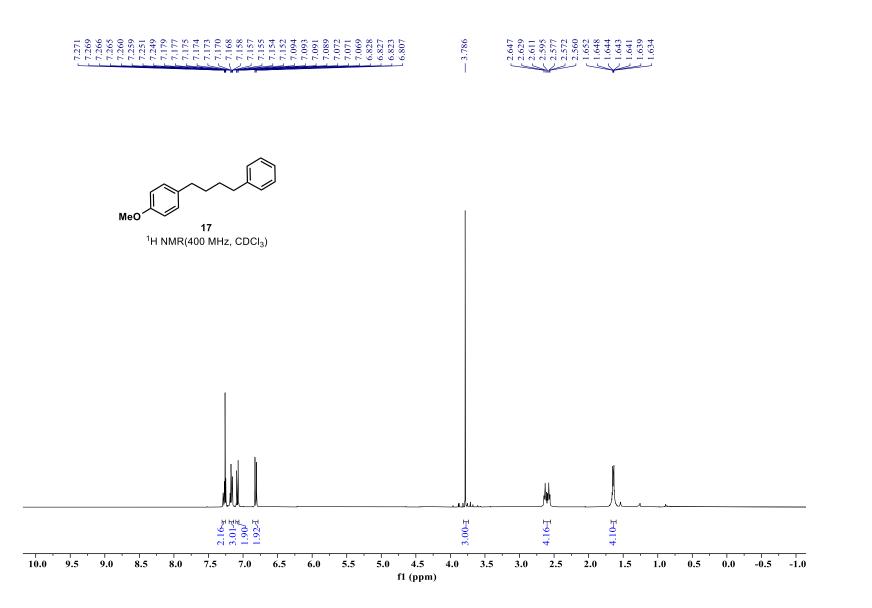


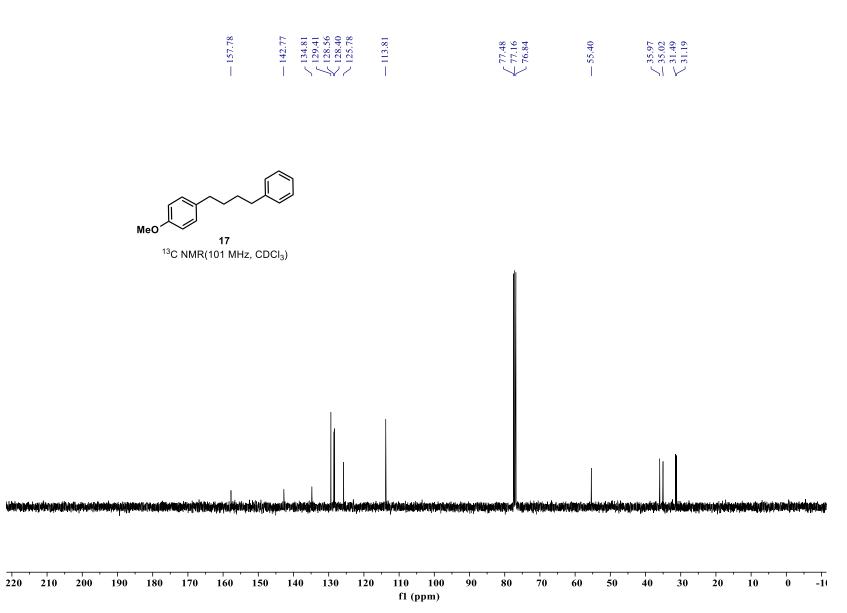
S74

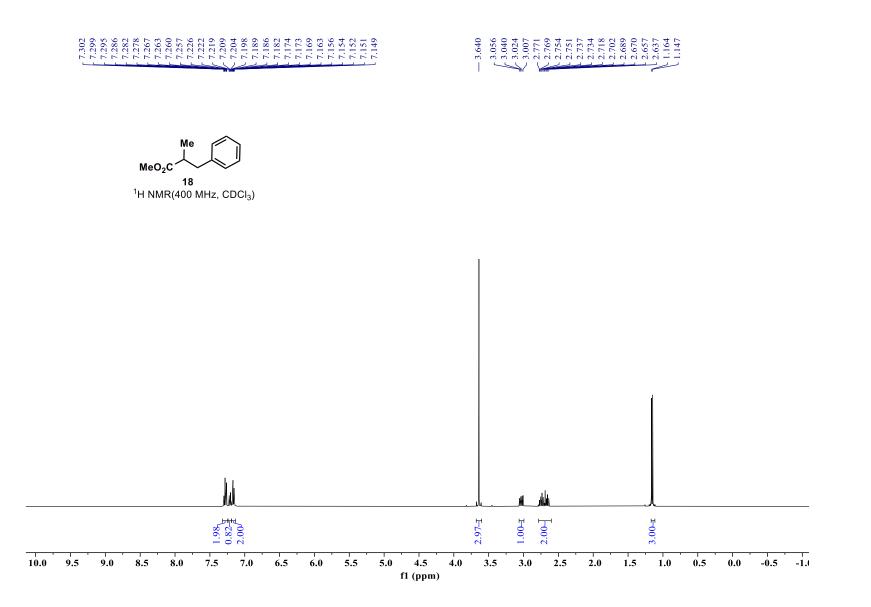


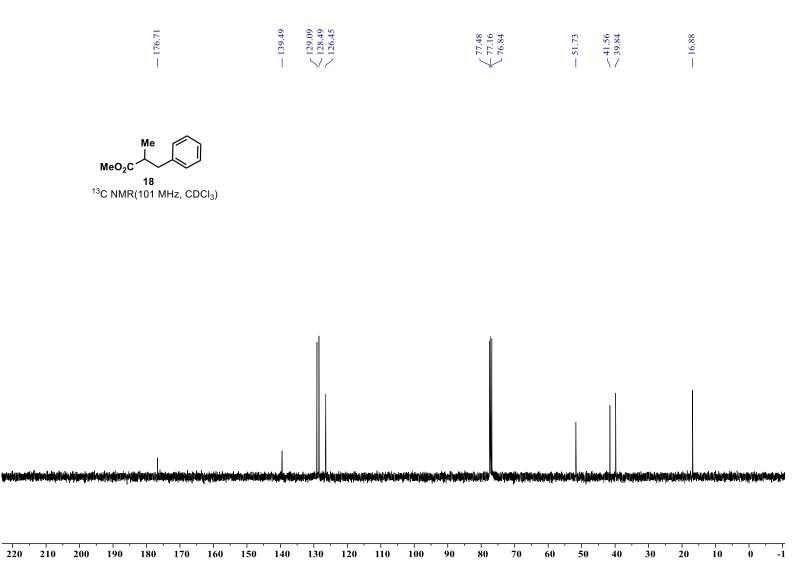


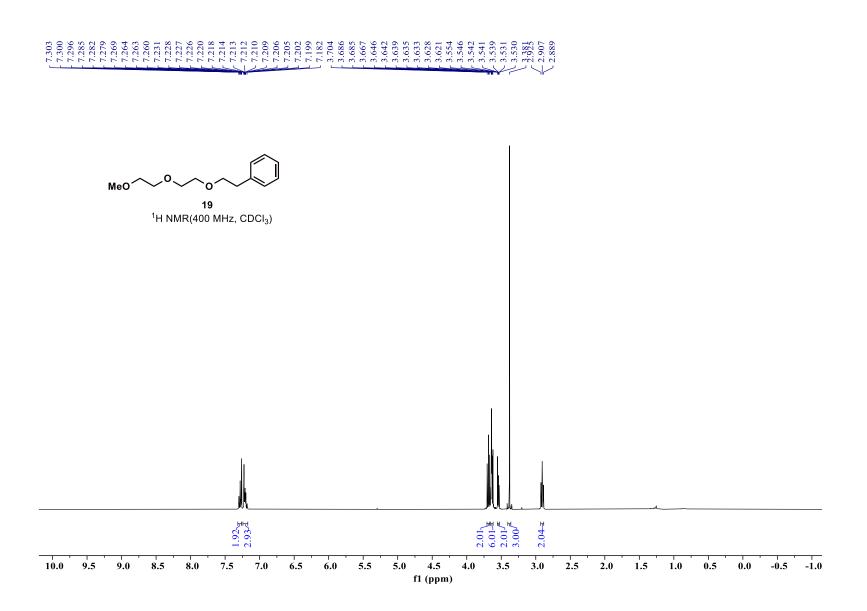

20 58 33 46

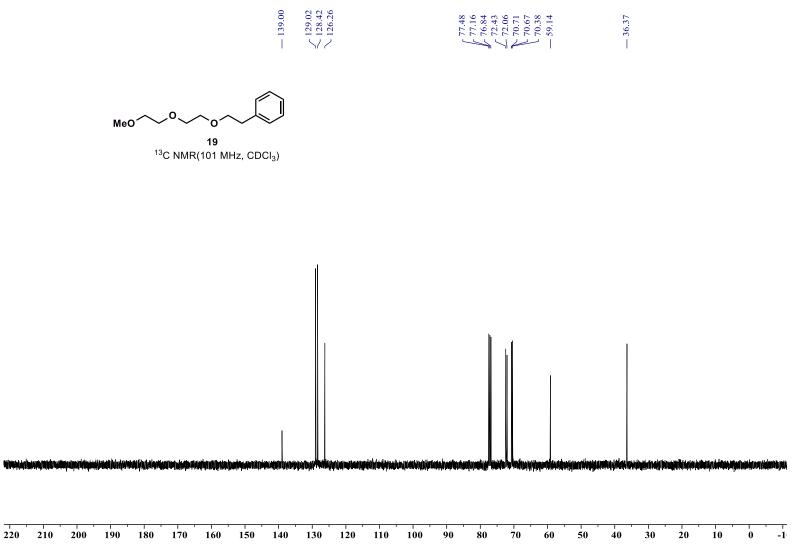

26 26 26 24


-1(**210 200 190 180 170 160 150 140 130 120 110 100** 30 20 f1 (ppm)

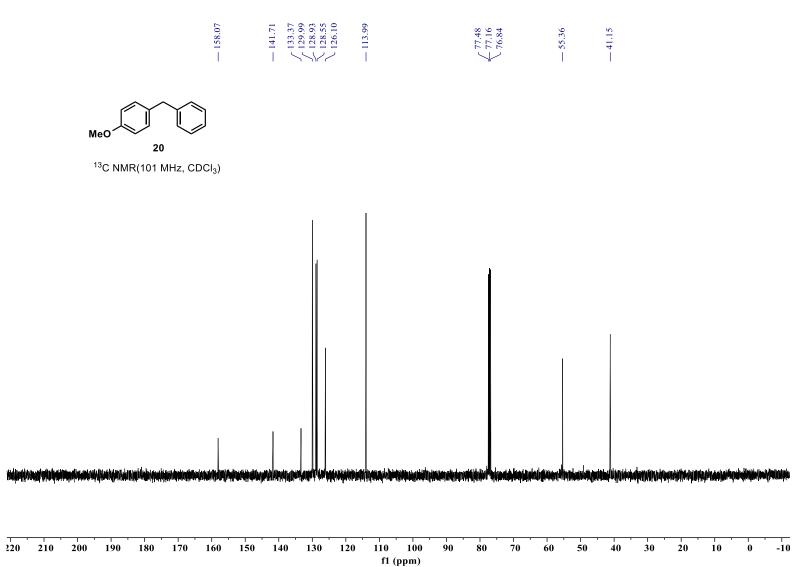


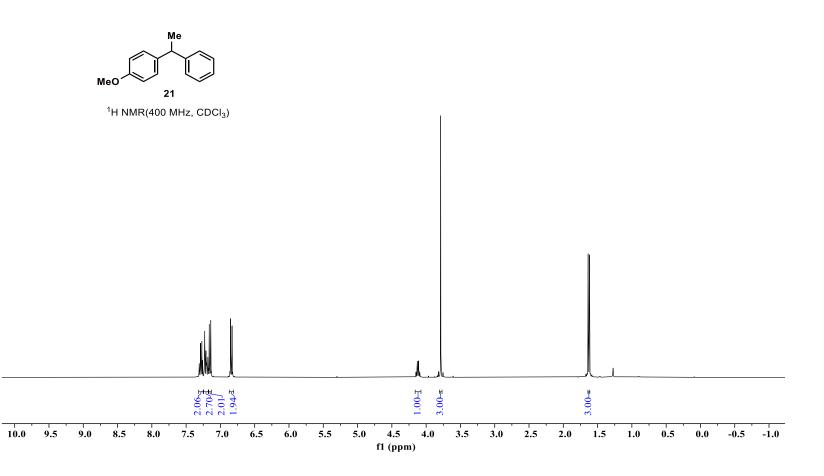


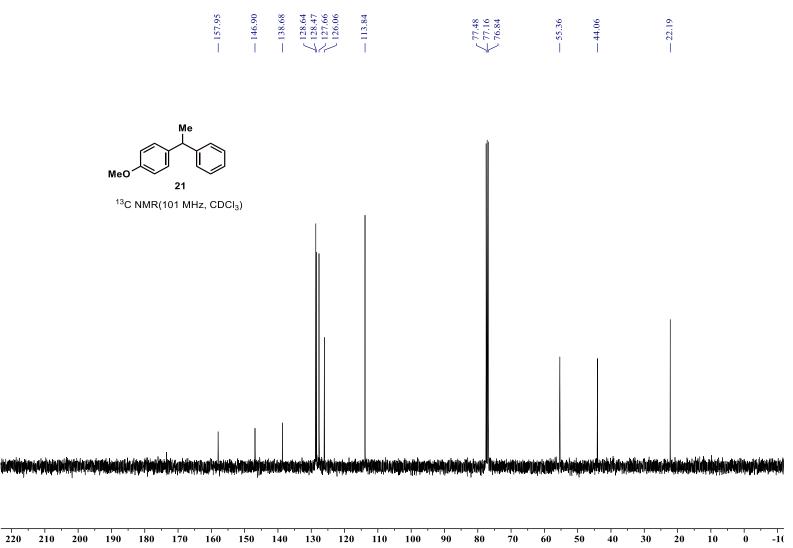


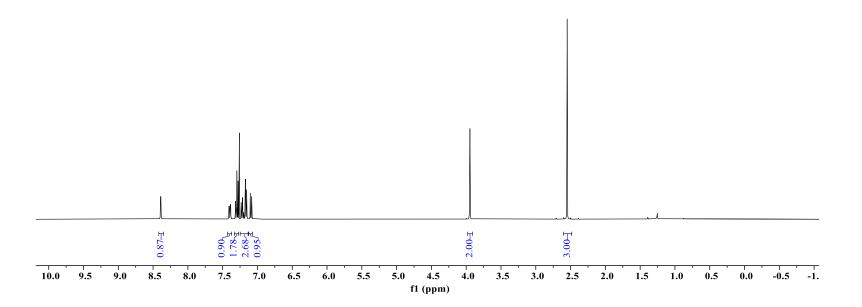


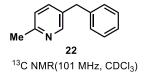


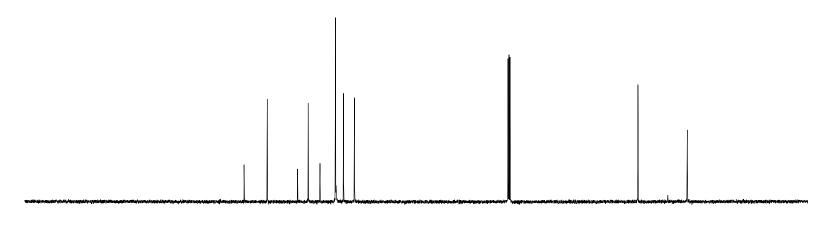


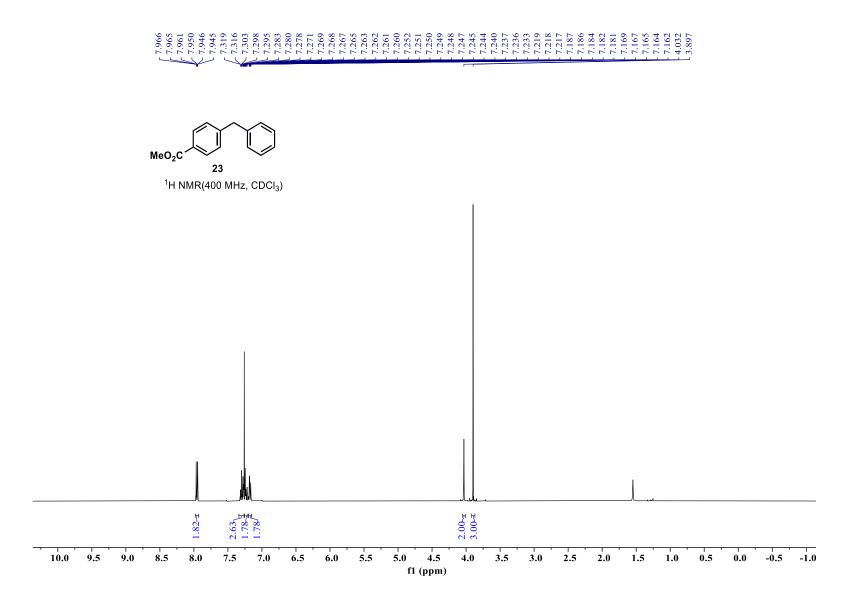


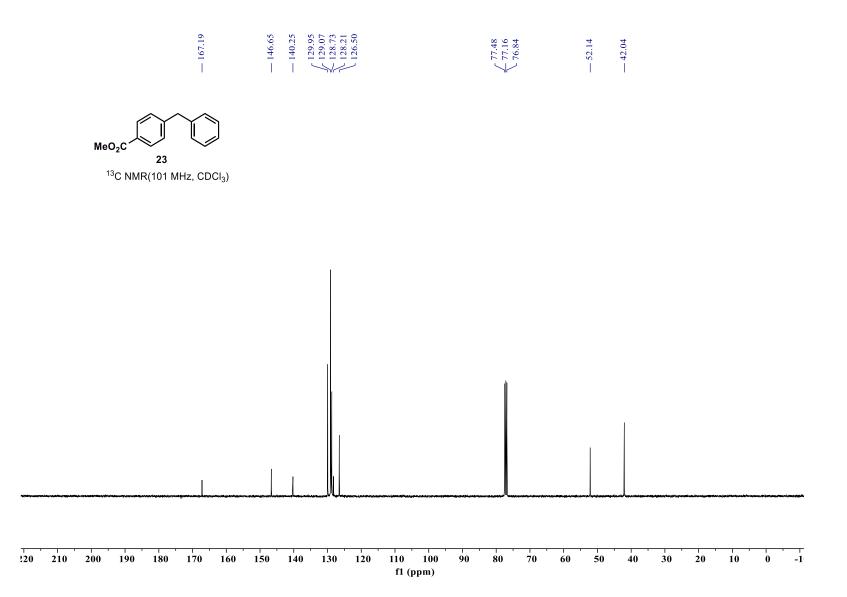


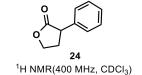


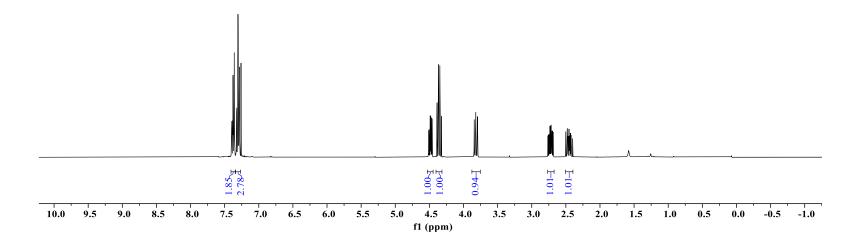


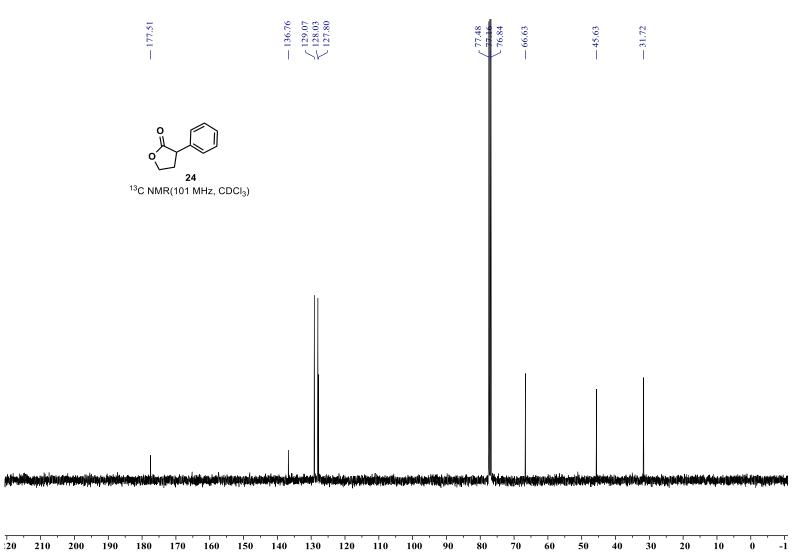


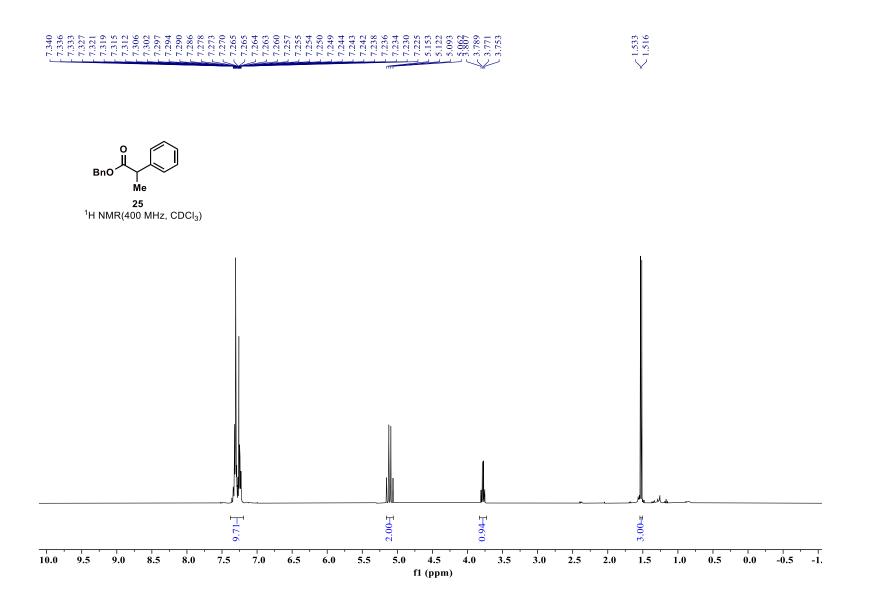


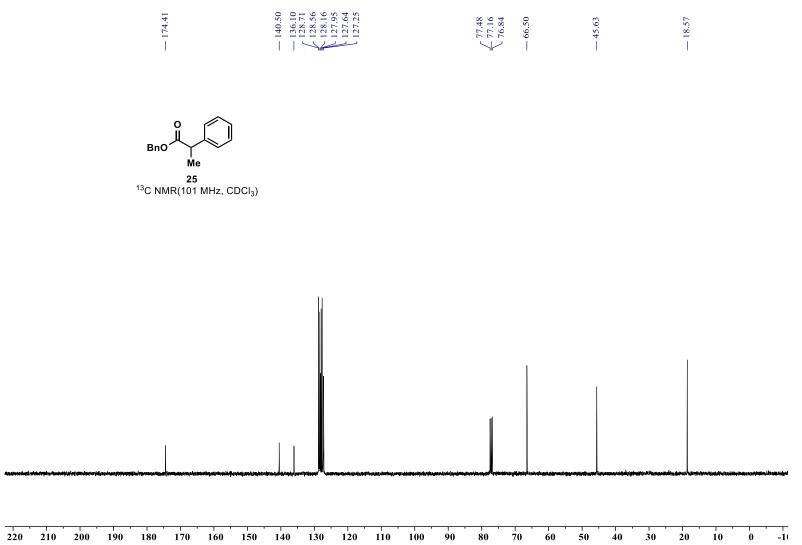


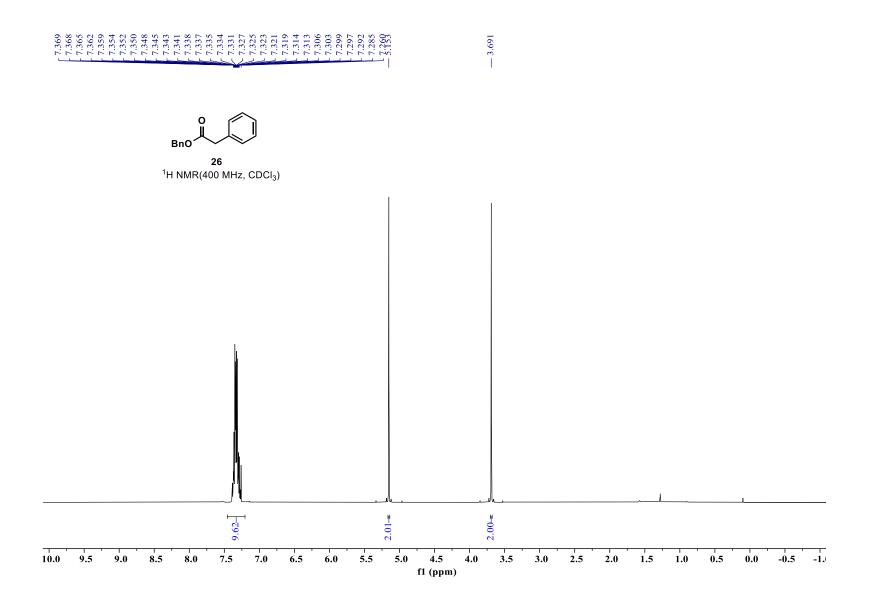


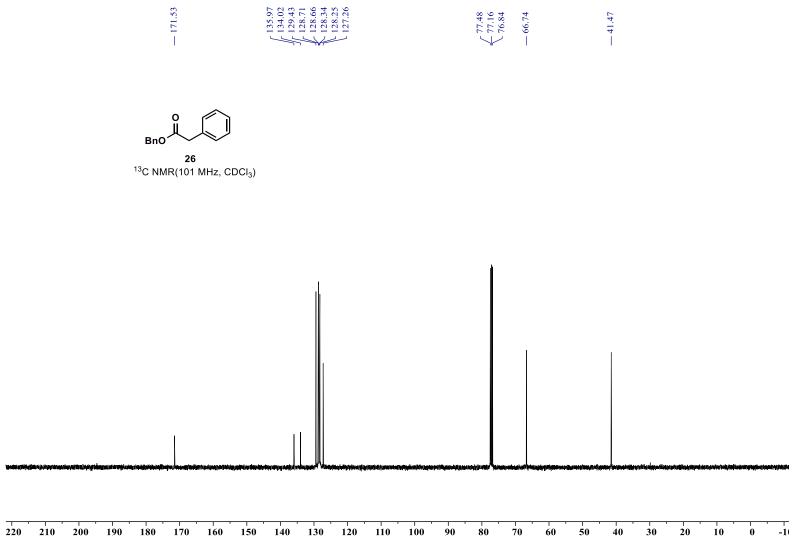

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1(f1 (ppm)

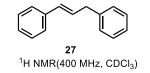


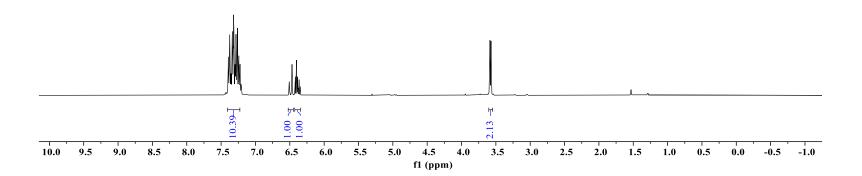


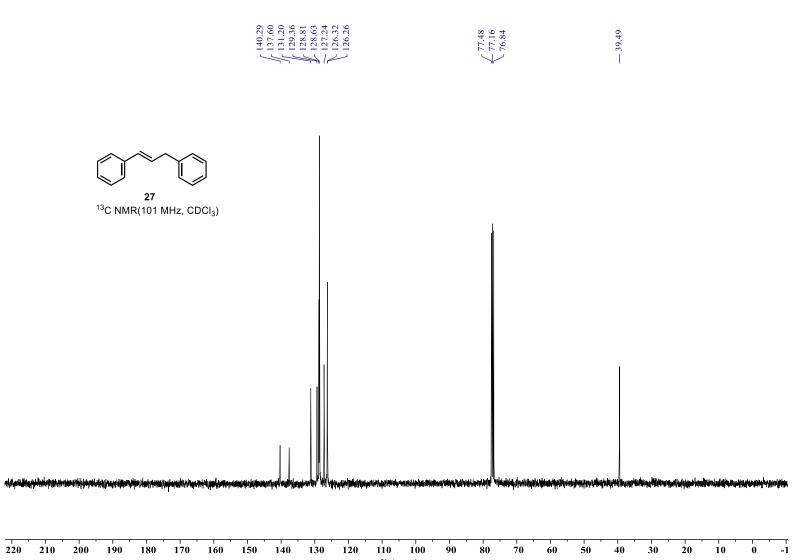


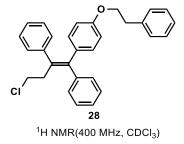


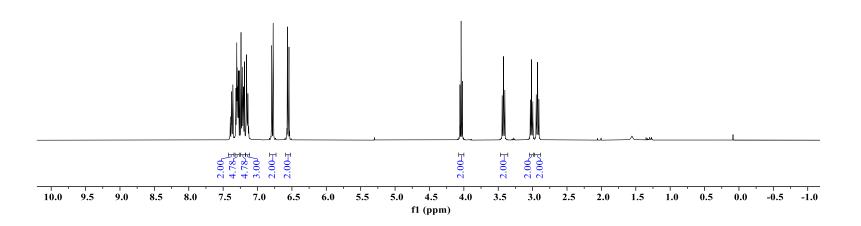


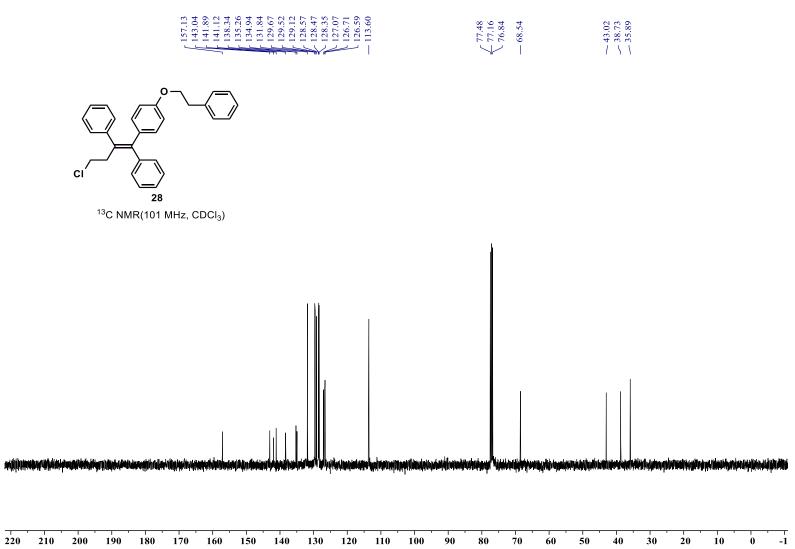


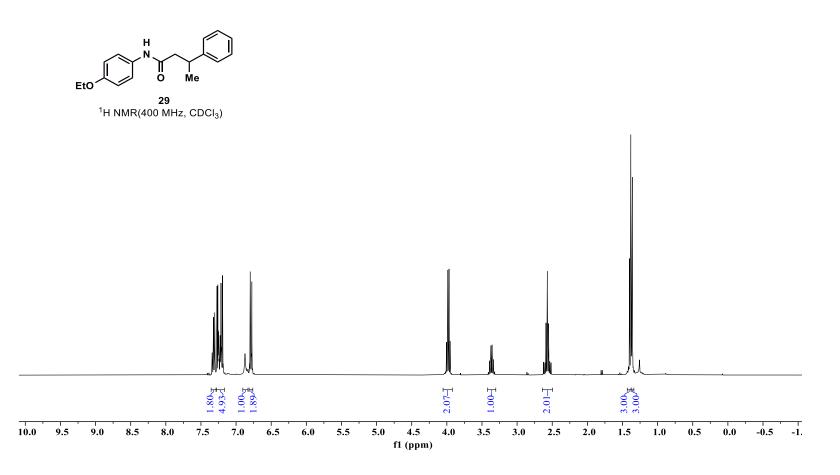


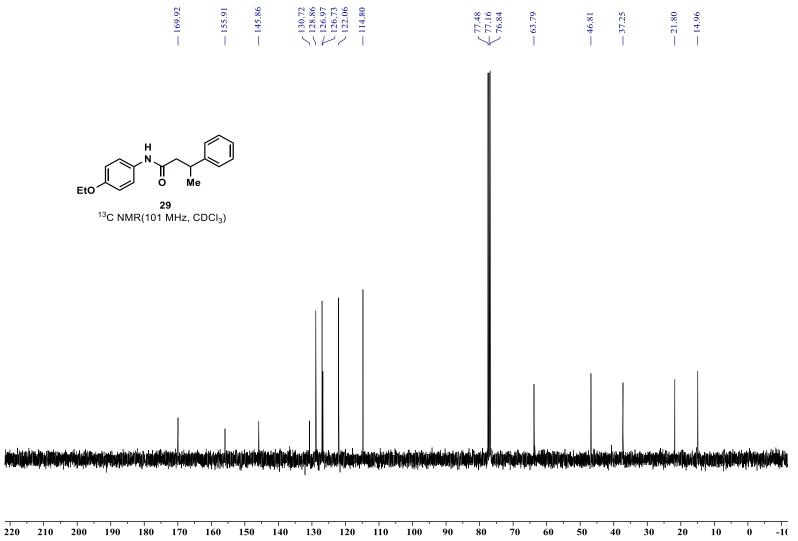


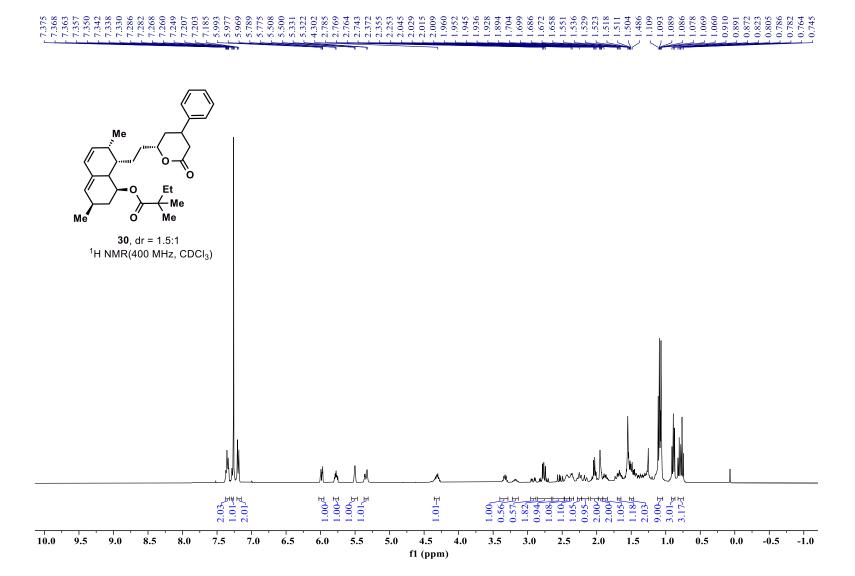


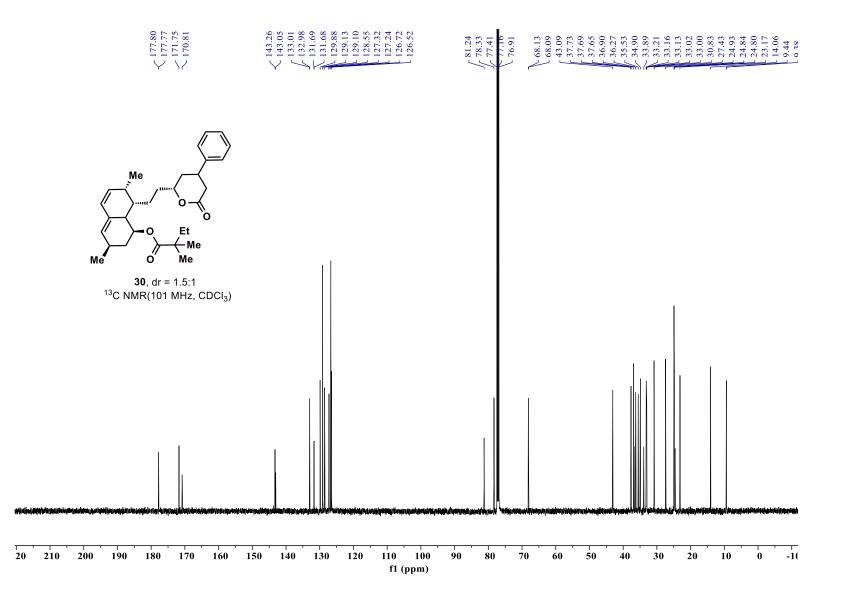


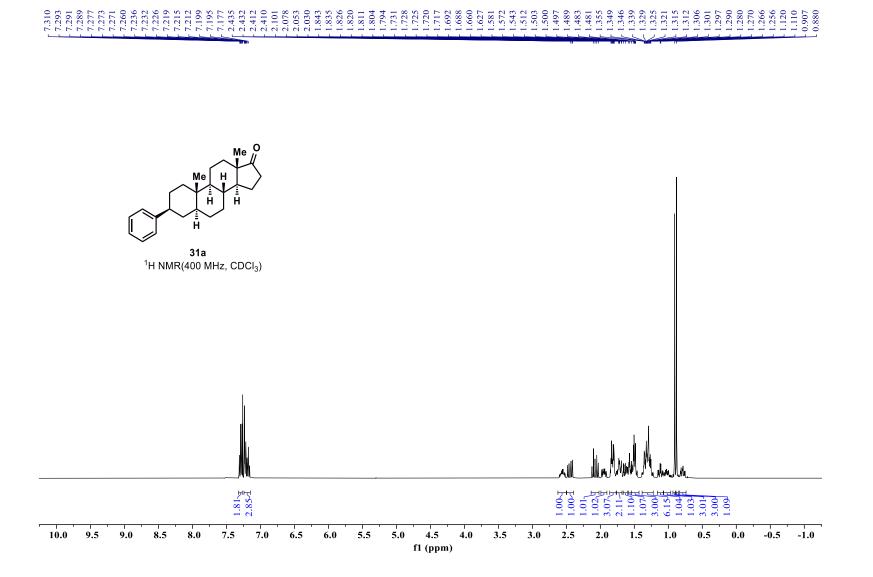


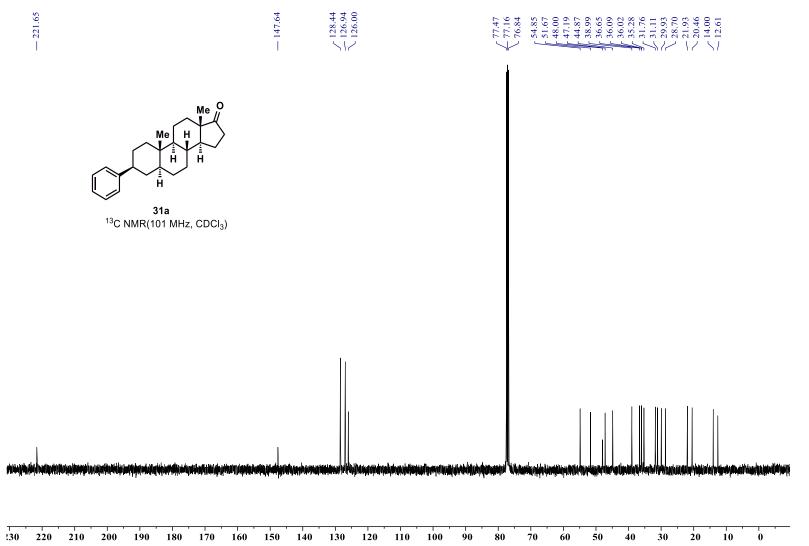


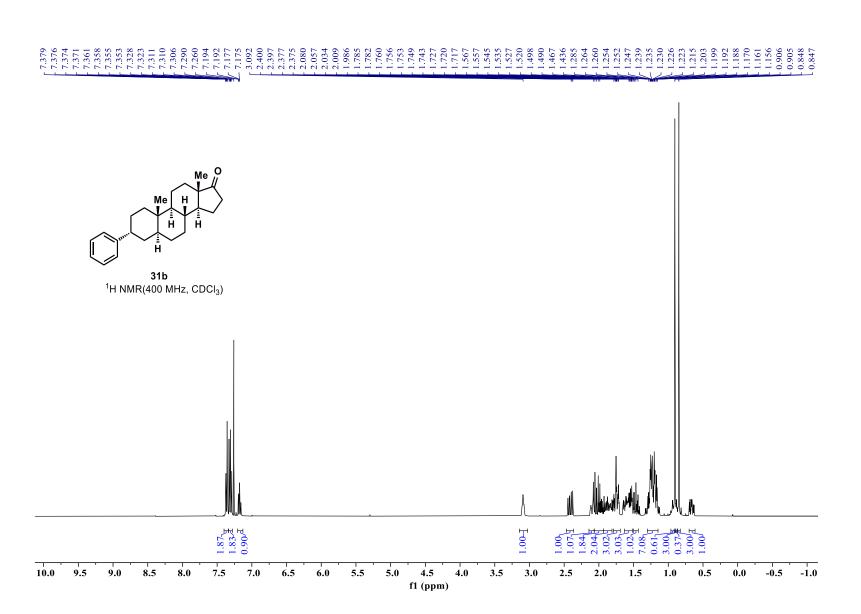


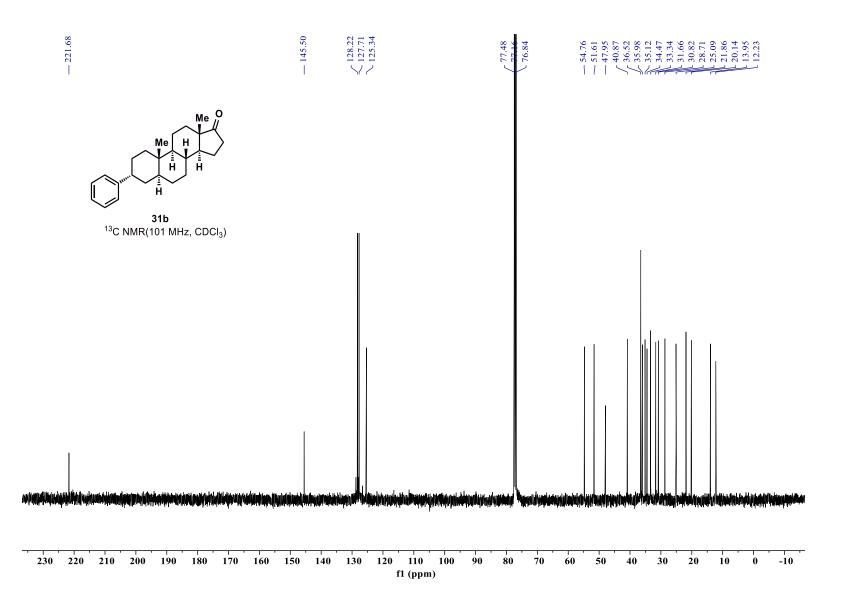


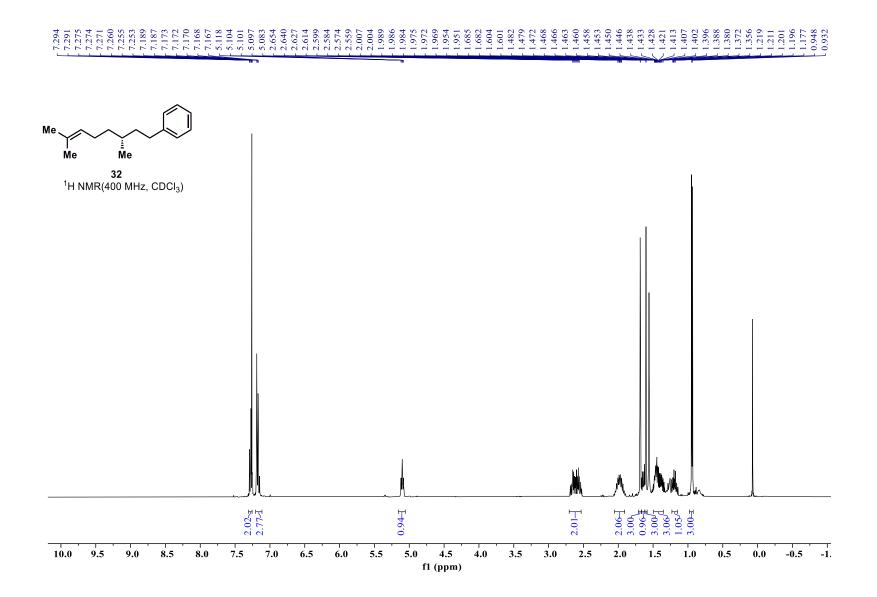


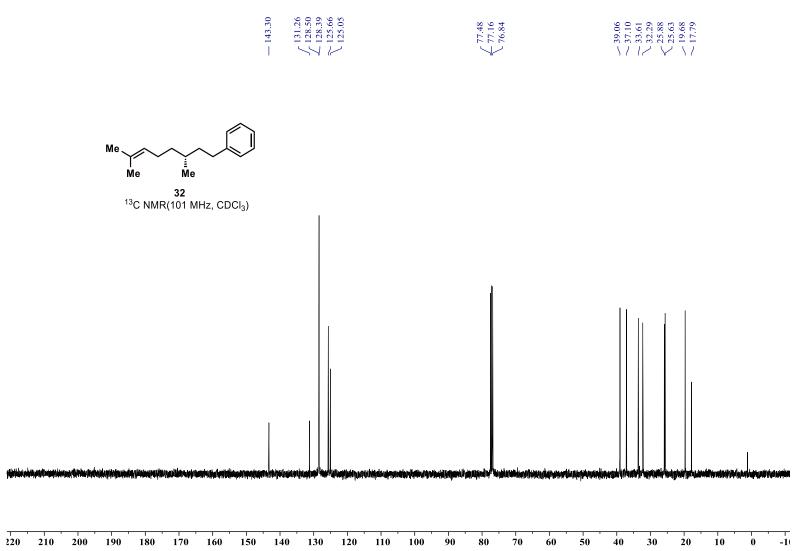


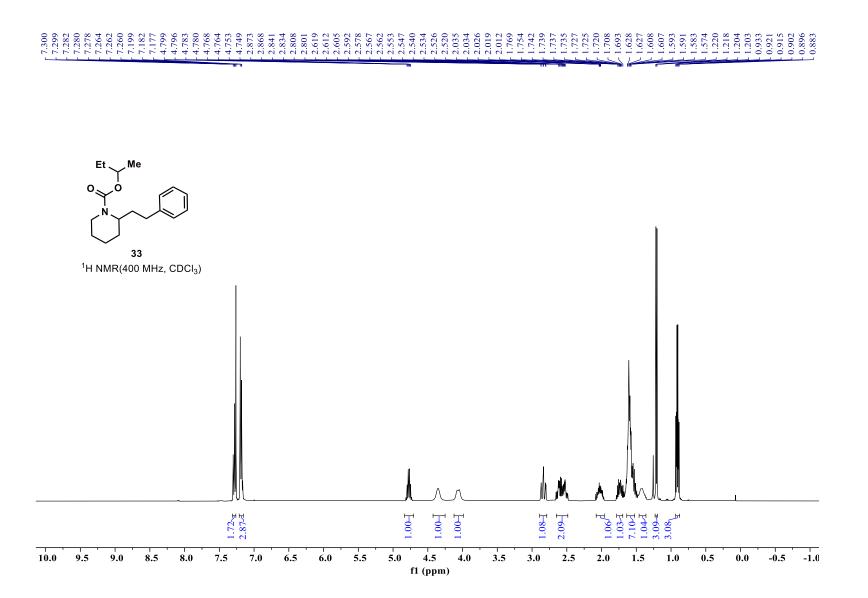


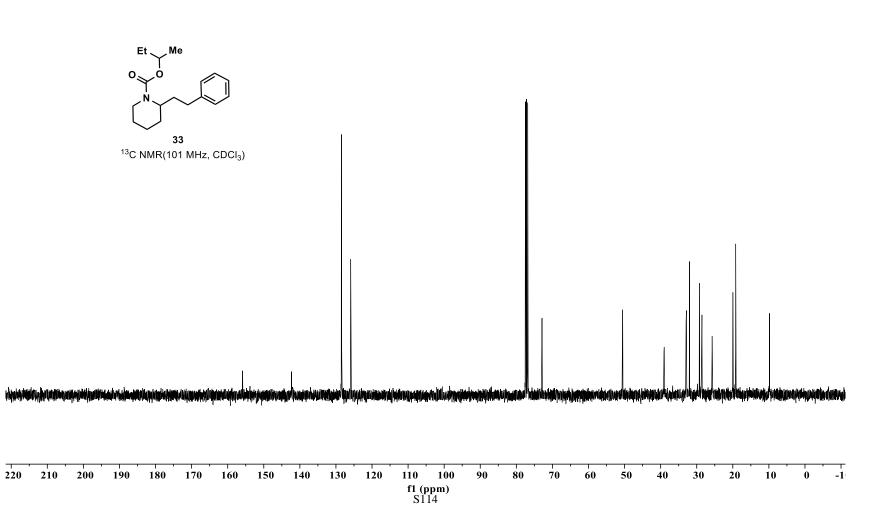

S105

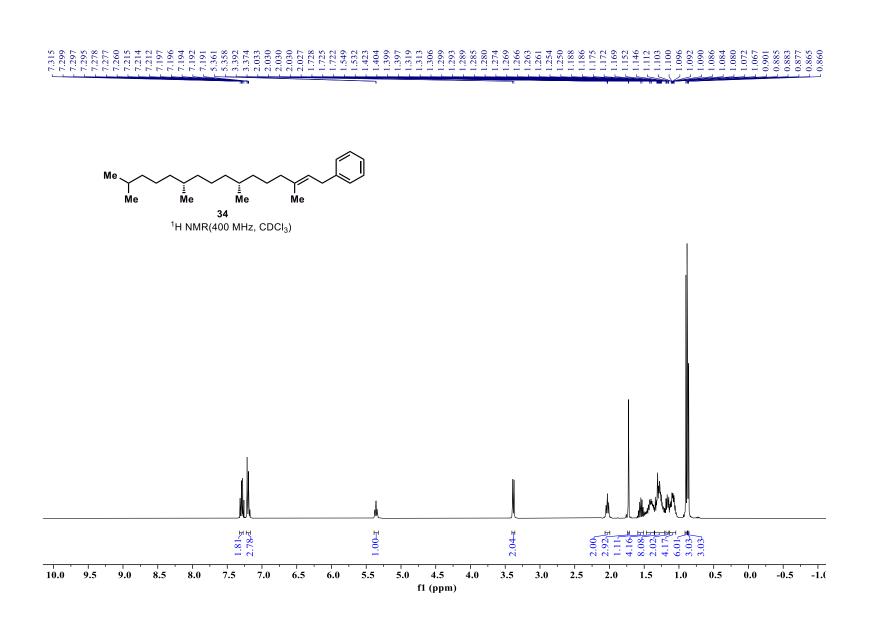


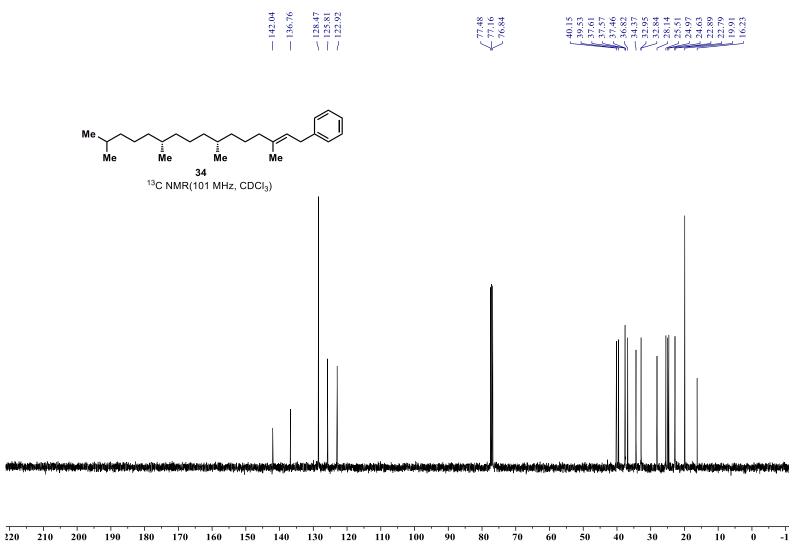


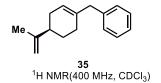


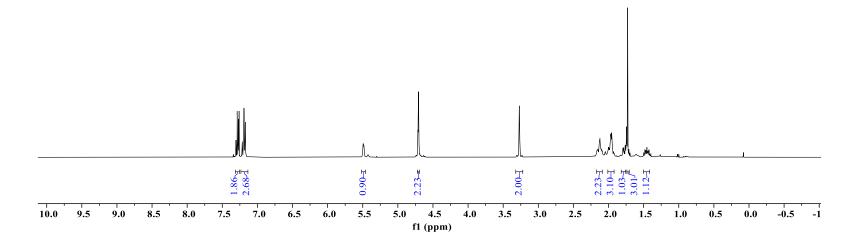


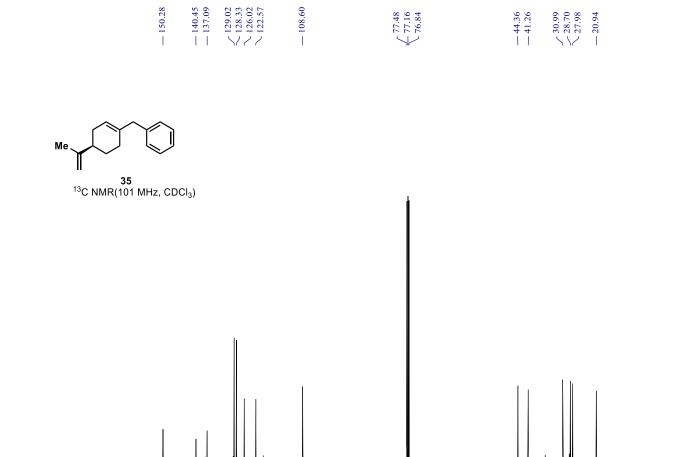


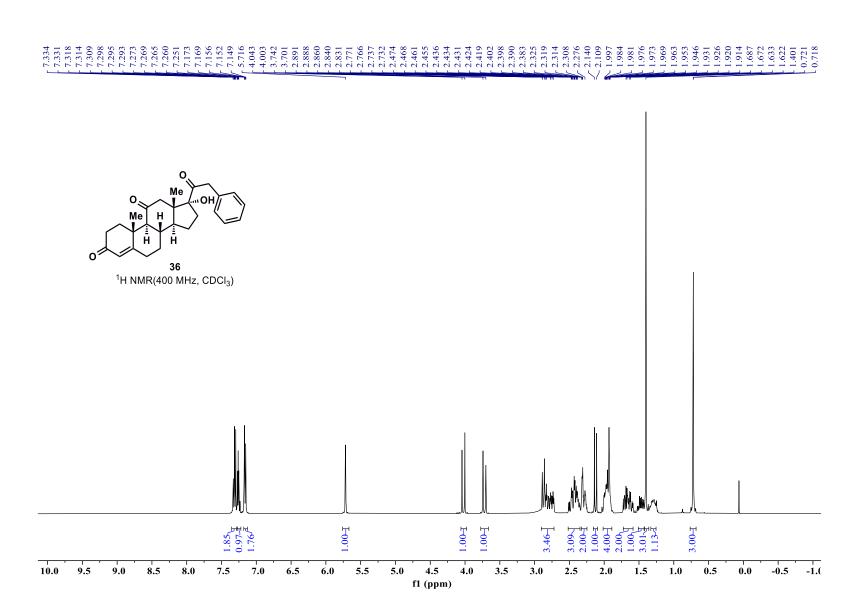


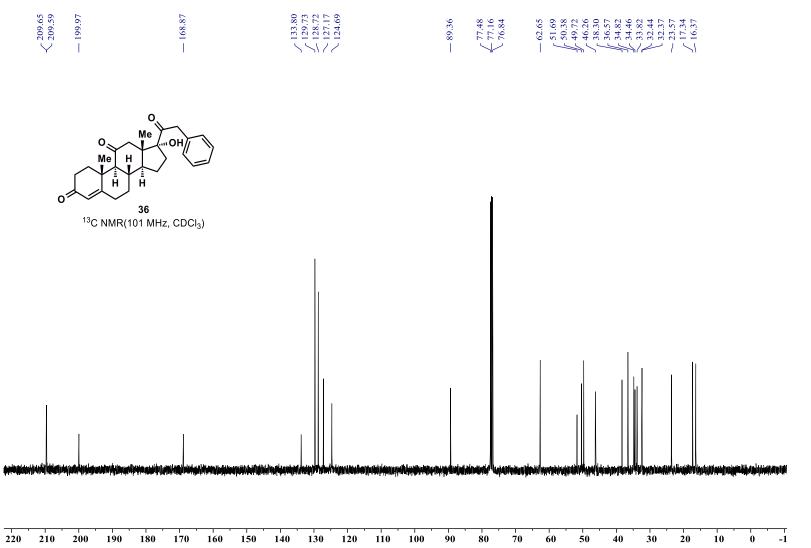


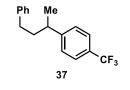


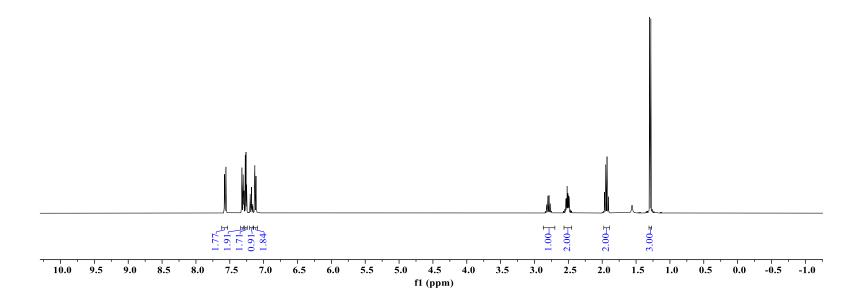


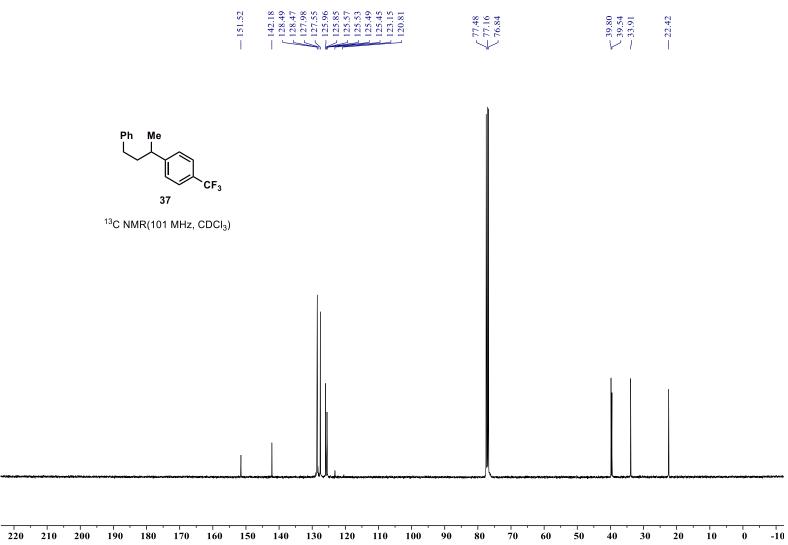


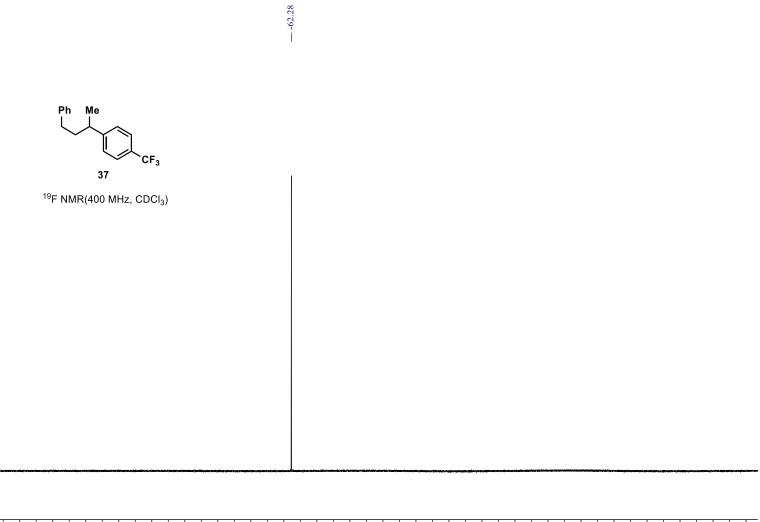




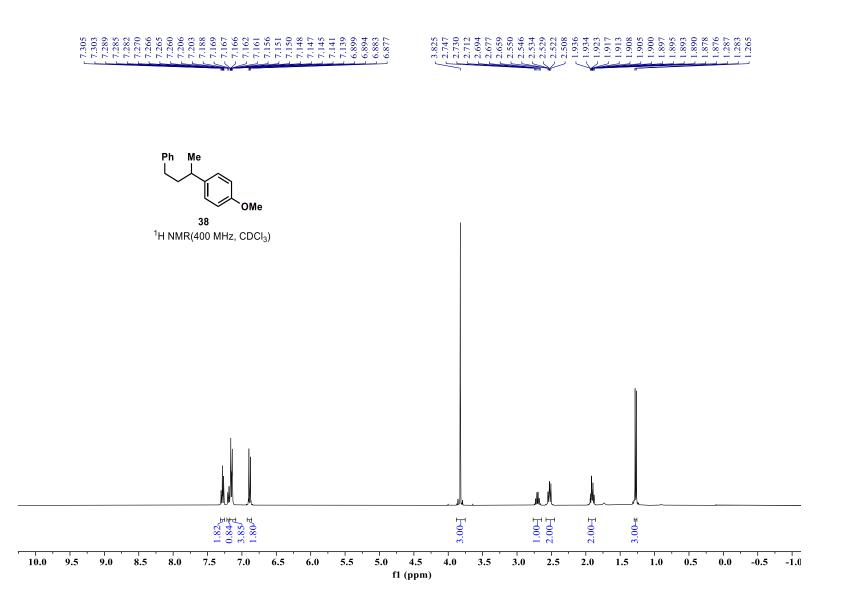

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 fl (ppm)

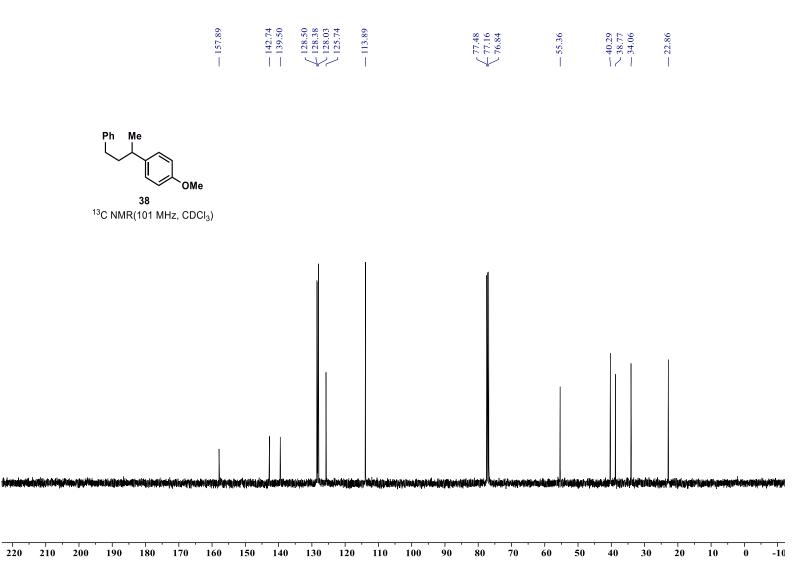


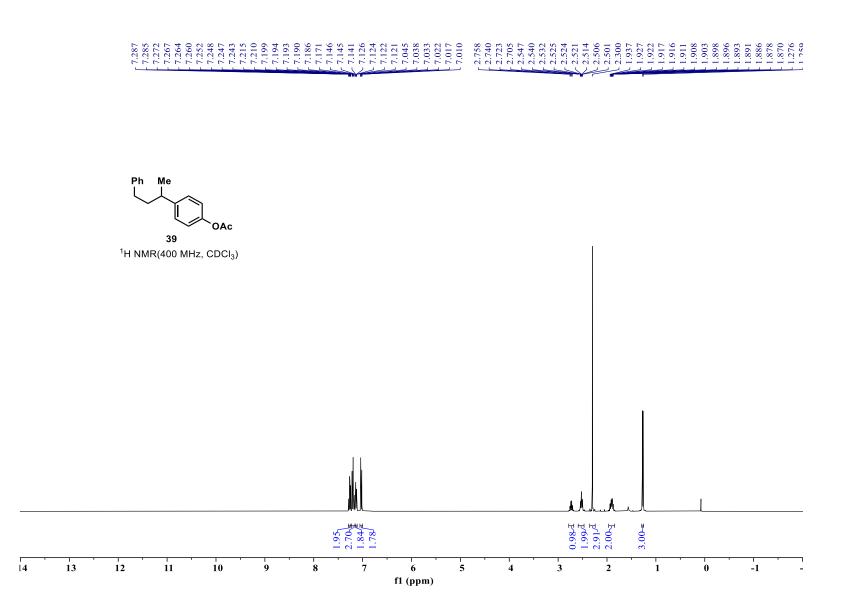


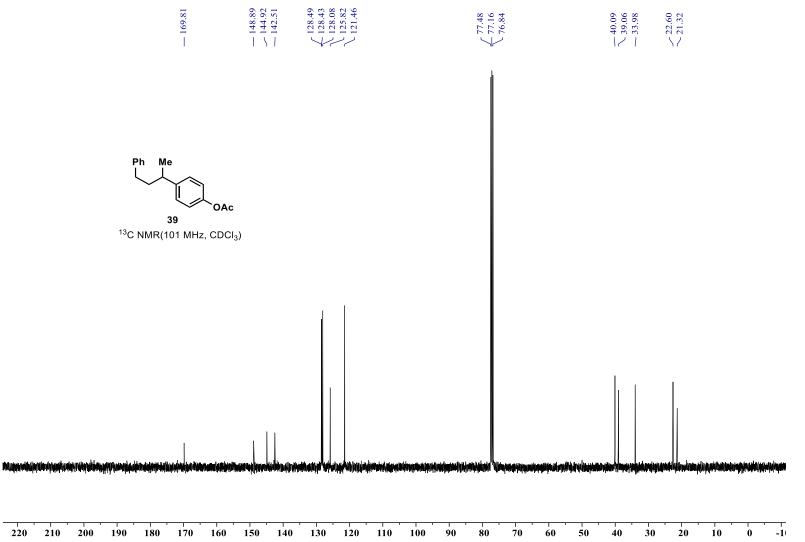


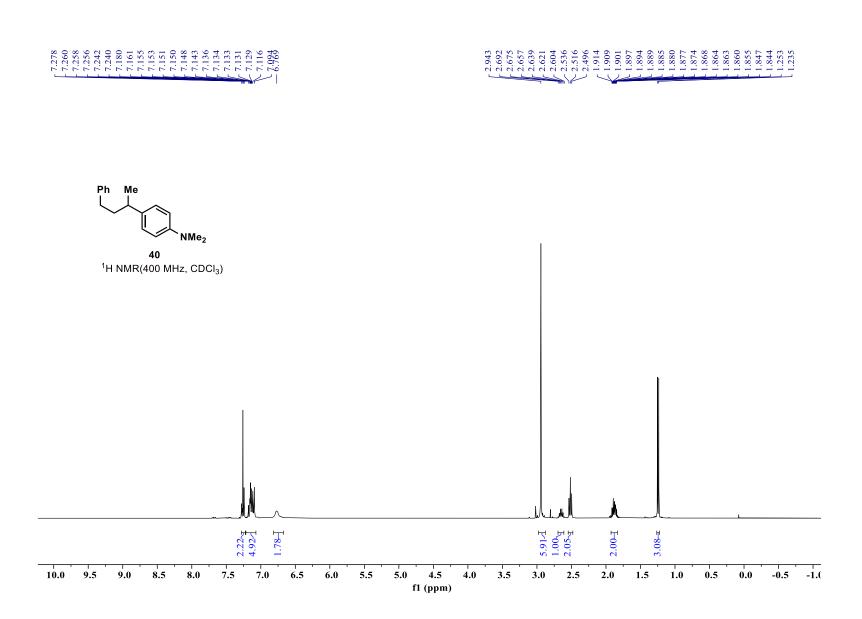
¹H NMR(400 MHz, CDCl₃)

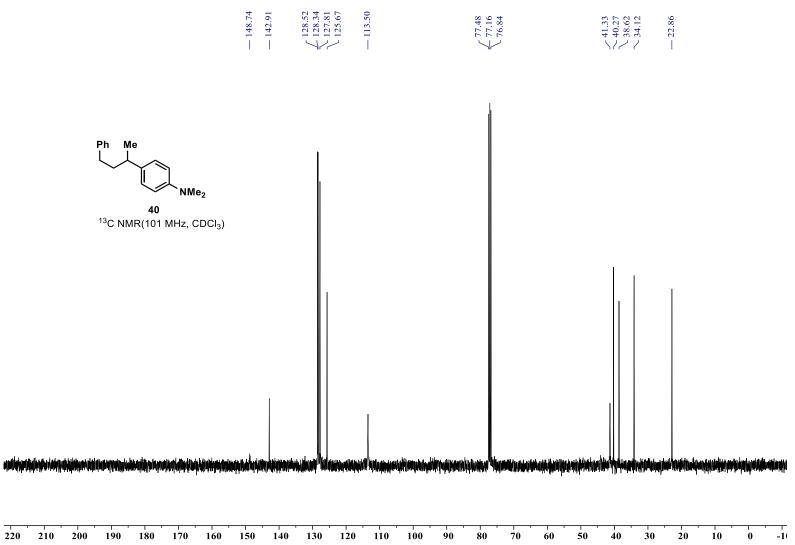


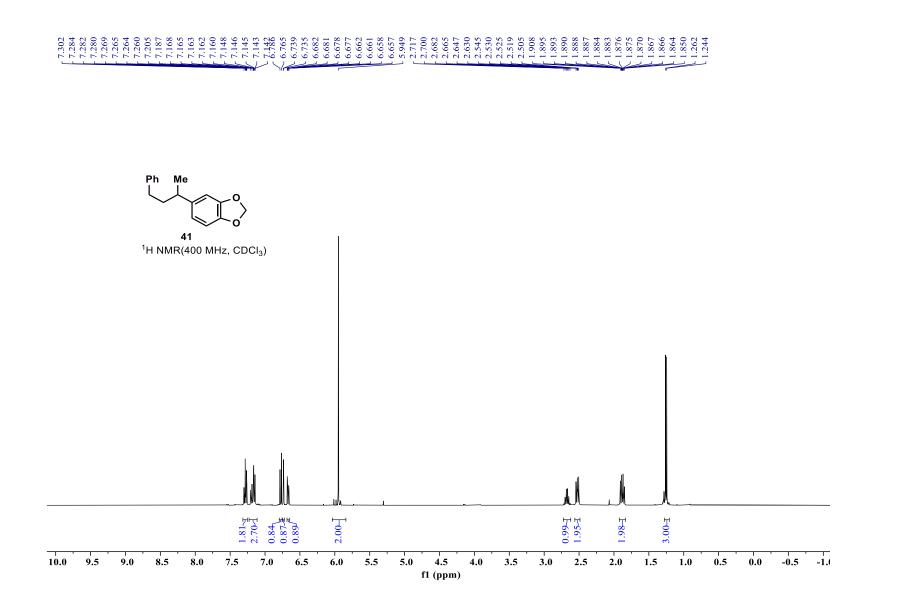


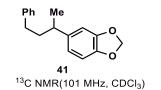


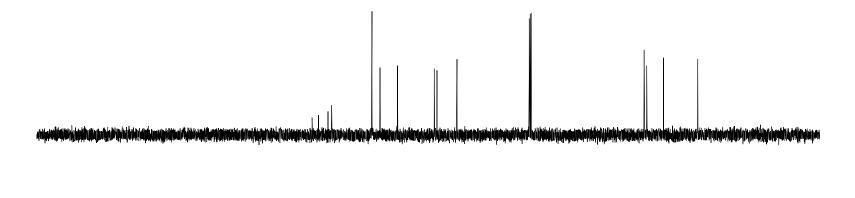

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

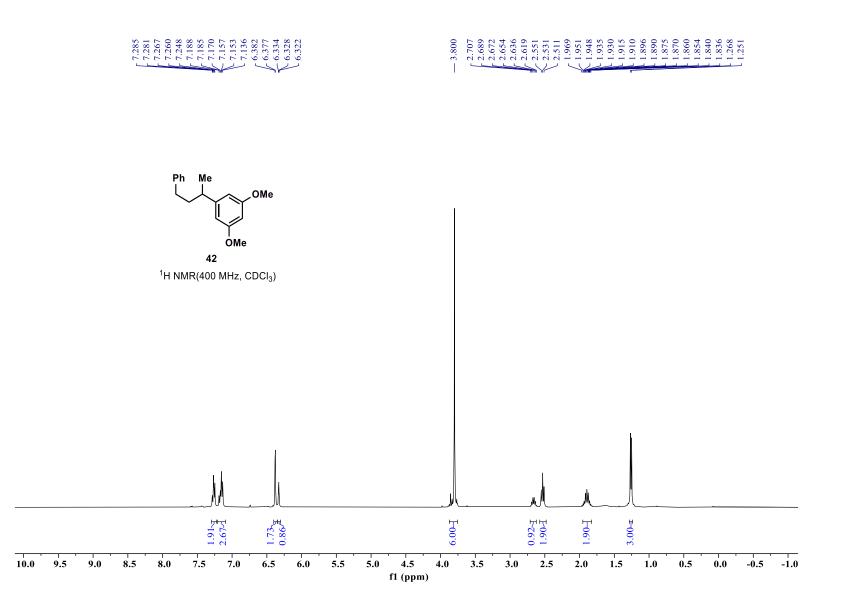


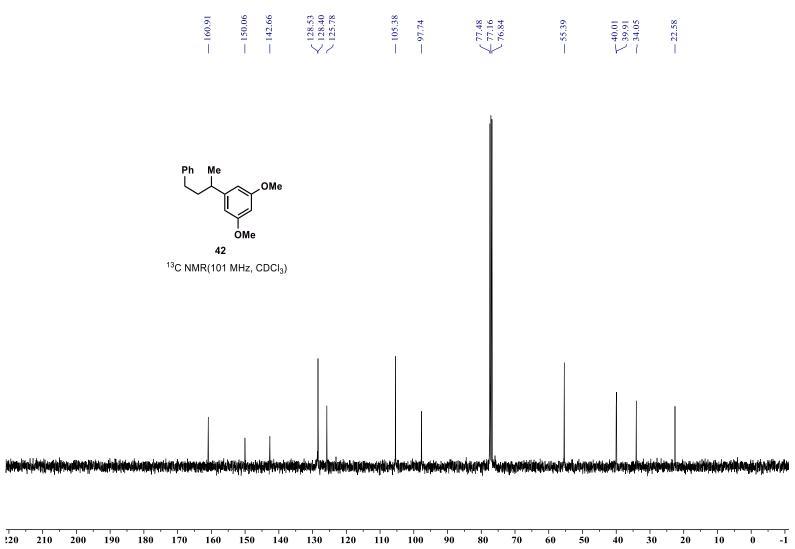


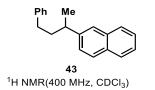


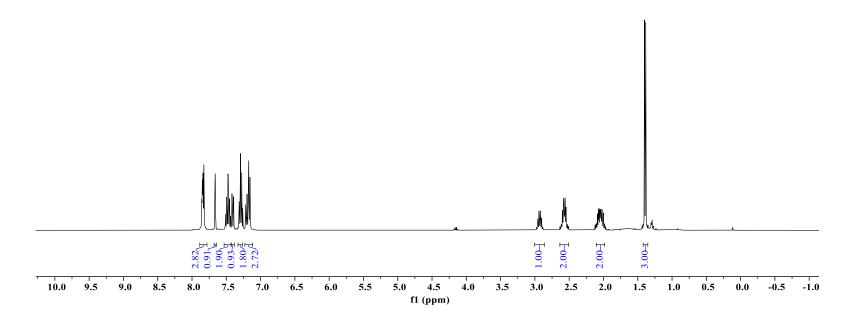


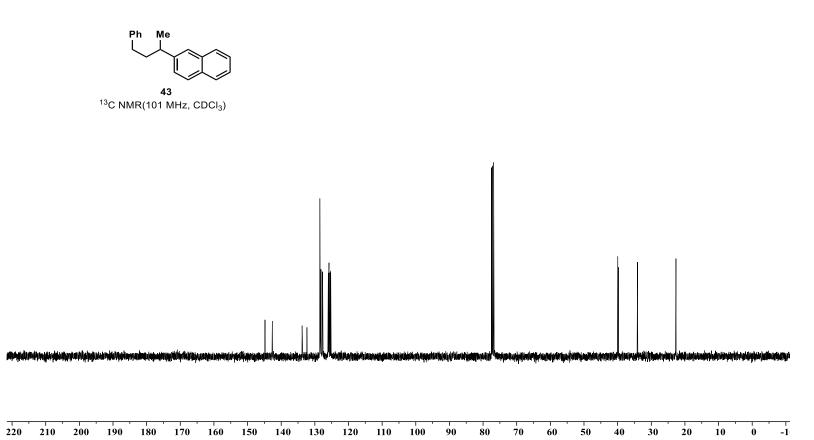




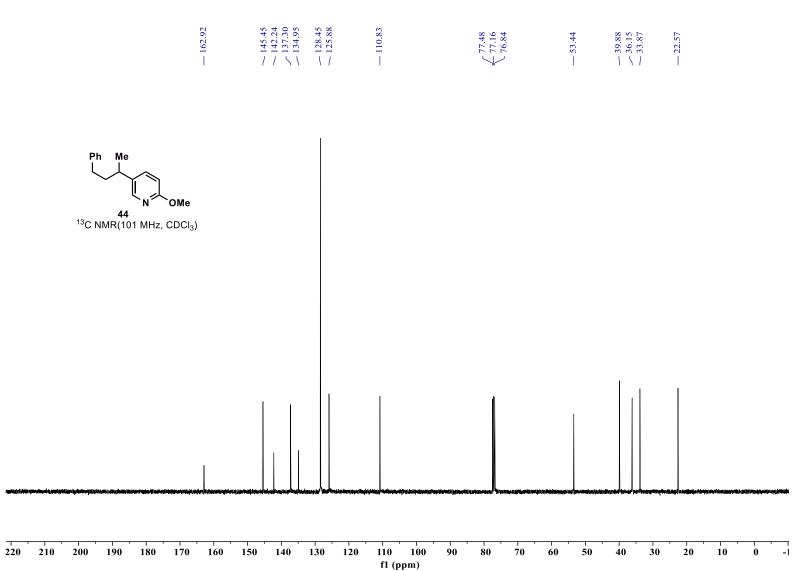


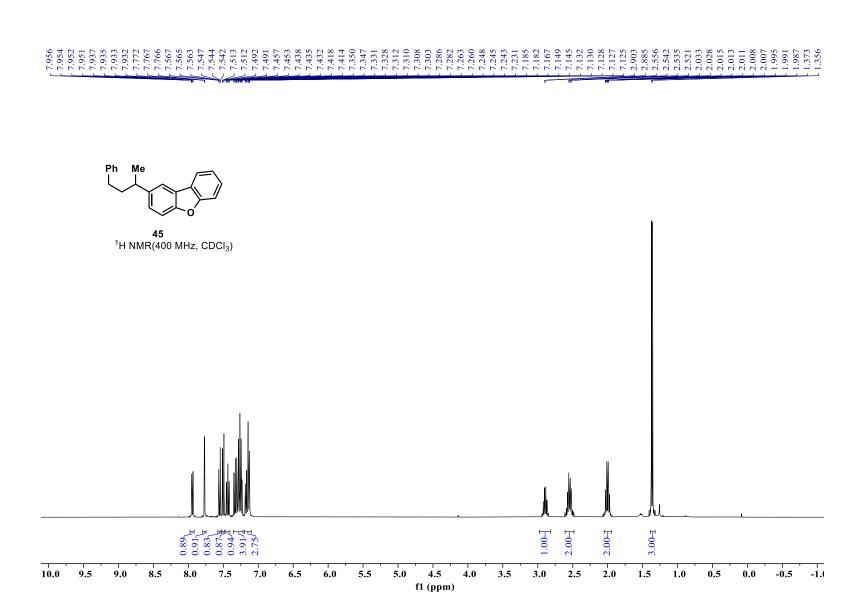

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

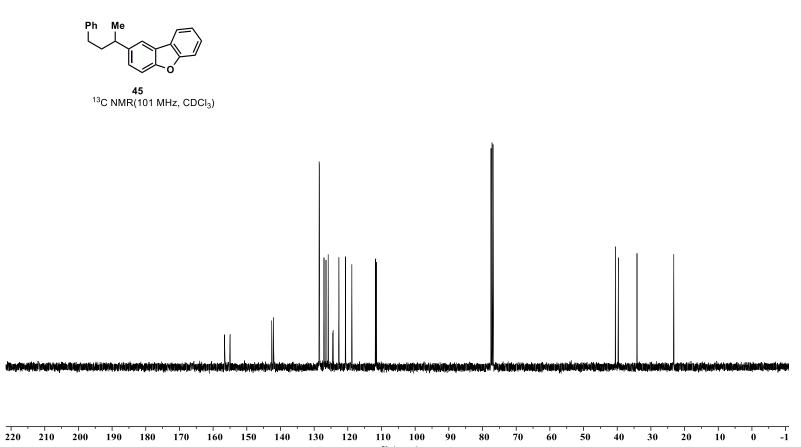


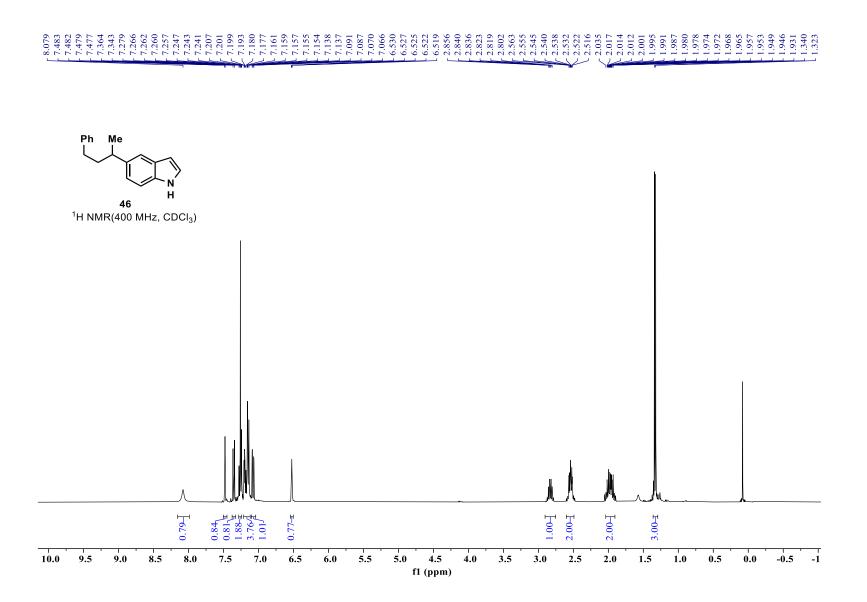


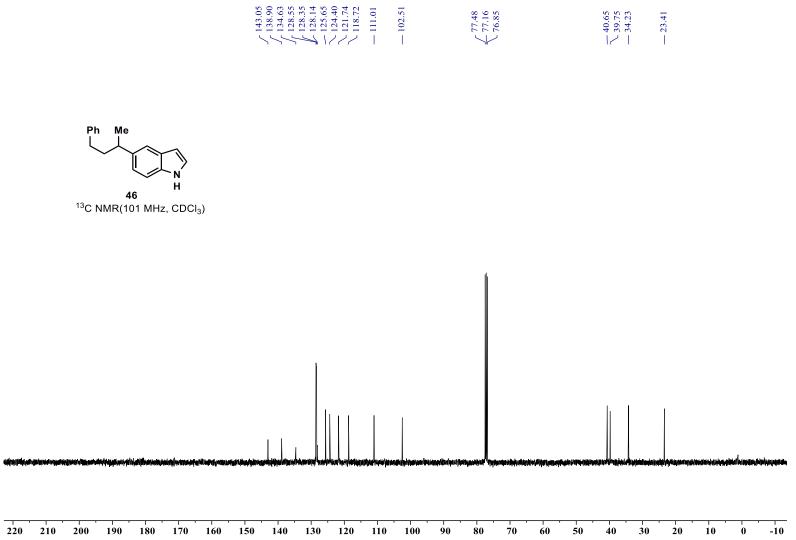


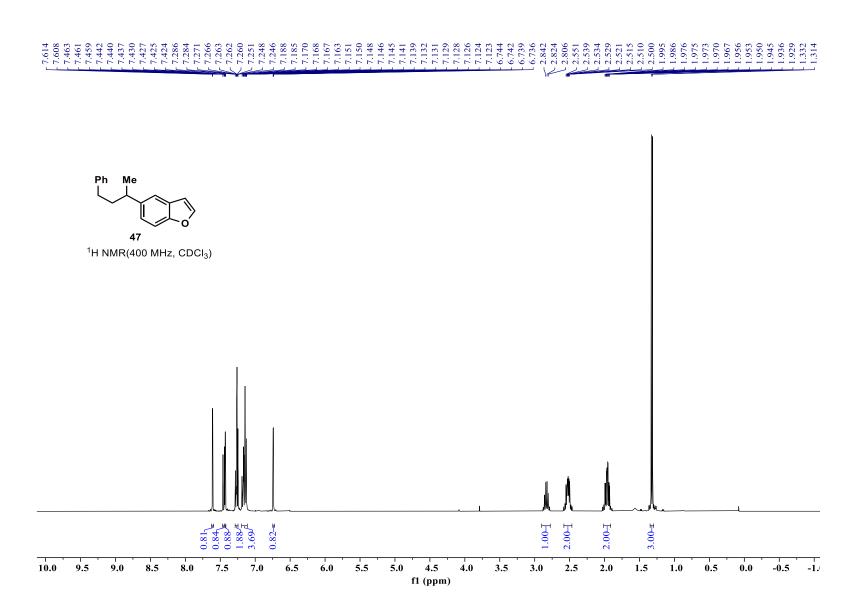


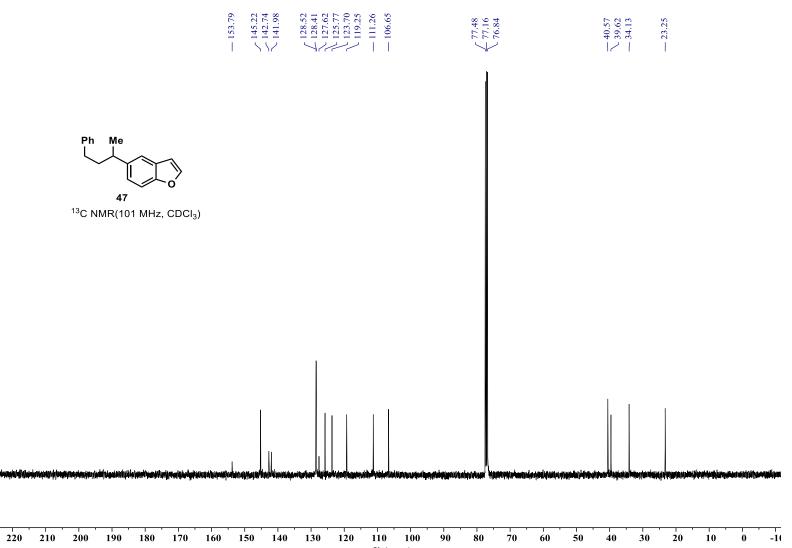


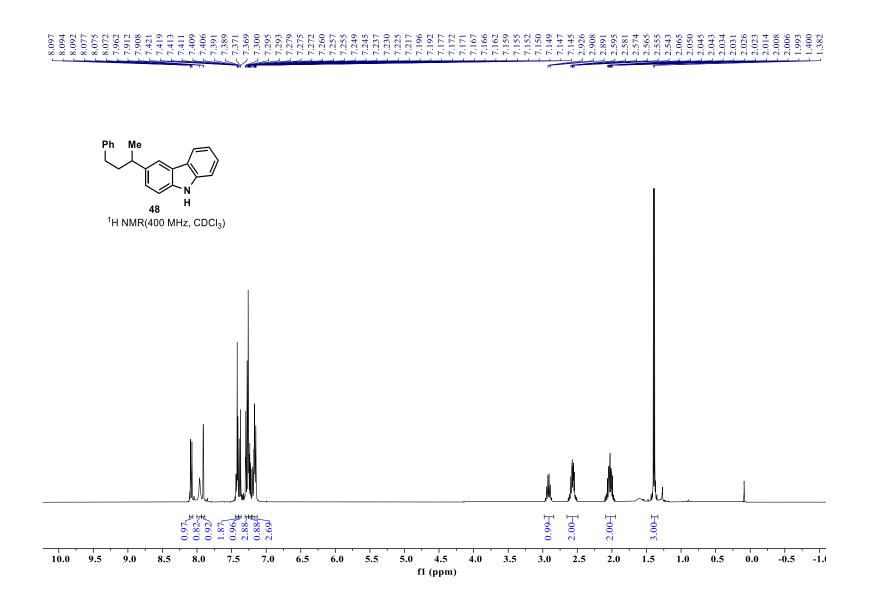


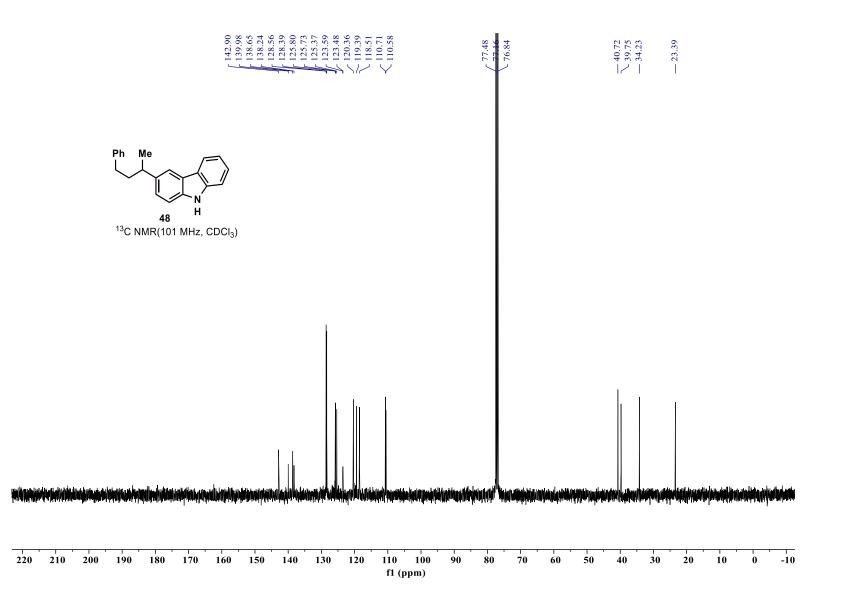


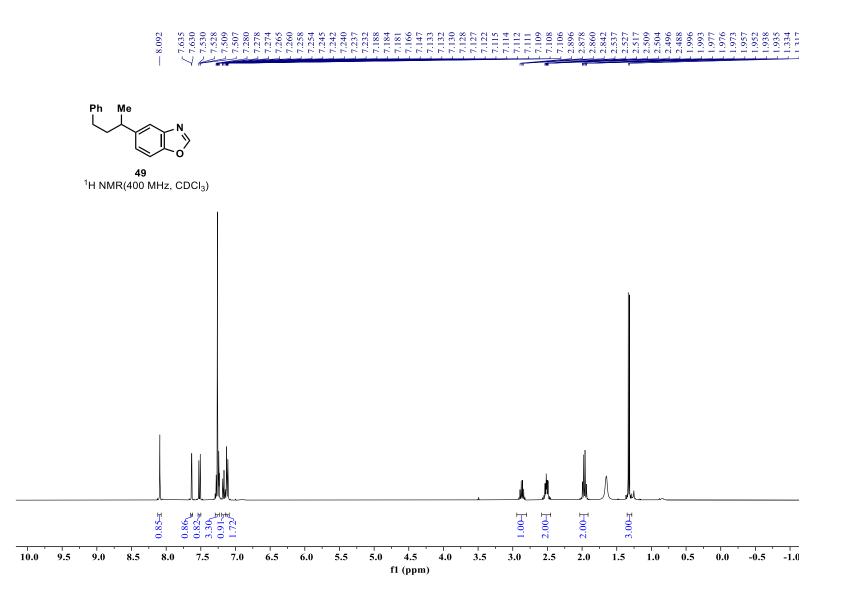


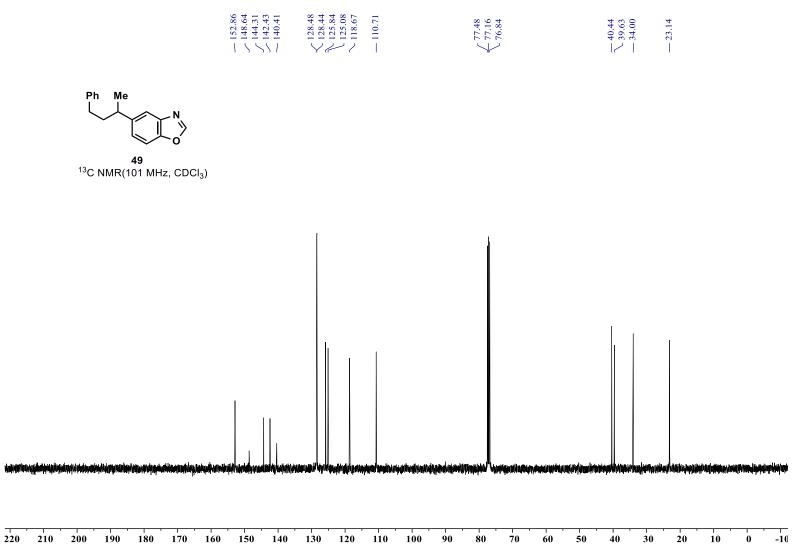


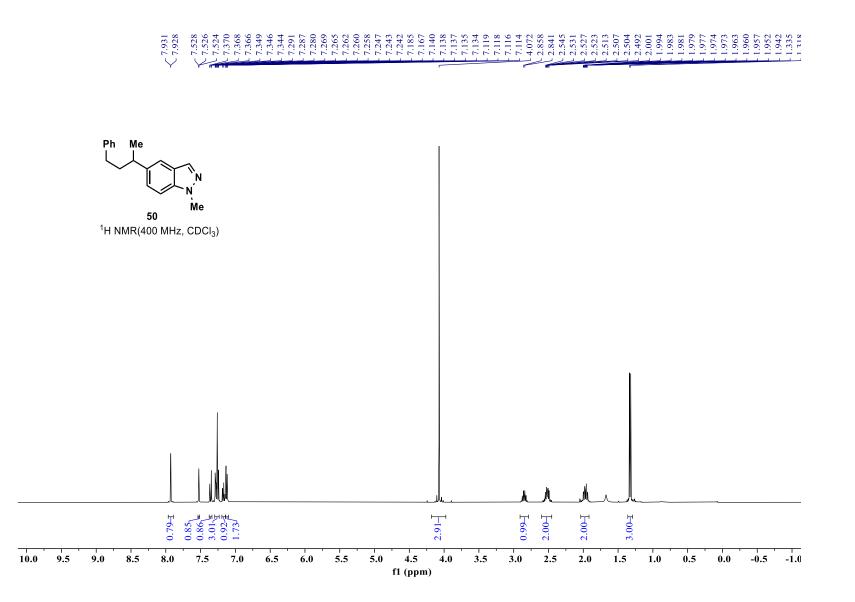


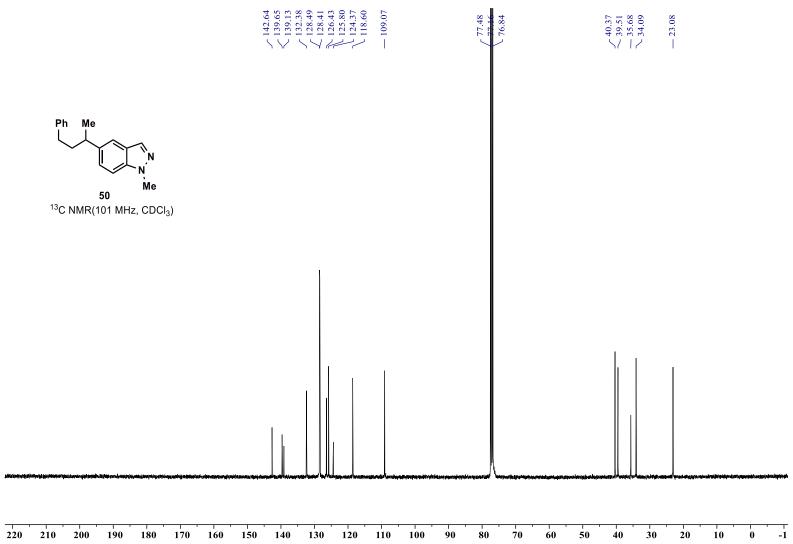




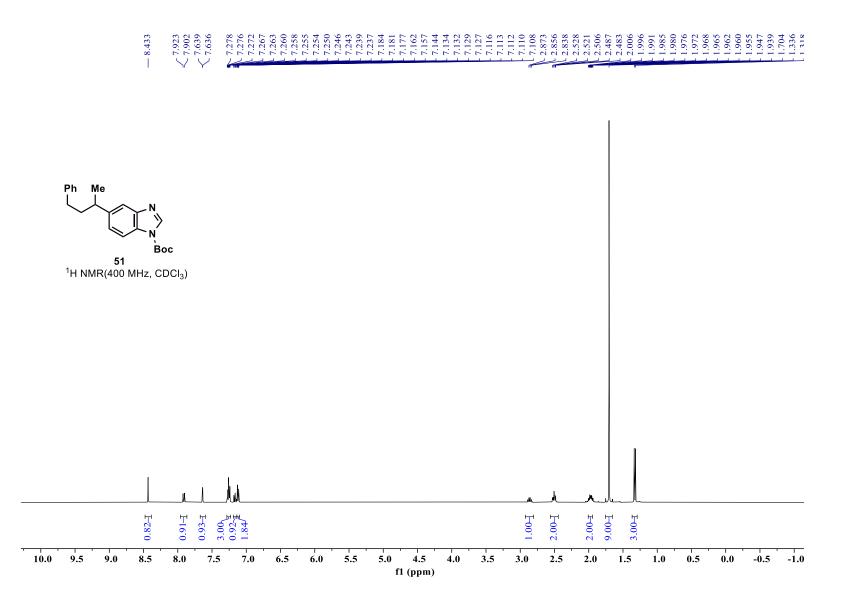


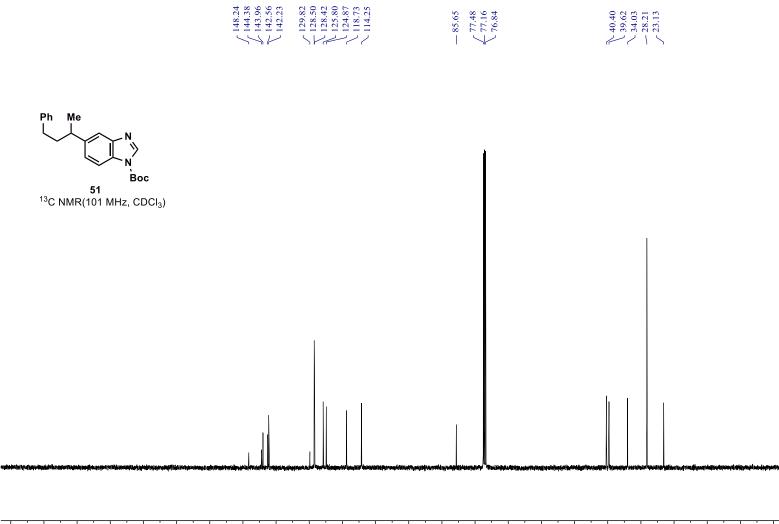


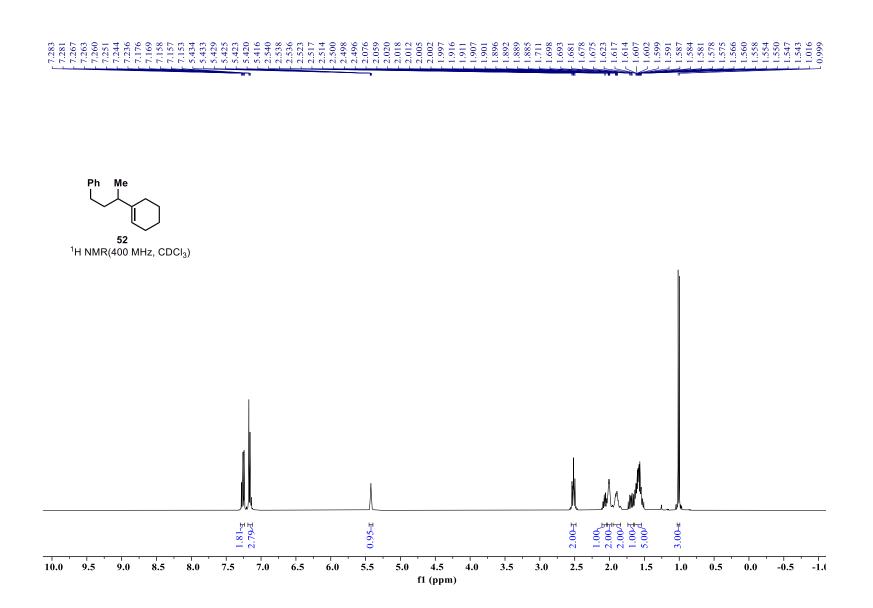


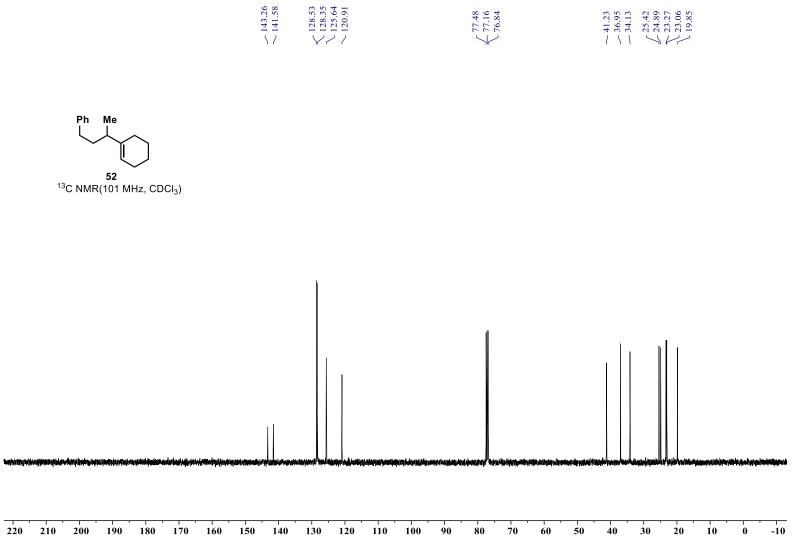


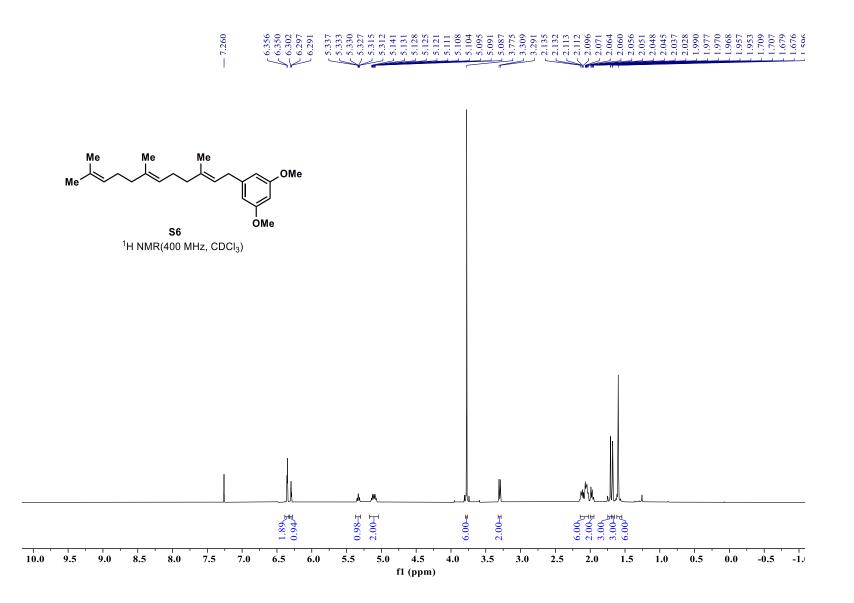
S146

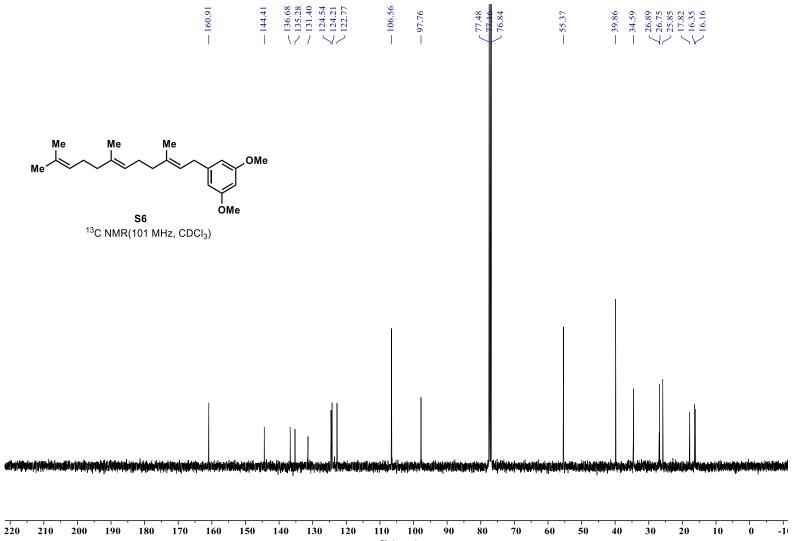











220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

