Supporting information.

Water Mediated Rearrangement of Alkynyl Cyclohexadienones: Access to meta-Alkenylated Phenols
Akshay M. Nair, Indranil Halder, Ritu Sharma, Chandra M. R. Volla*
Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
chandra.volla@chem.iitb.ac.in

Table of Contents

1) General experimental details 02
2) Mechanistic studies 03-05
3) Experimental procedures and analytical data 05-24
4) References 25
5) ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectras 26-62

1). General Experimental Details

1H and 13C spectra were recorded on Bruker Avance 400 and 500 spectrophotometers. The chemical shifts ($\delta \mathrm{ppm}$) and coupling constants (Hz) were reported in the standard fashion with reference to internal chloroform. In the High resolution mass measurements were carried out using Micromass Q-ToF ESI instrument using direct inlet mode. Analytical thin-layer chromatography (TLC) were performed on pre-coated 0.2 mm thick Merck 60 F245 silica plates and various combinations of ethyl acetate and Petroleum ether were used as eluent. Visualization of spots was accomplished by exposure to UV and basic KMnO 4 solution. All compounds were purified using silica gel (100-200 mesh) column chromatography and gave spectroscopic data consistent with being $\geq 95 \%$. All the commercial reagents were used as such without further purification. Alknylcyclohexadienones were synthesized as per the prior literature. ${ }^{1}$

7a-methyl-3-(4-methylbenzoyl)-2,3,3a,7a-tetrahydrobenzofuran-5(4H)-one (2a)

Colourless oil, 8 mg (15\%) from 50.4 mg of $\mathbf{1 a}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=$ $10.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 21 \mathrm{H}), 4.15(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{ddd}, J=16.2,12.3$, $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.22-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.67(\mathrm{dd}, J=17.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.41(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl ${ }_{3}$) $\delta 197.4,197.2,153.0,144.8,133.8,129.6,128.9,128.6,80.6$, 69.1, 51.6, 45.8, 37.5, 23.4, 21.7.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3}$ 271.1334; found 271.1339.

2). Mechanistic studies

Conversion of the cyclic intermediate.

a) Conversion the cyclic intermediate

In an oven dried 3 mL dram vial equipped with a magnetic stirring bar was added $\mathbf{2 a}(3 \mathrm{mg})$ triflic acid $(0.3 \mathrm{mg})$ followed by 0.1 ml of $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}(1: 1)$. Then the vial was closed and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 3 h in an oil bath. After the completion of the reaction the solvent was evaporated under vacuum. Proton and carbon NMR of the crude reaction mixture confirmed the quantitative formation of $\mathbf{3 a}$.

Oxygen labelled water experiment.

b) Control studies with 0^{18} labelled water

In an oven dried 3 mL dram vial equipped with a magnetic stirring bar was added $\mathbf{1 b}(2.4 \mathrm{mg}$, 0.01 mmol), triflic acid ($0.3 \mathrm{mg}, 0.002 \mathrm{mmol}$), followed by 0.1 ml of $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}^{18}(1: 1)$. Then the vial was closed and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 6 h in an oil bath. After the completion of the reaction the solvent was evaporated under vacuum. The crude material was subjected to Silica gel column chromatography with 20 \% EtOAc/Petroleum ether as eluent to afford the desired product $\mathbf{3 b O} \mathbf{O}^{18}$ wherein the mass spectra showed predominant O^{18} incorporation $\mathrm{M}+\mathrm{H}=241.1057$.

Hammet studies

Sr. No	R=	SM (\%)	conversion (\%)	sp	\log (conv.X/Conv.H)
1	OMe	66	34	-0.27	0.13
2	Me	72	28	-0.17	0.05
3	H	75	25	0.0	0
4	F	82	18	0.06	-0.14
5	Br	86	14	0.23	-0.25
6	COMe^{2}	90	10	0.5	-0.4
7	NO_{2}	95	5	0.78	-0.7

In an oven dried 10 mL dram vial equipped with a magnetic stirring bar was added $\mathbf{1}$ (0.1 mmol.), triflic acid ($3 \mathrm{mg}, 0.02 \mathrm{mmol}$), followed by 1 ml of MeCN :Water ($1: 1$). Then the vial was closed and the reaction was stirred at $50^{\circ} \mathrm{C}$ for 3 h (TLC control) in an oil bath. After the completion of the reaction the solvent was evaporated under vacuum. The crude material was subjected to Silica gel column chromatography with EtOAc/Petroleum ether as eluent to isolate the remaining starting materials.

3) Experimental procedures and analytical data.

General procedure for the formation of meta-functionalised phenols.

General procedure: In an oven dried 10 mL dram vial equipped with a magnetic stirring bar was added 1a ($25.2 \mathrm{mg}, 0.1 \mathrm{mmol}$), triflic acid ($3 \mathrm{mg}, 0.02 \mathrm{mmol}$), followed by 1 ml of MeCN :Water (1:1). Then the vial was closed and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 6 h (TLC control) in an oil bath. After the completion of the reaction the solvent was evaporated under vacuum. The crude material was subjected to Silica gel column chromatography using 20% EtOAc in Petroleum ether as eluent to afford the desired product 3a weighing 24.0 mg (95%) as a colourless oil.

2-(5-hydroxy-2-methylphenyl)-1-phenylprop-2-en-1-one (3a)

Colourless oil, 24 mg (95%) from 25.2 mg of 1a
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.83(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H})$, $2.44(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 196.3,153.8,149.0,143.6,139.4,134.4,131.3,130.0,129.1$, 127.6, 127.3, 116.7, 115.3, 21.7, 19.5.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{2}$ 253.1229; found 253.1220.

2-(5-hydroxy-2-methylphenyl)-1-phenylprop-2-en-1-one (3b).

Colourless oil, 22.1 mg (93%) from 23.8 mg of $\mathbf{1 b}$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.91(\mathrm{dd}, J=8.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=8.2,2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.02(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 197.0, 154.1, 148.9, 139.0, 137.1, 132.8, 131.31, 129.9, 128.6 128.4, 127.3, 116.9, 115.5, 19.5.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{2}$ 239.1072; found 239.1065.

2-(5-hydroxy-2-methylphenyl)-1-(0-tolyl)prop-2-en-1-one (3c)

Colourless oil, 23.0 mg (91%) from 25.2 mg of $\mathbf{1 c}$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ $(\mathrm{s}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 5.33(\mathrm{br}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 198.7, 153.6, 150.2, 138.4, 138.2, 137.2, 132.0, 131.2, 131.2, 130.4, 128.7, 125.1, 116.8, 115.2, 20.0, 19.3.

HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{2}$ 253.1229; found 253.1219.

1-(3,5-dimethylphenyl)-2-(5-hydroxy-2-methylphenyl)prop-2-en-1-one (3d).

Yellow sticky solid, 24.5 mg (92%) from 26.6 mg of $\mathbf{1 d}$.
${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $_{3}$) $\delta 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.69$ $(\mathrm{m}, 2 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 6 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.1,153.8,149.0,139.2,138.0,137.3,134.4,131.3,128.0$, 127.6, 127.6, 116.8, 115.3, 21.3, 19.5.

HRMS (ESI) m/z: [M+H] ${ }^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2}$ 267.1385; found 267.1381.

2-(5-hydroxy-2-methylphenyl)-1-(4-methoxyphenyl)prop-2-en-1-one (3e).

Colourless oil, 26.0 mg (97 \%) from 26.8 mg of $\mathbf{1 e}$
${ }^{1}$ H NMR (500 MHz, DMSO) $\delta 9.30(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.97(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.75-6.59(\mathrm{~m}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}$, 3 H).
${ }^{13}$ C NMR (126 MHz, DMSO) δ 195.0, 163.6, 155.8, 149.1, 139.7, 132.3, 131.5, 129.6, 126.3, 125.4, 116.7, 115.1, 114.4, 56.0, 19.6.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{3}$ 269.1178; found 269.1170.

1-(4-fluorophenyl)-2-(5-hydroxy-2-methylphenyl)prop-2-en-1-one (3f)

Colourless oil, 23.0 mg (90%) from 25.6 mg of $\mathbf{1 f}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.94(\mathrm{dd}, J=8.4,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 5.59(\mathrm{br}, 1 \mathrm{H})$, 2.12 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 195.3,166.6(\mathrm{C}-\mathrm{F}, 1 J \mathrm{C}-\mathrm{F}=255.7 \mathrm{~Hz}), 164.6(\mathrm{C}-\mathrm{F}, 1 J \mathrm{C}-\mathrm{F}=$ 255.7 Hz), 154.0, 148.8, 138.9, 133.3, 132.5 (C-F, 3JC-F 9.2 Hz), 132.4 (C-F, 3JC-F 9.2 Hz) $131.4,127.9,127.4,116.7,115.7(\mathrm{C}-\mathrm{F}, 2 J \mathrm{C}-\mathrm{F}=21.3 \mathrm{~Hz}), 115.6(\mathrm{C}-\mathrm{F}, 2 J \mathrm{C}-\mathrm{F}=21.3 \mathrm{~Hz}), 115.6$, 19.5.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{FO}_{2} 257.0978$; found 257.0968 .

1-(4-chlorophenyl)-2-(5-hydroxy-2-methylphenyl)prop-2-en-1-one (3g)

Colourless sticky solid, 24.2 mg (89%) from 27.2 mg of $\mathbf{1 g}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~s}$, 1H) 5.36 (br, 1H), 2.11 (s, 3H).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 195.3,153.9,148.7,139.2,138.9,135.3,131.5,131.2,128.7$, 128.1, 127.4, 116.7, 115.5, 19.5.

HRMS (ESI) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{ClO}_{2}$ 273.0682; found 273.0765 .

1-(4-bromophenyl)-2-(5-hydroxy-2-methylphenyl)prop-2-en-1-one (3h)

Yellow oil, 26.0 mg (86%) from 31.6 mg of $\mathbf{1 h}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.78-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.77-6.68(\mathrm{~m}, 2 \mathrm{H}), 5.98(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 195.7,154.0,148.6,138.8,135.8,132.3,131.7,131.3,129.9$, 128.3, 128.0, 116.7, 115.6, 19.5.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{BrO}_{2}$ 317.0177; found 317.0166.

1-(4-iodophenyl)-2-(5-hydroxy-2-methylphenyl)prop-2-en-1-one (3i)

Colourless oil, 32.7 mg (90%) from 36.3 mg of $\mathbf{1 i}$
${ }^{1}$ H NMR (400 MHz, DMSO) $\delta 9.33(\mathrm{~s}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.95(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.63(\mathrm{~m}, 2 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, DMSO) $\delta 195.9,155.8,148.4,139.1,138.0,136.5,131.5,128.7,125.6$, 116.8, 116.7, 115.6, 101.9, 19.5.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{IO}_{2} 365.0038$; found 365.0025 .
methyl4-(2-(5-hydroxy-2-methylphenyl)acryloyl)benzoate (3i)

Colourless oil, 20.4 mg (69%) from 29.6 mg of $\mathbf{1 j}$
${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta 8.11(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 195.8,166.3,153.9,148.7,140.8,138.7,133.4,131.4,129.5$, 129.1, 127.5, 116.6, 115.5, 52.5, 19.5.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{4}$ 297.1127; found 297.1119.

1-(4-acetylphenyl)-2-(5-hydroxy-2-methylphenyl)prop-2-en-1-one (3k)

Colourless oil, 17.1 mg (61%) from 28.0 mg of $\mathbf{1 k}$
${ }^{1}$ H NMR (400 MHz, DMSO) $\delta 9.37(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $6.95(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.66-6.65(\mathrm{~m}, 2 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 5.91(\mathrm{~s}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}$, 3 H).
${ }^{13}$ C NMR (101 MHz, DMSO) $\delta 198.3,196.1,155.8,148.6,140.8,140.0,138.9,131.5,130.0$, $129.0,128.8,125.5,116.9,115.7,27.4,19.4$.

HRMS (ESI) m/z: [M+H] ${ }^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{O}_{3}$ 281.1178; found 281.1169.

2-(5-hydroxy-2-methylphenyl)-1-(4-nitrophenyl)prop-2-en-1-one (31)

Colourless oil, 12.1 mg (43%) from 28.3 mg of 11
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 8.30(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 194.4, 153.9, 148.4, 142.3, 138.3, 132.4, 131.6, 130.5, 129.7, 127.5, 123.58, 116.6, 115.7, 19.4.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{4}$ 284.0923; found 284.0917.

2-(5-hydroxy-2-methylphenyl)-1-(thiophen-2-yl)prop-2-en-1-one (3m)

Colourless oil, 20.0 mg (82%) from 24.4 mg of $\mathbf{1 m}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 7.67(\mathrm{dd}, J=4.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.05$ (m, 1H), $7.03(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=8.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.19$ (d, $J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~s}, 1 \mathrm{H}), 5.57(\mathrm{br}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 187.8,153.9,148.7,143.3,138.9,134.6,134.4,131.4,128.1$, 127.8, 126.5, 116.9, 115.7, 19.5.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{~S}$ 245.0636; found 245.0633

1-(9H-fluoren-2-1-(9H-fluoren-2-yl)-2-(5-hydroxy-2-methylphenyl)prop-2-en-1-one (3n).

Colourless sticky solid, 27.0 mg (83\%) from 32.6 mg of $\mathbf{1 n}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 8.13(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.61$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ (dd, $J=8.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($126 \mathbf{M H z}, \mathbf{C D C l}_{3}$) δ 196.7, $153.9,149.2,146.3,144.5,143.2,140.5,139.4,135.4$, 131.4, 129.4, 128.1, 127.6, 127.4, 127.1, 126.5, 125.3, 120.9, 119.4, 116.8, 115.4, 36.9, 19.6. HRMS (ESI) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{O}_{2}$ 327.1385; found 327.1385

2-(5-hydroxy-2-methylphenyl)-1-(naphthalen-2-yl)prop-2-en-1-one (30)

Colourless oil, 25.0 mg (87%) from 28.8 mg of $\mathbf{1 0}$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C l}_{3}$) $8.30-8.26(\mathrm{~m}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=6.8$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{dd}, J=8.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.05(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{br}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.9,153.6,150.7,138.6,135.7,133.9,131.8,131.6,131.3$, 131.0, 128.4, 128.1, 127.5, 126.5, 125.5, 124.1, 116.9, 115.3, 19.4.

HRMS (ESI) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{2} 289.1228$; found 289.1226 .

2-(2-ethyl-5-hydroxyphenyl)-1-phenylprop-2-en-1-one (3p)

Colourless oil, 24.2 mg (96%) from 25.2 mg of $\mathbf{1 p}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 7.96-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.03$ (d, $J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{br}, 1 \mathrm{H}), 2.46(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.12(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6}_{\mathbf{M H z}, \mathbf{C D C l}_{3} \text {) } \delta 196.6,153.6,148.8,138.8,137.2,133.8,132.7,129.8,129.5, ~}^{\text {, }}$ 128.5, 128.4, 117.0, 115.6, 25.8, 15.3.

HRMS (ESI) \mathbf{m} / \mathbf{z} : $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{O}_{2}$ 253.1229.; found 253.1226.

2-(5-hydroxy-2-propylphenyl)-1-phenylprop-2-en-1-one (3q)

Colourless oil, 25.3 mg (95%) from 26.6 mg of $\mathbf{1 q}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.96-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.69(\mathrm{~s}, 1 \mathrm{H}), 2.53-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.50(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 197.0,153.8,148.8,138.8,137.1,132.8,132.2,130.3,129.9$, 128.6, 128.4, 117.2, 115.6, 35.1, 24.5, 14.0.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2} 267.1385$; found 267.1394.

2-(2-butyl-5-hydroxyphenyl)-1-phenylprop-2-en-1-one (3r)

Yellow oil, $25.8 \mathrm{mg}(92 \%)$ from 28.0 mg of $\mathbf{3 r}$
${ }^{1} \mathbf{H}$ NMR ($500 \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.92(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.04(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 2.49-$ 2.28 (m, 2H), 1.50-1.44 (m, 2H), $1.36-1.19$ (m, 2H), $0.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 197.0, 153.8, 148.8, 138.8, 137.1, 132.8, 132.3, 130.2, 129.9, 128.6, 128.4, 117.2, 115.6, 33.4, 32.7, 22.6, 13.9.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2}$ 281.1541; found 281.1540 .

2-(5-hydroxy-2-isopropylphenyl)-1-phenylprop-2-en-1-one (3s)

Colourless oil, 24.7 mg (93%) from 26.6 mg of $\mathbf{1 s}$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.87(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dd}, J=8.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.01(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 2.83-2.77(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 196.8,153.4,148.8,138.6,138.2,137.1,132.7,129.9,128.9$, 128.4, 126.6, 116.9, 116.0, 30.2, 24.0.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2}$ 267.1385; found 267.1384.

2-(2-(sec-butyl)-5-hydroxyphenyl)-1-phenylprop-2-en-1-one (3t)

Colourless oil, 26.3 mg (94%) from 28.0 mg of $\mathbf{1 t}$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\delta 7.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.42$ (m, 2H), 7.06 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.82-6.76(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H})$, $5.97(\mathrm{~s}, 1 \mathrm{H}), 4.85(\mathrm{~s}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=13.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.62-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 0.70(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 196.8, 153.4, 148.9, 138.8, 137.4, 137.1, 132.7, 129.9, 128.9, $128.4,126.8,117.0,116.0,37.3,31.2,21.7,12.2$.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}_{2}$ 281.1541; found 281.1545 .

2-(5-hydroxy-2-(2-methoxyethyl)phenyl)-1-phenylprop-2-en-1-one (3u).

Colourless oil, 23.1 mg (82%) from 28.2 mg of $\mathbf{1 u}$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.60(\mathrm{~m}, 2 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 3.48(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 196.9,154.4,148.4,139.2,137.1,132.8,130.8,129.9,129.1$, 128.4, 128.0, 117.2, 115.6, 73.1, 58.5, 32.9.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{3}$ 283.1334; found 283.1328 .

General procedure for the formation of meta-enynone tethered phenols.

General procedure: In an oven dried 10 mL dram vial equipped with a magnetic stirring bar was added $4 \mathbf{a}(27.6 \mathrm{mg}, 0.1 \mathrm{mmol}),. 1 \mathrm{~mL}$ of MeNO_{2} and $150 \mathrm{mg} \mathrm{MgSO} 4.7 \mathrm{H}_{2} \mathrm{O}$ followed by triflic acid ($3 \mathrm{mg}, 0.02 \mathrm{mmol}$), Then the vial was closed and the reaction was stirred at $80^{\circ} \mathrm{C}$ for 20 mins (TLC control) in an oil bath. After the completion of the reaction the solvent was evaporated under vacuum. The crude material was subjected to Silica gel column chromatography using 20\% EtOAc in Petroleum ether as eluent to afford the desired product $5 \mathbf{a}$ weighing 25.4 mg (92%) as a colourless oil.

2-(5-hydroxy-2-methylphenyl)-5-(p-tolyl)pent-1-en-4-yn-3-one (5a).

Colourless oil, 25.4 mg (92\%) from 27.6 mg of $\mathbf{5 a}$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.44(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.80-6.72(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 5.56(\mathrm{~s}, 1 \mathrm{H}), 2.39(\mathrm{~s}$, $3 \mathrm{H}), 2.11$ ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z , ~} \mathbf{C D C l}_{3}$) $\delta 178.63,153.61,149.76,141.63,136.97,133.16,132.16$, $130.99,129.48,128.18,116.79,115.51,93.86,86.53,21.77,19.08$.

HRMS (ESI) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{2}$ 277.1229; found 277.1224.

2-(5-hydroxy-2-methylphenyl)non-1-en-4-yn-3-one (5b)

Colourless oil, 20.8 mg (86\%) from 24.2 mg of $\mathbf{5 b}$
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.03(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}), 2.42(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.38$ (m, 2H), 0.93 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\delta 178.6,153.6,149.8,137.0,132.3,130.9,128.0,116.6,115.3$, $96.3,79.2,29.7,22.0,19.0,18.8,13.5$.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}_{2} 243.1385$; found 243.1385.

2-(5-hydroxy-2-methylphenyl)dec-1-en-4-yn-3-one (5c)

Colourless oil, 21.0 mg (82%) from 25.6 mg of $\mathbf{5 c}$
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 6.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J$ $=8.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.04(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.25(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 179.2,153.7,149.8,136.7,132.9,130.9,127.7,116.7,115.5$, 97.1, 79.2, 31.0, 27.4, 22.1, 19.1, 19.0, 13.9.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{2}$ 257.1542; found 257.1540.

2-(5-hydroxy-2-methylphenyl)tetradec-1-en-4-yn-3-one (5d)

Colourless oil, 26.2 mg (84%) from 31.2 mg of $\mathbf{5 d}$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.74$ (dd, J $=8.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ (br, 1H) $2.44(\mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{br}, 10 \mathrm{H}), 0.91(\mathrm{t}, J$ $=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 178.6,153.4,149.8,136.7,132.4,130.9,128.2,116.6,115.3$, $96.4,79.2,31.9,29.4,29.3,29.0,28.9,27.7,22.7,19.1,19.0,14.1$.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{2} 313.2168$; found 313.2164

5-cyclopropyl-2-(5-hydroxy-2-methylphenyl)pent-1-en-4-yn-3-one (5e)

Colourless oil, 18.5 mg (82%) from 22.6 mg of $\mathbf{5 e}$.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl ${ }_{3}$) $\delta 7.02(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{dd}, J=8.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.68$ $(\mathrm{s}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.40(\mathrm{~m}, 1 \mathrm{H})$, $1.11-0.79(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 178.3,153.4,149.7,137.1,131.8,130.9,128.2,116.7,115.3$, 100.9, 75.1, 19.0, 9.8.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{2}$ 227.1072; found 227.1067.

Synthetic utility

Gram scale synthesis

1b
1 g (4.2 mmol)

3b
0.943 g (94.3\%)

General procedure: In an oven dried 50 mL dram vial equipped with a magnetic stirring bar was added $\mathbf{1 b}(1 \mathrm{~g}, 4.2 \mathrm{mmol}$), triflic acid ($126 \mathrm{mg}, 0.84 \mathrm{mmol}$), followed by 20 mL of MeCN :Water (1:1). Then the vial was closed and the reaction was stirred at $60^{\circ} \mathrm{C}$ for 6 h (TLC control) in an oil bath. After the completion of the reaction the solvent was evaporated under vacuum. The crude material was subjected to Silica gel column chromatography using 20% EtOAc in Petroleum ether as eluent to afford the desired product 3b weighing $0.943 \mathrm{~g}(94.3 \%)$ as a colourless sticky solid.

4-methyl-3-(1-phenylpropan-2-yl)phenol (6)

3b ($50 \mathrm{mg}, 0.21 \mathrm{mmol}$) was dissolved in 1 mL EtOAc in a round bottom flask, $10 \% \mathrm{Pd} / \mathrm{C}$ (22 mg) was added under nitrogen atmosphere. The reaction mixture was stirred under hydrogen atmosphere overnight at room temperature after which the mixture was filtered through a celite pad and concentrated under vacuum and purified by flash chromatography using 20\% EtOAc in Petroleum ether to furnish $40 \mathrm{mg}(84 \%)$ of $\mathbf{6}$ as a colourless oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta 7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{dd}, J=8.1,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4,84 (br, 1H) 3.32-3.14 (m, 1H), 2.96-2.92 (m, 1H), 2.74-2.69 (m, 1H), $2.19(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 153.9,146.8,140.9,131.1,129.1,128.2,127.5,125.9,112.6$, 112.6, 44.3, 36.8, 20.4, 18.6.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{O}$ 227.1436; found 227.1434.

3-(3-hydroxy-3-phenylprop-1-en-2-yl)-4-methylphenol (7)

3b ($50 \mathrm{mg}, 0.21 \mathrm{mmol}$) was dissolved in 1 ml MeOH in a round bottom flask, $\mathrm{CeCl}_{3} .7 \mathrm{H}_{2} \mathrm{O}$ (78.2 mg was added and the reaction was cooled to $0{ }^{\circ} \mathrm{C} .10 \mathrm{mg}$ of NaBH_{4} was then added slowly under stirring and the reaction was continued for 60 mins. The mixture was then partitioned between water and EtOAc, the organic layer was collected, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ evaporated under vacuum and purified by flash chromatography using 40% EtOAc in Petroleum ether to furnish 45.8 mg (91%) of 7 as a colourless oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.45-7.15(\mathrm{~m}, 5 \mathrm{H}), 6.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=8.2$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 1 \mathrm{H}), 5.07(\mathrm{~s}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 153.0,150.6,141.3,140.6,131.1,128.3,127.9,127.8,126.8$, 116.1, 114.3, 114.3, 77.3, 18.6.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{2}$ 241.1228; found 241.1223.

(2-(5-hydroxy-2-methylphenyl)oxiran-2-yl)(phenyl)methanone (8)

3b ($50 \mathrm{mg}, 0.21 \mathrm{mmol}$) and 6 mg of KOH were dissolved in 1 ml MeOH in a round bottom flask, the rection was cooled to $0{ }^{\circ} \mathrm{C} .24 \mathrm{mg}$ of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution was then added slowly under stirring and the reaction was continued for 30 mins. The mixture was then evaporated under vacuum and purified by flash chromatography using 20% EtOAc in Petroleum ether to furnish $47.5 \mathrm{mg}(89 \%)$ of $\mathbf{8}$ as a colourless oil.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 8.07-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{dd}, J=10.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.2,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.95(\mathrm{~s}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 196.1$ 154.0, 135.4, 134.9, 133.3, 131.7, 129.4, 129.4, 128.4, 115.8, 114.6, 63.7, 53.0, 18.8.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{3}$ 255.1021; found 255.1024.

4-methyl-3-(3-phenyl-4,5-dihydro-1H-pyrazol-4-yl)phenol (9)

3b ($50 \mathrm{mg}, 0.21 \mathrm{mmol}$) was dissolved in 1 ml EtOH in a reaction tube, 0.5 ml of hydrazine hydrate was added and the rection was stirred at $130^{\circ} \mathrm{C}$ overnight in an oil bath. The mixture was then evaporated under vacuum and purified by flash chromatography using 50\% EtOAc in Petroleum ether to furnish $51.9 \mathrm{mg}(98 \%)$ of $\mathbf{9}$ as a colourless sticky solid.
${ }^{1}$ H NMR (400 MHz, DMSO) $\delta 7.46(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.37-7.12(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=10.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.71(\mathrm{~m}$, 1H), $3.24-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (101 MHz, DMSO) $\delta 155.9,152.4,140.5,133.1,131.7,128.9,128.3,126.1,125.3$, 114.3, 114.0, 56.3, 46.8, 19.1.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}$ 253.1341; found 253.1345 .

2-(5-hydroxy-2-methylphenyl)-1-phenyl-3-(phenylthio)propan-1-one (10)

$\mathbf{3 b}(50 \mathrm{mg}, 0.21 \mathrm{mmol}), 35 \mathrm{mg}$ of thiophenol and 6.8 mg of Eosin Y were dissolved in 1 ml MeCN in a 5 ml dram vial. The reaction mixture was then stirred overnight under green LED irradiation. The mixture was then evaporated under vacuum and purified by flash chromatography using 30% EtOAc in Petroleum ether to furnish $63.6 \mathrm{mg}(87 \%)$ of $\mathbf{1 0}$ as a colourless sticky solid.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl \mathbf{H}_{3}) $\delta 7.82-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.19(\mathrm{~m}, 7 \mathrm{H})$, $7.04(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=8.2,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.33(\mathrm{br}, 1 \mathrm{H})$ $4.92(\mathrm{dd}, J=9.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=13.4,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dd}, J=13.4,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.22 ($\mathrm{s}, 3 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 200.1,154.8,137.2,136.7,136.0,133.4,132.4,130.8,129.0$, 128.7, 128.5, 126.8, 115.0, 113.9, 49.6, 37.4, 18.7.

HRMS (ESI) $\mathbf{m} / \mathbf{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$349.1262; found 349.1254.

2-(5-(benzyloxy)-2-methylphenyl)-1-phenylprop-2-en-1-one (11)

3b ($50 \mathrm{mg}, 0.21 \mathrm{mmol}$), 40 mg benzyl chloride, 6.8 mg TBAB and 14.1 mg of KOH were dissolved in 1 ml toluene in a rection tube, the rection was then heated to $80^{\circ} \mathrm{C}$ and stirred overnight in an oil bath. The mixture was then evaporated under vacuum and purified by flash chromatography using 20\% EtOAc in Petroleum ether to furnish $59.9 \mathrm{mg}(87 \%)$ of $\mathbf{1 1}$ as a brown sticky solid.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.30(\mathrm{~m}, 7 \mathrm{H}), 7.09$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H})$, 5.08 (s, 2H), $2.16(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\delta 196.3,157.1,149.2,139.3,137.3,137.1,132.6,131.2,129.8,128.6$, 128.5, 128.4, 128.3, 128.0, 127.6, 116.5, 114.6, 70.2, 19.6.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{O}_{2}$ 329.1542; found 329.1548

4-methyl-3-(3-oxo-3-phenylprop-1-en-2-yl)phenyl trifluoromethanesulfonate (12)

12, 83 \%
3b ($50 \mathrm{mg}, 0.21 \mathrm{mmol}$), 25.0 mg pyridine and 7.7 mg of DMAP were dissolved in 2 ml DCM in a round bottom flask, the rection was cooled to $0{ }^{\circ} \mathrm{C} .89 \mathrm{mg}$ of triflic anhydride was then added slowly under stirring and the reaction was continued overnight at room temperature. The mixture was then evaporated under vacuum and purified by flash chromatography using 20% EtOAc in Petroleum ether to furnish $64.5 \mathrm{mg}(83 \%)$ of $\mathbf{1 2}$ as a yellow oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 7.90(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{dd}, J=8.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(126 ~ M H z, \mathbf{C D C l}_{3}\right) \delta 195.4,147.6,147.4,140.4,136.9,136.5,132.9,131.8,129.7$,
$128.5,122.6(\mathrm{C}-\mathrm{F}, 1 J \mathrm{C}-\mathrm{F}=320.8 \mathrm{~Hz}), 122.5,120.8,120.1(\mathrm{C}-\mathrm{F}, 1 J \mathrm{C}-\mathrm{F}=320.8 \mathrm{~Hz}), 117.5(\mathrm{C}-$
$\mathrm{F}, 1 J \mathrm{C}-\mathrm{F}=320.8 \mathrm{~Hz}), 115.0(\mathrm{C}-\mathrm{F}, 1 J \mathrm{C}-\mathrm{F}=320.8 \mathrm{~Hz}), 19.9$.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S} 371.0565$; found 371.0557 .

2-(4-methyl-[1,1'-biphenyl]-3-yl)-1-phenylprop-2-en-1-one (13)

To 12 ($37 \mathrm{mg}, 0.1 \mathrm{mmol}$), 30.7 mg of phenylboronic acid, 24.2 mg of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and 43.5 mg of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in a reaction tube with stirrer was added 1 ml toluene and the reaction was continued for 24 hrs at $130^{\circ} \mathrm{C}$ under argon atmosphere in an oil bath. The mixture was then evaporated under vacuum and purified by flash chromatography using 20\% EtOAc in Petroleum ether to furnish 25 mg (84%) of $\mathbf{1 3}$ as a white sticky solid.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta 7.92(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.34(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~s}$, $1 \mathrm{H}), 6.04(\mathrm{~s}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) δ 196.4, 149.2, 140.7, 139.1, 138.7, 137.3, 134.8, 132.6, 130.8, 129.8, 128.7, 128.5, 128.4, 127.2, 127.0, 20.2.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$299.1436; found 299.1432.

2-(5-hydroxy-2-methylphenyl)decan-3-one (14)

$\mathbf{5 c}(20.5 \mathrm{mg}, 0.08 \mathrm{mmol})$ was dissolved in 0.5 ml EtOAc in a round bottom flask, $10 \% \mathrm{Pd} / \mathrm{C}$ $(8.4 \mathrm{mg})$ was added under nitrogen atmosphere. The reaction mixture was stirred under hydrogen atmosphere overnight at room temperature after which the mixture was filtered
through a celite pad and concentrated under vacuum and purified by flash chromatography using 20% EtOAc in Petroleum ether as eluent to furnish 18.4 mg (88%) of $\mathbf{1 4}$ as a yellow oil.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{5 0 0} \mathbf{~ M H z}$, CDCl $_{\mathbf{3}}$) $\delta 7.09(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=8.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.59$ (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.28(\mathrm{~m}, 5 \mathrm{H}), 1.63-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~d}$, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.30-1.15(\mathrm{~m}, 8 \mathrm{H}), 0.85(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 2 6} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 213.7,155.1,139.9,131.9,126.8,114.3,113.5,48.7,41.4$, 31.6, 29.0, 28.9, 24.0, 22.6, 18.9, 16.9, 14.0.

HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{2}$ 263.2011; found 263.2007.

(3aS,5aS,8R,8aS,13aS,13bS)-8-(hept-2-ynoyl)-3a-methyl-

1,2,3a,4,5,5a,7,8,8a,9,12,13,13a,13b-tetradecahydrocyclopenta[7,8]phenanthro[4a,4-b]furan-3,10-dione (16)

A 10 ml dram vial equipped with a magnetic stirring bar was charged $\mathbf{1 5}(10 \mathrm{mg}, 0.026 \mathrm{mmol}$), 0.3 ml of MeNO_{2} and $150 \mathrm{mg} \mathrm{MgSO} 4.7 \mathrm{H}_{2} \mathrm{O}$ followed by triflic acid $(0.8 \mathrm{mg})$. Then the vial was closed and the reaction was stirred at $80^{\circ} \mathrm{C}$ for 20 mins (TLC control) in an oil bath. After the completion of the reaction the solvent was evaporated under vacuum. The crude material was subjected to silica gel column chromatography with 40% EtOAc in Petroleum ether as eluent to afford 16 weighing 8.6 mg (78%) as a yellow oil.
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\mathbf{C D C l}_{3}$) $\delta 5.89(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=9.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{t}, J=8.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.21-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.28-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.52$ $(\mathrm{m}, 4 \mathrm{H}), 1.49-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.98-0.89(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathbf{C D C l}_{3}\right) \delta 220.2,196.4,186.0,165.7,124.8,97.5,84.2,80.0,66.6,57.9$, $50.7,48.7,47.9,40.4,37.5,36.4,35.8,32.1,31.7,31.0,29.6,22.0,21.8,21.0,18.7,13.8,13.5$.

HRMS (ESI) \mathbf{m} / \mathbf{z} : $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 423.2535$; found 423.2532.

4). References:

1. (a) Kumar, R.; Hoshimoto, Y.; Tamai, E.; Ohashi, M.; Ogoshi, S. Nat. Commun. 2017, 8, 32. (b) Takenaka, K.; Mohanta, S. C.; Sasai, H. Angew. Chem., Int. Ed. 2014, 53, 4675.
5). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectras:

CMRV-AN-7-IPR-1H
CMRV-AN-7PR-1H

cmrv-rsh-57-13c
cmiv-rsh-57-13c

$126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

cmrv-rsh-59-13c1

ϱ

$126 \mathrm{MHz}, \mathrm{CDCl}_{3}$

101 MHz, DMSO

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

13

cmr-an-7-suz-1h NNNNNNNNNNNNNNか 9
$\stackrel{\text { T }}{1}$

13

$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

16

