Supplementary Information for

An Intelligent Multidimensional Purity Analysis and Confirmation Tool

for Multiple Attribute Analysis

Jee Seong Kwak,^{+,‡} Wenyao (Peter) Zhang,[‡] Debasis Mallik,^{+,‡} and Michael G. Organ^{+,‡*}

 Flow Chemistry Facility, Centre for Catalysis Research and Innovation (CCRI) and Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, Canada, K1N 6N5
 York University, Department of Chemistry, 4700 Keele Street, Toronto, Ontario, Canada, M3J 1P3
 *Correspondence to: organ@uottawa.ca

Contents

1. Materials and Methods	S-2
Chemicals	S-2
 Supplementary Text Reaction, Sampling, and Analysis Reaction Setup Sampling Setup Analysis Setup (4-hydroxy-4-(4-nitrophenyl)-butan-2-one) Reaction Scheme (4-hydroxy-4-(4-nitrophenyl)-butan-2-one) Operating Procedure (4-hydroxy-4-(4-nitrophenyl)-butan-2-one) Oxazepam Racemization Study Analysis Setup (Oxazepam) Operating Procedure (Oxazepam) 	S-2 S-2 S-3 S-3 S-3 S-3 S-5 S-5 S-5 S-9 S-10 S-11

1. Materials and Methods

Chemicals.

Reagent grade dimethyl sulfoxide (99.7 %), (S)-(-)-5-(2-pyrrolidinyl)-1H-tetrazole (96 %), 4nitrobenzaldehyde (98 %), acetonitrile (99.8 %), and diethyl amine (99.5 %) were purchased from Sigma-Aldrich Chemical Company and used without further purification. Acetone (99.8%) was purchased from Fisher Scientific and used without further purification.

HPLC-grade hexanes, 2-propanol, water, and ethanol were purchased from Sigma-Aldrich Chemical Company.

Methanol solution of racemic oxazepam (1 mg/mL) was purchased from Sigma-Aldrich Chemical Company and used without further purification.

2. Supplementary Text

Reaction, Sampling, and Analysis.

Figures S1 and S2 illustrate various modules of the entire setup at various configurations for reaction, sampling, and analysis.

Legend. P_1 , P_2 , P_3 , P_4 : reagent pumps; P_5 , P_6 : pumps for forming nitrogen gas boundaries for reaction plugs; P_7 : pump for transporting reaction plugs; P_8 : pump for adding internal standard solution; P_9 : pump for transporting analyte to liquid handling robot; P_{LC} : LC pump; V_1 and V_2 : valves for constructing reaction plugs; V_3 : auto-sampling valve; V_1 : LC injector valve; V_{SS} : column-selector valve; V_{HC} : heart-cut valve; LHR: liquid handling robot; N: injector needle; I: Injection port; S: sampling vial; R: plug-flow reactor; H: heater; L_1 and L_2: loops for constructing reaction plugs; L_3: sampling loop; L_4: loop for adding internal standard; L_5: injection loop; L_{prime}: priming loop; HL_1 and HL_2: heart-cut loops; U_1 and U_2: unions for combining reagent streams from P_1 - P_4 ; W: Waste. M_1 and M_2: LC columns; D: detector.

Figure S1. Reaction, sampling, and analysis setups wherein valves V_1 , V_2 , and V_3 , which used for reaction and sampling, are in the first configuration; valve V_1 , which is used for injection into analytics, is in the load configuration. Valves V_{SS} and V_{HC} , which are used in the multidimensional analysis setup, are shown to move fluid through M_1 column. Sample delivery and injection modes of the injector needle are also shown.

Figure S2. Reaction, sampling, and analysis setups wherein valves V_1 , V_2 , and V_3 , which used for reaction and sampling, are in the second configuration; valve V_1 , which is used for injection into analytics, is in the inject configuration. Valves V_{SS} and V_{HC} , which are used in the multidimensional analysis setup, are shown to move fluid through M_1 column.

Reaction Setup.

Three programmable syringe pumps (P₁, P₂, and P₃; New Era) were connected to a 4-way union (U₁; SciPro). The fourth line of U₁ was connected to a 3-way union (U₂; SciPro), which was also in fluid communication with a fourth programmable syringe pump (P₄; New Era). The third line of U₂ was connected to a ten-port, two-position valve (specifically, port 10 of valve V₁; VICI). Two loops (L₁ and L₂; SS, 0.03" ID, 50 μ L each, respectively; VICI) were mounted between ports 3 and 6, and between ports 7 and 10 of V₁. Port 1 of V₁ was connected to a four-port, two-position valve (specifically, port 3 of valve V₂; VICI). Two additional programmable syringe pumps (P₅ and P₆; New Era) were connected to port 4 of V₁ and port 2 of V₂, respectively. Port 4 of V₂ was connected to a programmable syringe pump (P₇; New Era). Port 1 of V₂ and ports 5 and 9 of V₁ were connected to waste. All flow-paths among valves (V₁ and V₂), pumps (P₁ to P₇) and waste were made of PFA tubes (0.03" ID; SciPro).

Port 2 of V₁ was connected to individual reactor coils (R; SS, 0.01" for a 50 μ L reactor; 0.02" for a 65 μ L reactor, and 0.03" for a 250 and a 1000 μ L reactors; VICI), which were immersed in a bath filled with metal beads (Heidolph) that can conduct heat from a hot-plate stirrer (H; IKA) to reactor R. The other end of R was connected to a ten-port, two-position valve (specifically, port 9 of valve V₃; VICI). Port 10 of V₃ was connected to waste.

Sampling Setup.

Valve V₃ served as the bridge between the reaction setup and the sampling setup. Ports 1 and 8 and ports 2 and 5 of V₃ were connected to two additional loops (L₃ and L₄; SS; 0.03" ID, 20 μ L each; VICI), respectively. Two programmable syringe pumps (P₈ and P₉; New Era and CTC, respectively) were connected to ports 3 and 7 of V₃, respectively. Port 6 of V₃ was connected to a flexible PFA tube (0.03" ID, 1000 μ L; CTC) that was connected to a configurable injector needle (N; Figure S1). Needle N has a side port, which could be closed by a liquid handling robot (LHR; CTC) in one mode (mode A, which was used for injection; Figure S1) and opened in another mode (mode B, which was used for sample delivery; Figure S1). A robo-tic arm of LHR was programed to move on top of a capped sampling vial (S), pierce through the cap of vial using N, and deliver a reaction specimen into S using mode B of needle N. LHR was also equipped with a needle cleaning station (not shown). Port 4 of V₃ was connected to waste.

Analysis Setup (4-hydroxy-4-(4-nitrophenyl)-butan-2-one).

Injector needle N (Figure S1) was also used for analytical injections. During analytical injections, the sideport of N was closed (mode A; Figure S1). Needle injected analytical samples into a vertical port (specifically, port 1 through vertical cup I) of a six-port, two-position valve (valve V_I; CTC). An injection loop (L_5 ; SS, 0.01" ID; 20 μ L; VICI) was connected between ports 2 and 5 of V₁. Port 2 of V₁ was connected to waste. Port 3 of V₁ was connected to a quaternary LC pumps of Agilent 1260 Infinity LC system with built-in degasser. Port 4 of V₁ was connected to a fourteen-port, six-position stream selector valve (specifically, port 7 of valve Vss; Agilent). Ports 2 and 2' were connected by a loop (L_{prime}; VIPER, 0.005" ID; Thermo-Fisher Scientific). Port 7' of V_{SS} was connected to the upstream end of PDA detector D (Agilent), which is a part of the 1260 system. Ports 1' and 3' were connected to a Luna 5 μ m Silica LC column (M₁; 100 x 4.6 mm; Phenomenex) and a Lux 5 µm Cellulose-2 LC column (M₂; 250 x 4.6 mm; Phenomenex), respectively. Downstream ends of columns M_1 and M_2 were connected to a twenty-position, ten-port valve (specifically, ports 8 and 4 of valve V_{HC} , respectively; VICI), which was equipped with two heart-cut loops (HL₁ and HL₂; SS; 0.03" ID; 100 μ L and 140 μ L, respectively; VICI). Port 1 of V_{HC} was connected to the downstream end of the PDA detector. Ports 3 and 9 of V_{HC} were connected to ports 3 and 1 of V_{SS} , respectively. Port 6 of V_{HC} was connected to waste. Ports 4, 4', 5, 5', 6, and 6' were closed by dead-end nuts. All analytical valves (V_I, V_{SS}, and V_{HC}), pump P_{LC}, and detector D were connected using VIPER piping (0.005" ID; Thermo-Fisher Scientific). Valves (V1, V2, V3, and V1, and V_{SS}) were equipped with standard rotor that simultaneously connect adjacent ports of the stator. Valve V_{HC} was equipped with a custom rotor with 8 curved slots that connect a specific set of ports on its stator leaving certain ports disengaged from pump P_{LC}.

All twenty positions (C-1 to C-20), which are 18° apart from each other, of valve V_{HC} are shown in Figure S3.

Owing to the unique design of eight curved slots on the rotor (US provisional application 63/045,388) and the unique arrangement of V_I, V_{SS}, V_{HC}, and D (US granted 10, 585, 071), the multidimensional chromatographic platform is capable of delivering six unique configurations that are capable of arresting any portion of the eluent from a chromatographic run and releasing the portion after waiting any amount of time without ever stopping the ongoing chromatographic run. Five functional configurations of valve V_{HC} are:

<u>The first configuration</u>, wherein the eluent carrying an analytical sample moves from M_1 to HL_1 without establishing fluid communication between P_{LC} and HL_2 (shown in Figure S1 or S2).

<u>The second configuration</u>, wherein the eluent carrying an analytical sample moves from M_1 to HL_2 without establishing fluid communication between P_{LC} and HL_1 (shown in Figure S1 or S2).

<u>The third configuration</u>, wherein the eluent carrying an analytical sample moves from M_1 to HL_2 while maintaining fluid communication between P_{LC} and HL_1 (shown in Figure S1 or S2).

<u>The fourth configuration</u>, wherein the eluent carrying an analytical sample moves from M_2 to HL_1 without establishing fluid communication between P_{LC} and HL_2 (shown in Figure S1 or S2).

<u>The fifth configuration</u>, wherein the eluent carrying an analytical sample moves from M_2 to HL_2 without establishing fluid communication between P_{LC} and HL_1 (shown in Figure S1 or S2).

Figure S3. Twenty positions of valve V_{HC} were shown. The rotor was moved in counter-clockwise direction by 18° to achieve these positions.

Reaction Scheme (4-hydroxy-4-(4-nitrophenyl)-butan-2-one).

The aldol reaction shown in Scheme S1 was used as a model proof-of-concept reaction.

Scheme S1. Asymmetric synthesis of 4-hydroxy-4-(4-nitrophenyl)-butan-2-one.

Operating Procedure.

All flow-paths were primed with acetonitrile prior to operating the entire setup. Minute variation in elution time is intelligently adjusted by the operating software (screenshot of GUI is shown in Figure S4).

A 0.3 M solution of 4-nitrobenzaldehyde in DMSO, a 8.1 M solution of acetone in DMSO, and a 0.1 M solution of (*S*)-(-)-5-(2-pyrrolidinyl)-1H-tetrazole in DMSO were aspirated in three Norm-ject luer-lock plastic syringes (3 mL; Fisher Scientific), which were mounted on pumps P₁, P₃, and P₄. A Norm-ject syringe (5 mL; Fisher Scientific), which was loaded with DMSO, was mounted on pump P₂. Valves V₁, V₂, and V₃ were configured to remain in first positions (as shown in Figure S1). In this position (the first position of V₁ and V₃), V₁ and V₃ connect ports 1 and 10, 2 and 3, 4 and 5, 6 and 7, and 8 and 9 of respective valves. Valve V₂ connects ports 1 and 2, and 3 and 4 in this position (the first position of V₂). All reagents and DMSO were first flowed through U₂ to W via ports 8 and 9 of V₂ at a net flow-rate of 60 μ L/min for 1.5 min. Individual flow-rates of pumps vary based on a specific stoichiometry of a reaction condition under trial (Table S1).

	Flowrate (<i>mL</i> /min)			
Entry	P1	P ₂	P ₃	P4
1	10	10	10	30
2	10	5	15	30
3	10	15	5	30
4	10	25	10	15
5	10	10	10	30
6	10	5	15	30
7	10	0	10	40
8	10	10	10	30
9	10	10	10	30
10	10	10	10	30
11	10	10	10	30
12	10	10	10	30
13	10	10	10	30

Table S1. Flow-rates of reagent pumps (P1-P4) to conduct all sixteen reaction optimization experiments.

14	10	10	10	30	
15	10	10	10	30	
16	10	10	10	30	

Table S2. Tabulated process parameters and quality attributes of the reaction of Scheme S1.

Entry	Equiv. of 2	Equiv. of 3	Reaction temp. (°C)	Reactor ID (cm)	Reactor length (cm)	Flow-rate (μL/min)	Residence time (min)	Yield of 6 (%)	Yield of 5 (%)	Enantiomeric excess (%)
1	27	0.10	60	0.076	219.3	200	5	2	17	70
2	40.5	0.10	60	0.076	219.3	100	10	4	52	72
3	13.5	0.10	60	0.076	219.3	100	10	3	25	79
4	27	0.50	60	0.076	219.3	100	10	3	37	76
5	27	0.10	60	0.076	54.8	25	10	5	52	76
6	40.5	0.10	60	0.076	54.8	25	10	3	42	74
7	27	0.13	60	0.076	54.8	25	10	4	41	75
8	27	0.10	60	0.076	219.3	100	10	5	56	73
9	27	0.10	60	0.076	219.3	50	20	2	29	72
10	27	0.10	60	0.076	219.3	33.3	30	7	87	73
11	27	0.10	23	0.076	219.3	100	10	1	17	84
12	27	0.10	23	0.051	33.5	6.8	10	2	30	80
13	27	0.10	23	0.076	219.3	33.3	30	2	39	83
14	27	0.10	23	0.025	98.7	1.7	30	3	43	83
15	27	0.10	23	0.025	98.7	0.8	60	2	41	83
16	27	0.10	23	0.025	33.5	1.1	60	5	67	84

Valves V₁, V₂, and V₃ were configured to second positions (as shown in Figure S2). In this position (the second position of V₁ and V₃), V₁ and V₃ connect ports 1 and 2, 3 and 4, 5 and 6, 7 and 8, and 9 and 10 of the respective valves. Valve V₂ connects ports 1 and 4, and 2 and 3 in this position (the first position of V₂). Flow-path between port 3 of V₂ and port 1 of V₁ and loop L₂ were filled with nitrogen gas from pumps P₅ and P₆, respectively. At the same time, L₁ was filled with reagents and DMSO from pumps P₁ to P₄. The mixture of reagents and DMSO in L₁ gave a reaction plug representing a reaction stoichiometry under trial.

Valves V₁, V₂, and V₃ were configured back to first positions (Figure S1). Pump P₅ moved the reaction plug, which was sandwiched between two nitrogen gas plugs, to loop L_3 via reactor R, which was set at a specific temperature. Heater H was set to heat SS beads to a specific temperature for 30 min prior to introducing the reaction plug in the reaction zone. Also during this time, pump P₉, which was equipped with a 0.05 M solution of 2-methoxy naphthalene (internal standard for analysis), filled loop L_4 .

Valves V₁, V₂, and V₃ were configured back to second positions (Figure S2). Pumps P₁, P₂, P₃, and P₄ filled up loop L₁ with a new mixture of reagents and DMSO representing a new reaction stoichiometry for another trial run. Pumps P₅ and P₆ filled up respective flow-paths with nitrogen gas for the second run. Pump P₈ moved the reaction specimen from the first trial run (from loop L₃) along with a fixed volume of the internal standard solution (from loop L₄) to a sampling vial (S) using N (in mode B; Figure S1) using acetonitrile as a transport fluid. Specifically, first 1100 μ L of the transport fluid between port 6 of V₃ and N was discarded and next 1500 μ L fluid was collected in S. This 1500 μ L acetonitrile sample was used as the injectable for LC analysis. The robotic arm of LHR was moved to the cleaning station (not shown) and additional 1500 μ L of acetonitrile was pumped through the flow-paths in question to ensure that the transfer tube remained clean and primed for next sampling.

A 4 μ L sample of the injectable was injected into loop L₅ of V₁ by LHR from the load configuration of V₁ (Figure S1). Valve V_1 was moved to the inject configuration (Figure S2). Valves V_{SS} and V_{HC} were configured to move the injectable in L_5 of V₁ to M₁ using appropriate mobile phase (eluent) from pump P_{LC} (Figure S2). The chromatographed injectable moved downstream of M_1 and chromatographed entities pass through detector D, which registered (l=278nm) individual entities as chromatographic peaks. Valve V_{HC} was rotated appropriately to isolate a portion of the eluent representing chromatographic peak of 8.7 min in HL₁. The remaining portion of the eluent was flowed through M_1 for another 2.3 min to complete the first-dimension portion of the multidimensional chromatographic run in 10 min (Figure S5). Valve V_{HC} was appropriately rotated again to move the isolated portion of HL_1 through M_1 for a second time. Chromatographic peak at 19.6 min represented the portion passing through D for a second time. The chromatogram bearing this peak constitutes the second-dimension portion of the multidimensional chromatogram. A portion of the eluent representing the peak from the second-dimension portion of the multidimensional chromatogram was isolated in loop HL2. The portion was kept in HL2 for another 3.6 min, after which V_{SS} and V_{HC} were appropriately configured to move the portion from HL_2 to M_2 , which resolved the portion into both enantiomers. Detector D registered the enantiomers in the third-dimension portion of the multidimensional chromatogram. Peak at 38.1 min representing the first of the two enantiomers was recaptured in loop H_{L_2} and sent back to M_2 to give the fourth-dimension portion of the multidimensional chromatogram. Mobile phase for the Aldol reaction experiment (Scheme S1) was a 70:30 isocratic mixture of hexane:2-propanol at a net flow-rate of 0.75 mL/min.

Figure S4. Screenshot of graphical user interface (GUI) running IMPACT.

Sub-window in top-left corner allows end-user to set parameters for detector D. Top-right fields of GUI allow end-users to choose post-reaction auto-sampling parameters. Bottom-left sub-window is used for setting LC methods. Bottom-right sub-window is used for setting parameters for valve V_{HC} configurations. The underlying software uses set parameters as a guideline to intelligently identify target analyte peaks that are to be isolated in a heart-cut loop and injected later from the loop. For example, row 1 of the heart-cut method window indicates that the first-dimension run (type: injection to M₁; column#6 of GUI) starts at t=0 min (column#1 of GUI). Valve V_{HC} moves after t=8.5 min (column#3 of GUI) to isolate a portion of the eluent in a heart-cut loop based on hard-coded sequence (shown in top-middle portion of the GUI). The actuation of V_{HC} takes place when detector D registers the first peak after 8.5 min of elution time with a peak height of 10 units or greater (column#4 of GUI). The software reconfigures V_{HC} to move to the next position after another 8 seconds (column#5 of GUI) using path 1 of valve V_{SS} (in other words, port 1 and 1' are in fluid communication with P_{LC} ; column#7 of GUI). When valve V_{HC} is re-actuated to divert the isolated portion to M_1 or M_2 , valve V_{HC} stays in the re-actuated position (diverting position) for 1 min (column#2 of GUI).

Figure S5. An example chromatogram from IMPACT analysis of model reaction (Scheme S1). Enantiomers **5a** and **5b** appear as $5-1_3$ and $5-2_3$ in the chromatogram; IMPACT is not currently equipped with a detector that can individually assign stereochemical structure of **5a** or **5b** to peak $5-1_3$ or $5-2_3$. 2-methoxynaphthalene was used as internal standard (ISTD). The heart-cutting events were indicated with red boxes in the chromatogram.

All actions from injection of a reaction specimen into V₁ onward are tabulated below (Table S3).

Time (min)	Action
Equilibration	P _{LC} : 0.75 mL/min hexanes:2-propanol (70:30)
	V _I : inject
	V _{ss} : C-1 (1-1')
	V _{HC} : C-1
	D: $\lambda = 278 \text{ nm}$
Inject	Needle mode: A
preparation	Needle moves to wash station on LHR; wash needle exterior
	Needle moves to waste station on LHR; Needle mode: B; wash needle interior
	Needle mode: A
	Needle moves to home position
Inject sample	V _{HC} : C-9
	Needle moves to sample vial on LHR; aspirate 4 μ L;
0 min	Needle moves to port 1 of Vi; Vi: load;
	Needle dispenses 4 μ L; V _I :inject (initiation of first dimension)
	Needle moves to wash station on LHR; wash needle exterior
	Needle moves to waste station on LHR; needle mode: B; wash needle interior
	Needle mode: A
	Needle moves to home position

Table S3. Sequence of events to form chromatogram of Figure S5B.

8.8 min	V _{HC} : C-10 (trapped for 9 seconds)
10 min	V _{HC} : C-11 (initiation of second dimension)
19.65 min	V _{HC} : C-9 (trapped for 12 seconds)
21 min	V _{HC} : C-3 (3-3') (initiation of third dimension)
22 min	V _{HC} : C-11
38.2 min	V _{HC} : C-20 (trapped for 13 seconds)
46 min	V _{HC} : C-9 (initiation of fourth dimension)
71 min	Vss: C-1 (1-1')
75 min	End of chromatogram

Product **6** (Scheme S1) was prepared in-house for chromatographic referencing and detector calibration purposes (Figure S6). Internal standard 2-methoxy naphthalene (99 %) was purchased from Sigma Aldrich Chemical Company. Impurity standard 4-(p-nitrophenyl)-3-buten-2-one (99 %) was purchased from Toronto Research Chemicals Inc. and was used without further purification.

Figure S6. Internal calibration curves for 4-nitrobenzaldehyde (1), 4-hydroxy-4-(p-nitrophenyl)-butan-2-one (**5a**/**5b**), and 4-(p-nitrophenyl)-3-butene-2-one (**6**) are shown. Concentration of analytes were calculated from response ratio values, which were obtained from the chromatogram, according to the equation below:

$$Response \ ratio = \frac{area \ under \ analyte}{area \ under \ the \ internal \ standard}$$

Oxazepam Racemization Study.

A methanol solution of racemic oxazepam (Figure S7) was injected into V₁ to conduct this study. In summary, both enantiomers were separated using a Lux 5 μ m Cellulose-2 LC column (250 x 4.6 mm; Phenomenex) and individual enantiomers were chromatographed through a Luna 5 μ m Silica LC column (100 x 4.6 mm; Phenomenex). Downstream ends of columns M₁ and M₂ were connected to a twenty-position, ten-port valve (specifically, ports 8 and 4 of valve V_{HC}, respectively; VICI), which was equipped with two heart-cut loops (HL₁ and HL₂; SS; 0.03" ID; 1000 μ L for both; VICI). The chromatographed portion was re-circulated through the Cellulose-2 LC column for a second time to assess impact on the stability of individual enantiomers during analysis. Figure S8 shows relevant IMPACT chromatograms for this study.

Figure S7. Enantiomers of oxazepam.

Figure S8. IMPACT analysis on oxazepam (R-OX/S-OX). A racemic mixture of oxazepam was injected into a chiral column first (the first dimension) to observe peak OX-1₁ and OX-2₁. The eluent carrying one of the pure enantiomers (OX-2₁ in Figure S8A and OX-1₁ in Figure S8B) is re-chromatographed first through an achiral column (the second dimension) to observe OX-2₂ in Figure S8A and OX-1₂ in Figure S8B and then through the chiral column (the third dimension) to assess on-column stability of oxazepam enantiomers in the achiral column. The heart-cutting events were indicated with red boxes in the chromatograms.

Analysis Setup (Oxazepam).

Ports 1' and 3' of valve V_{SS} were connected to a Luna 5 μ m Silica LC column (M₁; 100 x 4.6 mm; Phenomenex) and a Lux 5 μ m Cellulose-2 LC column (M₂; 250 x 4.6 mm; Phenomenex), respectively (Figure S1). Mobile phase for the racemization study of oxazepam was a 80:20 isocratic mixture of hexane:ethanol with 0.1% diethylamine in each at a net flow-rate of 1 mL/min. Racemic Oxazepam samples were placed in sampling vials of LHR.

Operating Procedure.

A 4 μ L of the injectable in S was injected into loop L₅ of V₁ from the load configuration of V₁ (Figure S1). Valve V₁ was moved to the inject configuration (Figure S2). Valves V_{SS} and V_{HC} were configured to move the injectable in L₅ of V₁ to M₂ using appropriate mobile phase (eluent) from pump P_{LC} (Figure S2). The chromatographed injectable moved downstream of M₂ and chromatographed entities pass through detector D, which registered (*l*=320 nm) individual entities as chromatographic peaks. Valve V_{HC} was rotated appropriately to isolate a portion of the eluent representing one of the two enantiomeric peaks (OX-1 or OX-2) in HL₁. The remaining portion of the eluent was flowed through M₂. Valve V_{HC} was appropriately rotated again to move the isolated portion of HL₁ through M₁. A portion of the eluent representing peak OX-1 or OX-2 was isolated in loop HL₂. The portion was kept in HL₂ until the run through M₁ is complete, after which V_{SS} and V_{HC} were appropriately configured to move the portion of HL₂ to M₂ for a second time. Detector D registered the enantiomers in the third-dimension portion of the multidimensional chromatogram. All actions from injection of the sample into V₁ onward were tabulated below (Table S4).

Time (min)	Action
Equilibration	P _{LC} : 1.00 mL/min hexanes (0.1% diethylamine):ethanol (0.1% diethylamine) (80:20)
	V ₁ : inject
	Vss: C-3 (3-3')
	V _{HC} : C-1
	D: $\lambda = 320 \text{ nm}$
Inject	Needle mode: A
preparation	Needle moves to wash station on LHR; wash needle exterior
	Needle moves to waste station on LHR; Needle mode: B; wash needle interior
	Needle mode: A
	Needle moves to home position
Inject sample	V _{HC} : C-9
	Needle moves to sample vial on LHR; aspirate 4 μ L;
0 min	Needle moves to port 1 of V ₁ ; V ₁ : load;
	Needle dispenses 4 μ L; Vı: inject (initiation of first dimension)
	Needle moves to wash station on LHR; wash needle exterior
	Needle moves to waste station on LHR; needle mode: B; wash needle interior
	Needle mode: A
	Needle moves to home position
22.1 min	V _{HC} : C-11 (trapped for 60 seconds)
31 min	Vss:C-1 (1-1') (initiation of second dimension)
39.1 min	V _{HC} :C-9 (trapped for 60 seconds)
41 min	V _{SS} : C-3 (3-3') (initiation of third dimension)
71 min	End of chromatogram

Table S4. Sequence of events to form chromatogram of Figure S8C.