Supporting Information

Inhibiting HTLV-1 Protease: A Viable Antiviral Target

Gordon J. Lockbaum ${ }^{1}$, Mina Henes ${ }^{1}$, Nathaniel Talledge ${ }^{2}$, Linah N. Rusere ${ }^{1}$, Klajdi Kosovrasti¹, Ellen A. Nalivaika ${ }^{1}$, Mohan Somasundaran ${ }^{1}$, Akbar Ali ${ }^{l}$, Louis M. Mansky ${ }^{2}$, Nese Kurt Yilmaz ${ }^{1}$, Celia A. Schiffer ${ }^{l}$
${ }^{1}$ Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
${ }^{2}$ Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, Minnesota 55455, United States

SUPPLEMENTARY FIGURES

Figure S1. Representative dose-response curves. Initial velocity $\left(\mathrm{V}_{\mathrm{i}}\right)$ as a function of inhibitor concentration was globally fit for 3 replicates (Rep 1-3) to obtain the inhibition constants $\left(\mathrm{K}_{\mathrm{i}}\right)$.

Figure S2: Immunoblot quantification of full-length (FL Gag) band as a percentage of total bands in each lane for the different $S P$ cell drug treatments reported as the mean $\pm \operatorname{SEM}(\mathrm{n}=3)$.

Figure S3: Per-residue vdW contacts between protease and inhibitor, grouped by inhibitor moiety.

Figure S4: Root-Mean-Square Fluctuation (RMSF) of Ca atoms for DRV, UM6 and PU6 in complex with HTLV-1 protease from molecular dynamics simulations. Ala59/59' residues are at the tips of the flaps in HTLV-1 protease (corresponding to Ile50/50' in HIV-1 protease), and Trp98/98' are at the P1/P1' subsites of the active site.

Figure S5. Aromatic side chains in HTLV-1 active site can form $\pi-\pi$ stacking interactions, primarily in edge-to-face configuration, with the P1 phenylalanine and P2' aniline of DRV analogs. Frequency of the $\pi-\pi$ stacking interactions (dashed lines) during MD simulations is indicated.

SUPPLEMENTARY TABLES

Table S1. HIV-1 protease and HTLV-1 protease viral polyprotein cleavage sites.

Cleavage Site	HIV-1 (P4-P1/P1'-P4')	HTLV-1 (P4-P1/P1'-P4')
MA/CA	SQNY/PIVQ	PQVL/PVMH
CA/NC	-	TKVL/VVQP
Gag/PR	SFNF/PQIT	ASIL/PVIP
PR/Pol	TLNF/PISP	PVIL/PIQA
Pro/RT	-	PAVL/GLEL
RT-RH/IN	RKIL/FLDG	VLQL/SPAD

Table S2. Enzymatic activity of HTLV-1 protease measured using natural substrate sequences.

Cleavage Site	Sequence $\left(\mathbf{P 4}-\mathbf{P 1} / \mathbf{P 1} \mathbf{' P 4}^{\prime}\right)$	$\mathbf{K}_{\mathbf{M}}(\boldsymbol{\mu} \mathbf{M})$	$\mathbf{k}_{\text {cat }}\left(\mathbf{s}^{-1}\right)$	$\mathbf{k}_{\text {cat }} / \mathbf{K}_{\mathbf{M}}\left(\boldsymbol{\mu}^{\mathbf{1}} \mathbf{M}^{-1} \mathbf{s}^{-1}\right)$
$\mathbf{M A / C A}$	PQVL/PVMH	101.3 ± 1.9	21.6 ± 0.1	0.21 ± 0.02
CA/NC	TKVL/VVQP	31.6 ± 5.9	1.9 ± 0.1	0.06 ± 0.01

Table S3. Inhibition constants $\left(\mathrm{K}_{\mathrm{i}}\right)$ against HTLV-1 protease.

| Inhibitor | $K_{1}(\mu \mathrm{M})$ |
| :---: | :---: | :---: | :---: | :---: |
| Indinavir | |
| (IDV) | |
| Darunavir | |
| (DRV) | |

Table S4. X-ray data collection and crystallographic refinement statistics.

Protease-Inhibitor	HTLV-DRV	HTLV-UM6	HTLV-PU6	HIV-PU6
PDB ID	6W6Q	6W6R	6W6S	6W6T
Data Collection				
Space group	$P 6{ }_{3} 22$	$P 6{ }_{3} 22$	$P 6{ }_{3} 22$	$P 22_{1} 2_{1}$
Cell dimensions:				
b (\AA)	78.5	77.9	76.6	58.0
$c(\AA)$	160.6	160.1	157.3	61.7
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	90, 90, 120	90, 90, 120	90, 90, 120	90, 90, 90
Resolution (\AA)	40.1-2.10	41.9-2.05	39.3-2.29	21.9-1.84
Resolution (A)	(2.18-2.10)	(2.12-2.05)	(2.37-2.29)	(1.91-1.84)
Unique reflections	17823 (1728)	18768 (1804)	12954 (1244)	16226 (1420)
Total reflections	162887 (16621)	173500 (15456)	114508 (11155)	104007 (4828)
$R_{\text {merge }{ }^{\text {a }}}$	0.09 (2.00)	0.10 (3.49)	0.24 (3.89)	0.06 (0.29)
$R_{\text {pim }}$	0.03 (0.68)	0.04 (1.25)	0.09 (1.36)	-
CC1/2	1.00 (0.37)	1.00 (0.23)	0.99 (0.15)	-
CC*	1.00 (0.73)	1.00 (0.62)	1.00 (0.50)	-
Completeness (\%)	99.8 (100)	99.8 (99.6)	99.9 (99.9)	98.4 (88.0)
Redundancy	9.1 (9.6)	9.2 (8.6)	8.8 (9.0)	6.4 (3.4)
Average I/ σ	12.6 (1.2)	12.2 (0.7)	5.9 (0.9)	22.7 (3.3)
Wilson B-factors (\AA^{2})	55.2	50.6	61.3	25.2
Refinement				
$R_{\text {factor (\%) }}{ }^{\text {c }}$	22.9	22.1	26.6	20.0
$R_{\text {free }}(\%)^{\text {d }}$	26.2	24.3	30.5	22.7
RMSD ${ }^{\text {b }}$ in:				
Bond lengths (\AA)	0.007	0.012	0.006	0.003
Bond angles (${ }^{\circ}$)	0.81	1.32	0.82	0.59
Ramachandran: 0.81				
Favored	96.05	96.49	96.05	99.48
Allowed	3.95	3.07	3.95	0.52
Outliers	0.00	0.44	0.00	0.00

${ }^{\text {a }} R_{\text {sym }}=\Sigma|I-<I\rangle \mid / \Sigma I$, where $I=$ observed intensity, $\langle I\rangle=$ average intensity over symmetry equivalent; values in parentheses are for the highest resolution shell.
${ }^{\mathrm{b}}$ RMSD, root mean square deviation.
${ }^{c} R_{\text {factor }}=\Sigma \| F_{o}\left|-\left|F_{c}\right| / \Sigma\right| F_{o} \mid$.
${ }^{d} R_{\text {free }}$ was calculated from 5% of reflections, chosen randomly, which were omitted from the refinement process.

