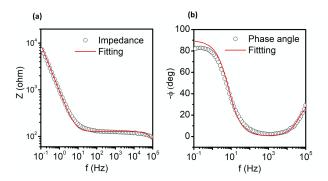
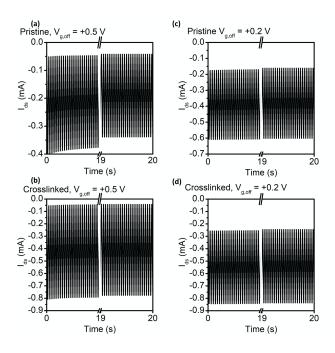

Supporting Information

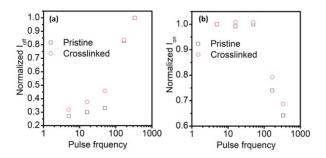
Crosslinked PEDOT:PSS Organic Electrochemical
Transistors on Interdigitated Electrodes with
Improved Stability

Kan Tang, Wujian Miao, Song Guo*

Department of Chemistry and Biochemistry, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States


^{*} E-mail song.guo@usm.edu.


Figure S1. *I-V* curves of PEDOT:PSS films in PBS buffer containing 0.1 M NaCl for 10 consecutive measurements. (a) Pristine PEDOT:PSS measured every 10 s.(b) Pristine PEDOT:PSS measured every 5 minutes. (c) Crosslinked PEDOT:PSS measured every 10 s. (d) Crosslinked PEDOT:PSS measured every 5 minutes.


Figure S2. Transconductance of PEDOT:PSS OECTs as a function of gate bias (V_g). Mobility estimations of both pristine (a) and crosslinked (b) OECTs can be achieved by fitting the slopes of transconductance curves.

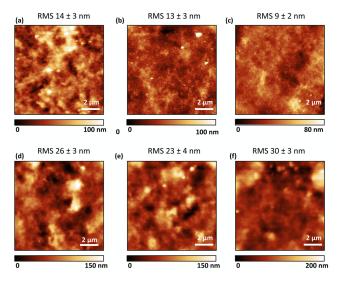

Figure S3. Bode plots of electrochemical impedance spectroscopy for PEDOT:PSS film. (a) Impedance *Z*. (b) Phase angle. Electrochemical impedance spectroscopy (EIS) for determination of capacitance was conducted in a CHI 660A electrochemical workstation from 10 kHz to 0.1 Hz. PEDOT:PSS film is deposited on FTO glass substrate via spin-coating at 3000 rpm. The surface area of the film is about 0.7 cm² and film thickness is about 60 nm. EIS data was measured in 0.1M NaCl aqueous solution, using Ag/AgCl as the reference electrode and a Pt mesh as the counter electrode. DC offset potential was chosen to be zero and an AC amplitude of 10 mV is used. To fit the EIS data, equivalent circuit like R_sC or Rs(Rp||C) was adopted. The volumetric capacitance (C*) of PEDOT:PSS is determined to be about 40 F/cm³.

Figure S4. Zoomed-in views of the first 50 cycles (0-1s) and last 50 cycles (19-20s) of corresponding results on pulsed gate bias stability in Figure 6. (a) Pristine, $V_{\rm g, \, off} = +0.5 \, \rm V$. (b) Crosslinked, $V_{\rm g, \, off} = +0.5 \, \rm V$. (c) Pristine, $V_{\rm g, \, off} = +0.2 \, \rm V$. (d) Crosslinked, $V_{\rm g, \, off} = +0.2 \, \rm V$. Note that $V_{\rm g, \, on} = -0.5 \, \rm V$ and $V_{\rm ds} = -0.5 \, \rm V$ are for all cases.

Figure S5. Normalized drain current response as a function of pulse frequency. (a) Normalized "on" state current (I_{on}). (b) Normalized "off" state current (I_{off}). Note that in pulse experiments, $V_{g, off} = +0.2 \text{ V}$, $V_{g, on} = -0.5 \text{ V}$, $V_{ds} = -0.5 \text{ V}$.

Figure S6. Atomic force microscopy topography images of PEDOT:PSS films. (a) Pristine film. (b) Pristine film soaked in PBS buffer for 30 mins. (c) Prisitne film after 500 on/off cycles at $V_g = +0.5$ V to -0.5 V, $V_{ds} = -0.5$ V. (d) Crosslinked film. (e) Crosslinked film soaked in PBS buffer for 30 mins. (f) Crosslinked film

after 500 on/off cycles at V_g = +0.5 V to -0.5 V, V_{ds} = -0.5 V. All samples were blow dried by N₂ before AFM measurement.