Supporting information

Structure and mechanism of *Pseudomonas aeruginosa* PA0254/HudA, a prFMNdependent pyrrole-2-carboxylic acid decarboxylase linked to virulence

Karl A.P. Payne^{1§}, Stephen A. Marshall¹, Karl Fisher¹, Stephen E.J. Rigby¹, Matthew J. Cliff¹, Reynard Spiess¹, Diego M. Cannas², Igor Larrosa², Sam Hay¹, David Leys^{1*}

¹Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK

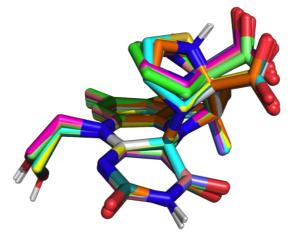
²Department of Chemistry, University of Manchester, Chemistry Building, Oxford Road, Manchester, M13 9PL, UK

^spresent address :FBRH, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK

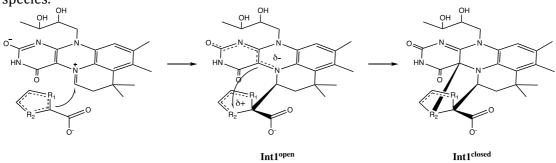
*david.leys@manchester.ac.uk

DFT Supporting Information:

	Int1 ^{open}	Int1 ^{closed}	Int1 ^{open} –Int1 ^{closed} (kJ/mol)
P2C	-1580.872256	-1580.875149	+7.6
F2C	-1600.725775	-1600.738391	+33.1
T2C	-1923.710723	-1923.721422	+28.1
Im2C	-1596.912481	-1596.897529	-39.3*
Im2C-H+	-1597.369815	Not stable	-
Im4C	-1596.921557	-1596.93624	+38.5


Table S1. HF energy (hartrees) computed for the Int1^{closed} adducts of P2C, F2C, T2C, Im2C and Im4C with prFMN in implicit water.

* note that only Im2C has a more stable Int1^{open} adduct relative to Int1^{closed}.


Table S2. Natural charges computed for the substrate moiety of the Int1^{open} and Int1^{closed} adducts of P2C, F2C, T2C, Im2C and Im4C with prFMN in implicit water.

	Int1 ^{open}	Int1 ^{closed}	Int1 ^{open} – Int1 ^{closed}
P2C	-0.36	-0.90	+0.53
F2C	-0.56	-0.91	+0.36
T2C	-0.62	-0.93	+0.31
Im2C	-0.49	-1.13	+0.65
Im2C-H+	-0.10*	Not stable	-
Im4C	-0.50	-0.91	+0.41

* note that Im2C-H⁺ has a neutral charge, whereas all other substrates/inhibitors have a charge of -1.

Figure S1. Alignment of the Int1^{open} and Int1^{closed} prFMN- P2C, F2C, T2C, Im2C and Im4C species.

Scheme S1. The DFT models used in this study, showing a 2-step mechanism for the formation of Int 1. In all cases except for protonated Im2C, there is partial electron transfer from the substrate to the prFMN to form the ring-open adduct. The ring closed adduct is formed by electron transfer back from the prFMN to the substrate moiety of the adduct.