Supporting Information

Iridium-doping boosting the electrochemical performance of lithium rich cathodes for Li-ion batteries

Yu Huang^{a#}, Kai Wu^{a#}, Ronghui Hao^a, Wenkang Miao^a, Yueling Cai^a, Peng Wang^a, Jipeng Cheng^{c,d}, Zihan Wang^a, Qianqian Li^{a*}, Bingkun Guo^{a*}, Anmin Nie^{a, b*}

^aMaterials Genome Institute, Shanghai University, Shanghai 200444, China

^bCenter for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China

^cDepartment of Materials Science and Engineering, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China

^dSchool of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China [#]These authors contributed equally to the work.

* To whom correspondence should be addressed. E-mails: <u>giangianli@shu.edu.cn</u> (Qianqian Li), <u>guobingkun@shu.edu.cn</u> (Bingkun Guo), and <u>anmin@ysu.edu.cn</u> (Anmin Nie)..

Number of pages: 4

Number of Figures: 6

Number of Tables: 2

Figure S1. XRD of $Li_2(Ir_xMn_{1-x})O_3$ (x = 0, 0.05 and 0.10) powder particles at 650 °C.

Figure S2. The XPS of Li₂(Ir_{0.05}Mn_{0.95})O₃-850°C sample.

Figure S3. Electron energy loss spectroscopy (EELS) profile of the Li_2MnO_3 before and after iridium doping. (a) The typical O-K and Mn-L edge of these two specimens. (b) and (c) are the corresponding magnification of the squared region in (a).

Figure S4. Powder X-ray diffraction pattern and Rietveld refinement profile of Li₂MnO₃-850°C.

Figure S5. Schematic illustrations of crystal structures O_3 -type of $Li_2(Ir_xMn_{1-x})O_3$.

Figure S6. Cycling performances of (a) Li_2MnO_3 -1050°C and (b) $Li_2(Ir_{0.1}Mn_{0.9})O_3$ -1050°C in a voltage window of 2.0-4.8V.

Table S1. The values of XPS elemental peaks for $Li_2MnO_3-850^{\circ}C$, $Li_2(Ir_{0.05}Mn_{0.95})O_3-850^{\circ}C$ and $Li_2(Ir_{0.1}Mn_{0.9})O_3-850^{\circ}C$.

	Li ₂ MnO ₃ -850°C	Li ₂ (Ir _{0.05} Mn _{0.95})O ₃ -850°C	Li ₂ (Ir _{0.1} Mn _{0.9})O ₃ -850°C	
Li 1s	54.15 eV	54.21 eV	54.88 eV	
O 1s ₁	529.01 eV	528.97 eV	529.10 eV	
O 1s ₂	531.14 eV	531.22 eV	531.46 eV	
$Mn^{3+} 2p_{3/2}$	641.43 eV	641.49 eV	641.65 eV	
$Mn^{3+} 2p_{1/2}$	652.78 eV	652.96 eV	653.09 eV	
$Mn^{4+} 2p_{3/2}$	642.31 eV	642.47 eV	642.68 eV	
$Mn^{4+}2p_{1/2}$	653.79 eV	653.91 eV	654.17 eV	
$Ir^{4+} 4f_{7/2}$		62.81 eV	63.11 eV	
$Ir^{4+} 4f_{5/2}$		65.91 eV	66.14 eV	

Table S2. Energies (eV) of the Mn L_3 and L_2 edge peak, the integrated area ratio of L_3/L_2 , and the Mn³⁺/Mn⁴⁺ ratio.

Sample	L_3	L_2	$I(L_3)/(L_3)$	Mn ³⁺	Mn ⁴⁺	Ι
	main	main	$_2$) ratio	main	main	$(Mn^{3+})/(Mn^4)$
	peak (eV)	peak (eV)		peak (eV)	peak (eV)	⁺) ratio
Li ₂ Mn	645.0	655.9	1.67	643.3	645.6	0.18
O_3	2	1		7	2	
Ir-	644.9	656.3	1.63	643.7	645.8	0.24
Li_2MnO_3	2	5		3	1	