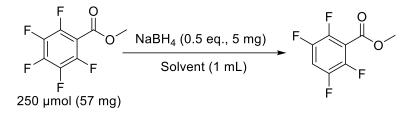
Catalyst-free Hydrodefluorination of Perfluoroarenes with NaBH₄

Timothy D. Schoch, Mukulesh Mondal, and Jimmie D. Weaver*

Department of Chemistry, Oklahoma State University, Stillwater, OK 74078 jimmie.weaver@okstate.edu

Supporting Information

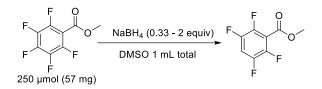

Table of Contents

- I. General Experimental S2
- II. Initial Optimizations S2
- III. Substrate Syntheses S4
- IV. HDF Procedures S7
- V. NMR Demonstration of Deprotection of N,N-(boc)₂-tetrafluoroaniline S12
- VI. Product Stability Experiment S13
- VII. Dye Synthesis S14
- VIII. Contrathermodynamic Styrenoid E/Z Isomerization S14
- IX. References S18
- X. Spectra S19

General Experimental : - All reagents were obtained from commercial suppliers (Aldrich, VWR, TCI chemicals, Oakwood chemicals, Alfa Aesar) and used without further purification unless otherwise noted. Reactions were monitored by thin layer chromatography (TLC), obtained from sorbent technology Silica XHL TLC Plates, w/UV254, glass backed, 250 µm, 20 x 20 cm visualized with ultraviolet light, and GC-MS (QP 2010S, Shimadzu equipped with auto sampler), also by aliquots subjected to ¹⁹F NMR described below. Contrathermodynamic isomerization was set up in a light bath equipped with a linear vertical array of 1 W 447 nm LEDs. Solvents were used as received, stored over 4 Å molecular sieves except DMSO and THF, which were first distilled from CaH₂ and Na metal respectively and stored under argon. Flash chromatography was carried out with Merck 60 Å, mesh 230-400 silica gel; all compounds that were purified by flash chromatography utilized a gradient of hexanes and ethyl acetate (or DCM) unless otherwise noted. NMR spectra were obtained on 400 MHz Bruker Avance III spectrometer or a Bruker NEO 600 MHz spectrometer equipped with BBO BBF-H-D-05 SmartProbe. ¹H, ¹⁹F and ¹³C NMR chemical shifts are reported in ppm relative to the residual proteo solvent peak (with ¹⁹F spectra referencing the residual solvent indirectly using the tabulated IUPAC standard ratio, Ξ , derived from CFCl₃).¹ Fluorescence spectroscopy was performed with a Cary Eclipse Fluorescence Spectrophotometer and UV-vis absorbance spectroscopy was performed with a Shimadzu UV-2600 UV-vis spectrophotometer. HRMS was obtained with a Thermo Scientific Orbitrap Fusion Tribrid Mass Spectrometer, utilizing the quadrupole mass analyzer.

Initial Optimizations

Scheme 1. Solvent Optimization



6 NMR tubes were each charged with a benzene d⁶ capillary, 125 μ mol (5 mg) of NaBH₄, and 1 mL of methanol, ethanol, 1,2-dimethoxyethane, tetrahydrofuran, dimethylsulfoxide, or dimethylformamide respectively. Each tube was agitated under sonication until it became a homogeneous solution of NaBH₄; however, tetrahydrofuran and 1,2-dimethoxyethane did not completely dissolve and remained suspensions. To each tube was then carefully added 250 μ mol (57 mg) of methyl pentafluorobenzoate (MPFB), which caused some effervescence in the samples with methanol and to a lesser degree, ethanol. The tubes were left sitting at room temperature for 10 hours before the addition to each of fluorobenzene (10 μ L, 106 μ mol) as an internal standard for subsequent ¹⁹FNMR spectra to quantify residual MPFB for NMR conversion and to quantify the product methyl 2,3,5,6-tetrafluorobenzoate for NMR yield.

Table 1. Solvent Optimization

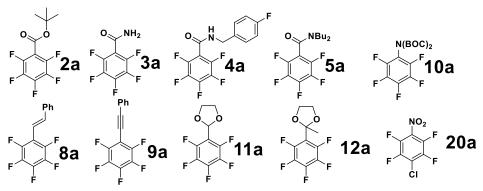
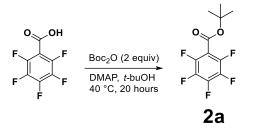
entry	Equiv. NaBH ₄	Solvent	Time (hours)	% NMR Yield	% Conversion MPFB
1	0.50	MeOH	10	0	~100
2	0.50	EtOH	10	6	72
3	0.50	THF	10	<2	<2
4	0.50	DME	10	46	46
5	0.50	DMSO	10	97	98
6	0.50	DMF	10	70	72

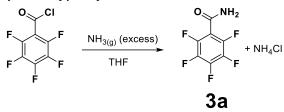
Scheme 2. NaBH₄ loading variation

4 NMR tubes were each charged with a benzene-d⁶ filled capillary and 57 mg (250 μ mol) MPFB. A 0.5 M stock solution of NaBH₄ in dimethylsulfoxide was prepared by dissolving 1 mmol (38 mg) NaBH₄ in 2 mL dimethylsulfoxide. This stock solution along with pure dimethylsulfoxide was dispensed into the 4 NMR tubes according to **table 2** (below) such that each tube contained a total of 1 mL of solution. The tubes were allowed to sit at room temperature for 2 hours before being charged with 10 μ L (106 μ mol) fluorobenzene internal standard and having their ¹⁹FNMR spectra collected for methyl 2,3,5,6-tetrafluorobenzoate quantitation (% NMR yield).

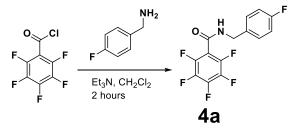
entry	Volume 0.5 M stock solution of NaBH ₄	Volume DMSO	Eq. NaBH4	% NMR Yield
1	165 μL	835 μL	0.33	23
2	330 μL	660 μL	0.66	43
3	500 μL	500 μL	1.00	99
4	1000 μL	0 μL	2.00	99

Table 2. NaBH₄ Loading Variation

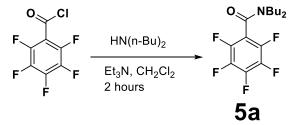




Figure 1. Substrates above were prepared for HDF.

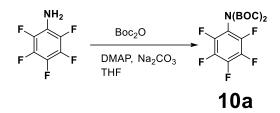
Synthesis of tert-butyl pentafluorobenzoate 2a


Into a 100 mL round-bottom flask equipped with a magnetic stir bar was loaded pentafluorobenzoic acid (2 g, 9.4 mmol), di-*tert*-butyl dicarbonate (4.1 g, 18.9 mmol), 4-(dimethylamino)pyridine (116 mg, 0.95 mmol), and 30 mL of *tert*-butanol. The flask was heated to 40 °C for 20 hours with stirring before being quenched with 1 M HCl (20 mL) followed by subsequent extraction with EtoAc (3x 20 mL). The combined organic layers were washed with saturated sodium carbonate solution and then brine, dried over MgSO₄, and concentrated under reduced pressure. The residue was purified by silica gel chromatography using 2% EtoAC in Hexanes as eluent to afford the desired product (1.9 g, 76% yield). The ¹H NMR, ¹⁹F NMR and mass spectra match the literature.²

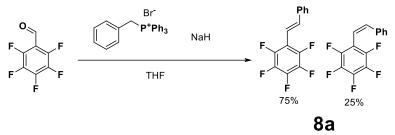
Synthesis of pentafluorobenzamide 3a


Into a dry 125 mL Erlenmeyer flask is added pentafluorobenzoyl chloride (647 mg, 2.8 mmol) in 30 mL THF. Using a glass diffuser connected by rubber tubing to a separate vessel of ammonium chloride and NaOH pellets, a large excess of ammonia gas is bubbled through the THF solution over 2 minutes, or until the exotherm subsides (determined by touching the outside of the flask). The THF solution containing the product is then eluted through a silica plug, thoroughly rinsing the precipitated ammonium chloride with more THF (2 x 20 mL). The THF filtrate was concentrated under reduced pressure, and the resulting white solid (434 mg, 73 % yield) was used without further purification. The mass spectrum was found to match the literature.³ 19F NMR (376 MHz, CDCl₃) δ -139.63 – -139.73 (m, 2F), -149.54 (tt, J = 20.1, 3.5 Hz, 1F), - 159.7 – -159.84 (m, 2F). 1H NMR (400 MHz, CDCl₃) δ 6.37 – 6.05 (brs, 1H), 6.18 – 5.84 (brs, 1H).

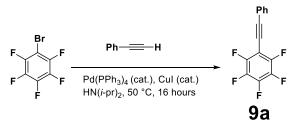
Synthesis of N-(4-fluorobenzyl)pentafluorobenzamide 4a


To an ice-cooled solution of parafluorobenzylamine (0.35 mL, 3.05 mmol) in CH₂Cl₂ (10 mL) is added dropwise a solution of pentafluorobenzoyl chloride (640 mg, 2.77 mmol) in CH₂Cl₂ (2 mL) followed by triethylamine (1.2 mL, 8.31 mmol). The ice bath was removed after 30 minutes and the reaction was allowed to continue for 2 hours before being quenched with cold water and diluted with CH₂Cl₂ (60 mL). The organic layer was washed with water and subsequently brine, dried over MgSO₄. Removal of solvent and purification by silica gel flash chromatography (Hexane : EtOAc ramp) afforded **4a** as pale orange-white needles (726 mg, 82% yield). The mp 156-157 °C; 19F NMR (376 MHz, C₆D₆) δ -114.13 (tt, J = 8.6, 5.2 Hz, 1F), -140.27 - -140.41 (m, 2F), -150.26 (tt, J = 20.8, 3.2 Hz, 1F), -159.73 - -159.84 (m, 2F). 1H NMR (400 MHz, CDCl₃) δ 7.35-7.28 (m, 2H), 7.09-7.02 (m, 2H), 6.34 - 6.09 (brs, 1H), 4.62 (d, J = 5.7 Hz, 2H). ¹³C NMR (151 MHz, Acetone-*d*₆) δ 163.8, 162.2, 157.9, 144.8 (dddt, *J* = 249.0, 12.6, 8.5, 4.1 Hz), 142.7(dtt, *J* = 253.2, 12.9, 4.9 Hz), 138.4 (dddd, *J* = 250.3, 17.2, 12.4, 4.8 Hz), 135.4 (d, *J* = 3.2 Hz), 130.4 (d, *J* = 8.1 Hz), 116.07 (d, *J* = 21.6 Hz), 43.6. Calculated HRMS(ESI) for (C14H7F6NO (M+H) + is 320.0510 observed 320.0512.

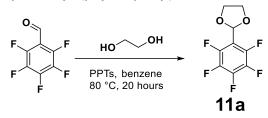
Synthesis of N,N-di-n-butylpentafluorobenzamide 5a


Into a stirring ice-cooled solution of *N*,*N*-di-*n*-butylamine (0.51 mL, 3.05 mmol) in DCM (10 mL) is added dropwise a solution of pentafluorobenzoyl chloride (640 mg 2.77 mmol) in DCM (1 mL) and then triethylamine (1.2 mL, 8.31 mmol). The cooling bath was removed after 30 minutes and the stirring continued for 2 hours before quenching with cold water. The quenched reaction was diluted with DCM (60 mL) and washed with water (20 mL) and then brine (20 mL). The combined organic layers were dried over MgSO₄ and concentrated *in vacuo* prior to silica gel column purification using EtOAc : hexane ramp to afford the desired product (843 mg, 94 % yield). 19F NMR (376 MHz, Chloroform-d) δ -140.94 – -141.10 (m, 2F), -152.64 – -152.85 (m, 1F), -159.94 – -160.17 (m, 2F). 1H NMR (400 MHz, Chloroform-d) 3.56 – 3.48 (m, 2H), 3.16 – 3.10 (m, 2H), 1.69 – 1.58 (m, 2H), 1.53 – 1.44 (m, 2H), 1.38 (sext, J = 7.3, 2H), 1.19 (sext, J = 7.3, 2H), 0.96 (t, J = 7.3, 3H), 0.83 (t, J = 7.3, 3H). ¹³C NMR (101 MHz, Chloroform -d) δ 158.3, 142.8 (dddt, J = 249.4, 12.4, 8.4, 4.0 Hz), 141.7 (dtt, J = 256.3, 13.3, 4.7), 137.8 (d, J = 253.3 Hz), 112.3 (t, J = 22.1 Hz), 48.6, 45.0, 30.6, 29.4, 20.2, 19.8, 13.9, 13.7. GC/MS (m/z, relative intensity) 323 (M+, 10), 304 (4), 294 (5), 280 (13), 195 (100). Calculated HRMS(ESI) for (C15H18F5NO (M+H) + is 324.1387 observed 324.1379

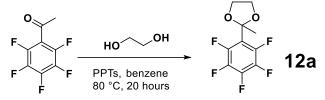
Synthesis of di-BOC-pentafluorobenzamide 10a


The procedure reported by Bissember et al.⁴ was followed scaled to 500 mg of pentafluoroaniline, ultimately affording a 48 % yield of **10a** as a colorless solid.

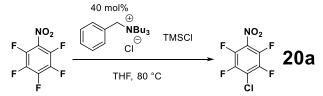
Synthesis of E-styrylpentafluorobenzene 8a


To a stirring suspension of sodium hydride (111 mg of 60 % paraffin dispersion, 2.77 mmol) in 5 mL THF at 0 °C is added benzyltriphenylphosphonium bromide (1 g, 2.315 mmol) in THF (5 mL). The solution was allowed to gradually warm to room temperature and then stir for 2 hours. To the solution is then added pentafluorobenzaldehyde (0.285 mL, 2.315 mmol) which is then allowed to continue stirring overnight prior to a quench with minimal ice water. The solution was concentrated *in vacuo* and the residue diluted with EtOAc before being washed sequentially with water and then brine. The organic layer was dried over MgSO₄ and concentrated *in vacuo*. The residue is subjected to silica gel column chromatography with 100% hexane to afford the desired product as a 3:1 mixture of E- and Z-isomers (930 mg, 74% yield). ¹H NMR, ¹⁹F NMR, and mass spectra match the literature.⁵

Synthesis of pentafluoro(phenylethynyl)benzene 9a


To a deaerated, stirring solution of bromopentafluorobenzene (0.88 mL, 6.82 mmol) and phenylacetylene (465 mg, 4.55 mmol) in diisopropylamine (20 mL) is added Cul (43 mg, 227 μ mol) and Pd(PPh)₃ (262 mg, 227 μ mol). The mixture is heated to 50 °C and left overnight under an argon atmosphere. The mixture was then cooled to room temperature and diluted with diethyl ether before filtering through celite and concentrating in vacuo. The residue was subjected to silica column chromatography in pure hexane to afford the desired product (400 mg, 33% yield). Melting point, ¹H NMR and ¹⁹F NMR match the literature.⁶ GC/MS (m/z, relative intensity) 268 (M+, 5), 253 (5), 252 (40), 224 (5), 210 (100).

Synthesis of 2-(perfluorophenyl)-1,3-dioxolane 11a


The procedure reported by Kambe et al.⁷ was followed and scaled to 500 mg (2.55 mmol) of pentafluorobenzaldehyde, affording an 83 % yield of desired product. 19F NMR (376 MHz, CDCl₃) δ -143.80 – -144.06 (m, 2F), -152.56 – -152.88 (t, J = 20.9 Hz, 1F), -161.92 – -162.27 (m, 2F). 1H NMR (400 MHz, CDCl₃) δ 6.21 – 6.18 (s, 1H), 4.25 – 4.15 (m, 2H), 4.09 – 3.99 (m, 2H).

Synthesis of 2-methyl-2-(perfluorophenyl)-1,3-dioxolane 12a

The procedure reported by Kambe et al.⁷ was followed and scaled to 500 mg (2.38 mmol) of pentafluoroacetophenone. An additional step was required at the end. Namely, the product residue was dissolved in 0 °C EtOH (6 mL) with NaBH₄ (45 mg, 1.19 mmol), and allowed to stir for 2 hours to convert residual pentafluoroacetophenone to a more easily separated alcohol. The solution was quenched with cold water, extracted with EtOAc, the organic layer washed with brine, dried over MgSO₄, and concentrated *in vacuo*. Silica column chromatography using a ramp of EtOAc : hexane afforded the desired product (375 mg, 62% yield) as a colorless liquid. ¹⁹F NMR (376 MHz, Chloroform-d) δ -142.10 – -142.29 (m, 2F), -155.02 (tt, J = 21.4, 3.0, 1F), -161.90 – -162.08 (m, 2F). ¹H NMR (400 MHz, Chloroform-d) δ 64.18 – 4.15 (m, 2H), 3.95-3.83 (m, 2H), 1.83 – 1.77 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 144.6 (dddd, J = 252.0, 11.8, 7.9, 4.0 Hz), 140.8 (dtt, J = 254.6, 13.5, 5.2 Hz), 137.9 (m, J_{C-F} = 252.5 Hz), 116.7 (tdt, J = 13.9, 4.6, 2.9 Hz), 107.5, 65.0, 26.7 (t, J = 1.9 Hz)

Synthesis of p-chloro-tetrafluoronitrobenzene 20a

The procedure described by Weaver et al. was followed.⁸ Pentafluoronitrobenzene (426 mg, 2 mmol), benzyltributylammonium chloride (250 mg, 0.8 mmol), TMSCI (261 mg, 2.4 mmol), and 3 mL THF are added to a microwave vial charged with a magnetic stir bar and sealed. The reaction was heated in an oil bath at 80 °C overnight before concentration *in vacuo* and subjection to silica column chromatography with hexane to afford the desired product **20a** (365 mg, 80%) yield.

General Procedure A for HDF of Perfluoroarenes

To stirring a solution of fluoroarene in dimethylsulfoxide (0.2 M) was slowly added NaBH₄ dissolved in equal volume of DMSO. <u>CAUTION: some of the reactions effervesce hydrogen gas, especially when the solvent is not dry! Care should be taken to use dry DMSO and ensure that the gas can safely escape the reaction vessel! The reactions were monitored by removing aliquots and subjecting them to ¹⁹FNMR. When complete, the mixtures were diluted with ethyl acetate (10-fold) and carefully quenched with aqueous brine solution over 10 minutes. The organic layers were washed five times with brine to remove the DMSO, dried over MgSO₄, then concentrated *in vacuo* to afford the desired products without any further purification. If NMR yields were to be obtained (for products too volatile for concentration *in vacuo*), 20 microliters (213 μ mol) fluorobenzene internal standard would be added to aliquots of crude reaction mixture in lieu of dilution with ethyl acetate and workup. This procedure was used on 0.1 – 22.1 mmol scale, including 1.0 mmol. See **18b** and **19b** for details.</u>

methyl 2,3,5,6-tetrafluorobenzoate 1b OMe

1b

.OtBu

General Procedure A was followed using methyl pentafluorobenzoate (90 mg, 400 µmol) and 1 equiv NaBH₄ (16 mg, 400 micromol) in 2 mL DMSO. The desired product 1b was obtained as a colorless oil (72 mg, 87% yield). A known compound, characteristic NMR spectra match the literature.⁸ ¹⁹F NMR (376 MHz, Chloroform-d) δ -137.45 – -137.60 (m, 2F), -139.48 – -139.63 (m, 2F). ¹H NMR (400 MHz, Chloroform-d) δ 7.20 (tt, J = 9.4, 7.2 Hz, 1H), 4.00-3.97 (s, 3H)

tert-butyl 2,3,5,6-tetrafluorobenzoate 2b

General Procedure A was followed using tert-butyl pentafluorobenzoate (54 mg, 200 µmol) and NaBH₄ (8 mg, 200 µmol) in 2 mL DMSO. The desired product 2b was obtained as a colorless oil (42 mg, 85% yield). A known compound, characteristic NMR spectra match the literature.⁸ ¹⁹F NMR (376 MHz, Chloroform-d) δ -137.82 – -138.03 (m, 2F), -141.07 – -141.23 (m, 2F). ¹H NMR (400 MHz, Chloroform-d) δ 7.13 (tt, J = 9.5, 7.2 Hz, 1H), 1.61 – 1.58 (s, 9H).

2,3,5,6-tetrafluorobenzamide 3b

н

2b

General Procedure A was followed using pentafluorobenzamide (40 mg, 190 µmol) and NaBH₄ (5 mg, 190 µmol) in 1 mL DMSO. The desired product 3b was obtained as a white powder (30 mg, 88% yield). A known compound, ¹⁹F NMR spectrum and melting point are in accord with the literature.⁹ ¹⁹F NMR (564 MHz, DMSO-*d*₆) δ -138.51 - -138.78 (m), -142.97 - -143.12 (m). ¹H NMR (599 MHz, DMSO-*d*₆) δ 8.32 (s, 1H), 8.14 (s, 1H), 7.96 (tt, J = 10.4, 7.5 Hz, 1H). ¹³C NMR (151 MHz, DMSO- d_6) δ 159.2 (t, J = 1.8 Hz), 145.2 (dddd, J = 246.6, 14.2, 10.3, 3.7 Hz), 142.3 (dddd, J = 247.2, 15.1, 6.5, 3.9 Hz), 118.3 (t, J = 21.5 Hz), 107.4 (t, J = 23.4 Hz). GC/MS (m/z, relative intensity) 193 (M+, 95), 177 (100), 150 (36), 149 (89), 99 (80).

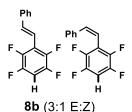
2,3,5,6-tetrafluoro-N-(4-fluorobenzyl)benzamide 4b

General Procedure A was followed using pentafluoro-N-(4-fluorobenzyl)benzamide (64 mg, 200 µmol) and NaBH₄ (8 mg, 200 µmol) in 2 mL DMSO. The desired product **4b** was obtained as a white, crystalline solid (60 mg, 99% yield). The mp 135-136 °C 19 F NMR (376 MHz, Chloroform-d) δ -114.20 --114.31 (m, 1F), -136.86 -- 137.09 (m, 2F), -141.10 -- 141.31 (m, 2F). ¹H NMR (400 MHz, Chloroformd) δ 7.27 – 7.21 (m, 2H), 7.06 (tt, J = 9.4, 7.3 Hz, 1H), 7.01 – 6.93 (m, 2H), 6.38 – 6.20 (brs, 1H), 4.56 – 4.51 (d, J = 5.75 Hz, 2H).

N,N-dibutyl-2,3,5,6-tetrafluorobenzamide 5b

General Procedure A was followed using N,N-dibutyl-pentafluorobenzamide 5a (32 mg, 100 µmol) and NaBH₄ (8 mg, 200 μmol) in 1 mL DMSO. The desired product **5b** was obtained as a colorless oil (29 mg, 85% yield). 19 F NMR (376 MHz, Chloroform-d) δ -137.18 – -137.48 (m, 2F), -141.60 – -141.88 (m, 2F) . 1 H NMR (400 MHz, Chloroform-d) δ 7.09 (tt, J = 9.5, 7.2 Hz, 1H), 3.56 – 3.50 (m, 2H), 3.16 – 3.10 (m, 2H), 1.69 – 1.60 (m, 2H), 1.53 – 1.44 (m, 2H), 1.39 (sext, J = 7.3 Hz, 2H), 1.18 (sext, J = 7.3 Hz, 2H), 0.97 (t, J = 7.3 Hz, 3H), 0.81 (t, J = 7.3 Hz, 3H) GC/MS (m/z, relative intensity) 305 (M+, 9), 287 (5), 276 (6), 262 (15), 177 (100).

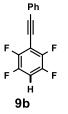
1,2,4,5-tetrafluoro-3-(trifluoromethyl)benzene 6b


General Procedure A was followed using octafluorotoluene (100 mg, 466 µmol) and NaBH4 (16 mg, 470 µmol) in 5 mL DMSO. When the reaction was complete, 500 µL of reaction mixture (10% of the total volume) was taken into an NMR tube charged with a benzene-d⁶ capillary and fluorobenzene (20 µL, 213 µmol) as internal standard. The aliquot was calculated to contain 44 µmol of **6b** corresponding to a 93% yield. Mass spectrum was found consistent with literature.^{8 19}F NMR (376 MHz, DMSO) δ -55.15 – -55.30 (td, J = 21.6, 3.1 Hz, 3F), -136.29 - -136.47 (m, 2F), -141.12 - -141.49 (m, 2F). ¹H NMR (400 MHz, DMSO) δ 8.37 - 8.24 (m, 1H).

2,3,5,6-tetrafluoropyridine 7b

General Procedure A was followed using pentafluoropyridine (100 mg, 592 µmol) and NaBH4 (23 mg, 600 μmol) in 5 mL DMSO. When the reaction was complete, 500 μL of reaction mixture (10% of the total volume) was taken into an NMR tube charged with a benzene-d⁶ capillary and fluorobenzene (20 µL, 213 µmol) as internal standard. The aliquot was calculated to contain 54 µmol of 7b corresponding to an 89% yield. Mass spectrum was found consistent with the literature.⁸ 19 F NMR (376 MHz, Chloroform-d) δ -87.95 – -88.26 (m,

2F), -135.36 – 135.60 (m, 2F). ¹H NMR (400 MHz, Chloroform-d) δ 8.67 – 8.55 (m, 1H).

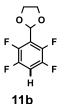


1,2,4,5-tetrafluoro-3-styrylbenzene 8b

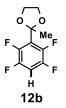
To a stirring solution of 8a (50 mg, 185 µmol, 3:1 E:Z isomeric mix) in THF (500 µL) is added NaBH₄ (7 mg, 185 μ mol) in DMSO (500 μ L). The reaction mixture is left to stir 24 hours before it is guenched by dilution with EtOAc (5 mL) and 5 consecutive washes with saturated brine solution (1 mL each). The organic layer is dried over MgSO₄ and concentrated in vacuo to afford the product **8b** as a white solid (40 mg, 86% yield). Melting point matches that found by Stephens et.al.^{10 13}C NMR and mass spectra were found to match the literature.^{5 1}H NMR (599

MHz, Chloroform-d) δ E: 7.58 (m, 2H), 7.53 (d, J = 16.8 Hz, 1H), 7.43 (m, 2H), 7.37 (m, 1H), 7.11 (d, J = 16.8 Hz, 1H), 6.97 (tt, J = 9.5, 7.5 Hz, 1H). Z: 7.43 (m, 1H), 7.27 (m,2H), 7.17 (m, 2H), 7.01 (m, 2H), 6.35 (d, J = 12.1 Hz, 1H).

1,2,4,5-tetrafluoro-3-(phenylethynyl)benzene 9b


Aryl alkyne 9a (53 mg, 197 μmol) was added to a stirring suspension of NaBH₄ (7 mg, 200 μmol) in 1 mL of 1,2-dimethoxyethane and left to stir overnight. The reaction was worked up by dilution with ethyl acetate (10 mL) and quenching with brine (1.5 mL). The organic layer was washed with brine (3 x 1 mL) and dried over MgSO₄ before being concentrated in vacuo to afford **9b** as a white solid (49 mg, 99 % yield). The melting point, ¹H, ¹³C, and ¹⁹F NMR match with the literature.¹¹ ¹⁹F NMR (376.48 MHz, Chloroform-d) δ -136.63 – -136.77 (m, 2F), -138.96 – -139.11 (m ,2F). ¹H NMR (400 MHz, Chloroform-d) δ 7.63 – 7.55 (m, 2H), 7.44 – 7.35 (m, 3H), 7.10 – 6.99 (tt, J = 9.8, 7.3 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-d) δ 146.8 (ddt, J = 251.9, 14.3, 3.3 Hz), 145.9 (dddd, J = 248.1, 13.6, 10.8, 4.2 Hz), 132.1, 129.8, 128.7, 121.8, 106.2 (t, J = 22.8 Hz), 105.6 (tt, J = 17.6, 2.6 Hz), 102.0 (t, J = 3.8 Hz), 74.5 (t, J = 4.4 Hz). GC/MS (m/z, relative intensity) 250 (M+, 100)

tert-butyl (tert-butoxycarbonyl)(2,3,5,6-tetrafluorophenyl)carbamate 10b

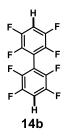

General Procedure A was followed using tert-butyl (tert-butoxycarbonyl)(pentafluorophenyl)carbamate (192 mg, 500 µmol) and NaBH₄ (57 mg, 1.5 mmol). The starting substrate was dissolved in 1.5 mL THF rather than DMSO since it was only sparing soluble in pure DMSO. The NaBH₄ was still added as a solution in 1.5 mL DMSO. The reaction was heated to 60 °C after the reagents were all mixed. The desired product **10b** was obtained as a white solid (173 mg, 95% yield). The mp 56-57 °C; 19 F NMR (376 MHz, Chloroform-d) δ -139.45 – -139.70 (m, 2F), -146.25 – 146.50 (m, 2F). ¹H NMR (400 MHz, Chloroform-d) δ 7.15 – 7.03 (tt, J = 9.8, 7.2, 1H), 1.45 – 1.43

(s, 18H). Mass spectrum obtained following conversion to 2,3,5,6-tetrafluoroaniline via trifluoroacetic acid (S12) is consistent with the literature.³

2-(2,3,5,6-tetrafluorophenyl)-1,3-dioxolane 11b

General Procedure A was followed using 2-(pentafluorophenyl)-1,3-dioxolane (46 mg, 200 μ mol) and NaBH₄ (20 mg, 530 µmol) in 2 mL DMSO heated to 50 °C. A known compound,¹² the desired product **11b** was obtained as a colorless oil (35 mg, 82% yield). 19 F NMR (376 MHz, Chloroform-d) δ -138.99 – -139.15 (m, 2F), -144.43 – -144.60 (m, 2F). ¹H NMR (400 MHz, Chloroform-d) δ 7.12 – 7.03 (tt, J = 9.5, 7.2, 1H), 6.26 – 6.23 (s, 1H), 4.26 – 4.17 (m, 2H), 4.10 – 4.00 (m, 2H). GC/MS (m/z, relative intensity) 222 (M+, 55), 221 (M-H⁻, 80), 203 (40), 177 (90), 162 (100).

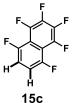
2-methyl-2-(2,3,5,6-tetrafluorophenyl)-1,3-dioxolane 12b


General Procedure A was followed using 2-methyl-2-(pentafluorophenyl)-1,3-dioxolane (51 mg, 200 µmol) and NaBH₄ (16 mg, 420 µmol) in DMSO (2 mL) heated to 50 °C. The desired product 12b was obtained as a colorless oil (38 mg, 80% yield). ¹⁹F NMR (376 MHz, Chloroform-d) δ -138.75 – -138.90 (m, 2F), -142.62 – -142.77 (m, 2F). ¹H NMR (400 MHz, Chloroform-d) δ 7.06 – 6.97 (tt, J = 9.5, 7.2, 1H), 4.17 – 4.07 (m, 2H), 3.95 - 3.86 (m, 2H), 1.84 - 1.80 (s, 3H). GC/MS (m/z, relative intensity) 221 (M-·CH₃, 100), 187 (11), 177 (100), 149 (23), 99 (22).

3,5-dichloro-2,6-difluoropyridine 13b

General Procedure A was followed using 3,5-dichloro-2,4,6-trifluoropyridine (101 mg, 500 µmol) and NaBH₄ (19 mg, 500 µmol) in 3 mL DMSO. Product 13b was obtained as a pale-yellow, high-vapor-pressure solid (62 mg, 75% yield - some mass was lost under high vacuum). NMR spectra collected were a match for the literature.¹³ ¹⁹F NMR (376 MHz, Chloroform-d) δ -72.00 - -72.26 (d, J = 7.5, 2F). ¹H NMR (400 MHz,

Chloroform-d) δ 7.98 – 7.92 (t, J = 7.5, 1H).


2,2',3,3',5,5',6,6'-octafluoro-1,1'-biphenyl 14b

General Procedure A was followed using decafluorobiphenyl (67 mg, 200 μ mol) and NaBH₄ (23 mg, 600 μ mol) in 1 mL DMSO heated to 45 °C. The desired product 1**4b** was obtained as a white powder (60 mg, 84% yield). Melting point, ¹³C and mass spectrum matched the literature.^{14,15 19}F NMR (376 MHz, Chloroform-d) δ -137.68 – -137.92 (m, 4F), -138.24 – -138.45 (m, 4F). ¹H NMR (400 MHz, Chloroform-d) δ 7.44 – 7.35 (m, 2H).

1,2,4,5,6,8-hexafluoronaphthalene 15b

Octafluoronaphthalene (544 mg, 2 mmol) was taken into 8 mL THF and set stirring in a 50 mL round-bottom flask. To this was added NaBH₄ (182 mg, 4.8 mmol) in 12 mL of DMSO. The reaction mixture was heated to 45°C and continued to stir for 2 hours. The reaction mix was diluted with 180 mL EtOAc and quenched with brine. The organic layer was separated and washed five times with brine before being dried over MgSO₄ and concentrated under reduced pressure. The residue was subjected to silica gel flash chromatography eluting with pure hexane to afford an intractable mixture of **15b** and **15c** with a relative ratio of 8:1 means the subject of the

15b respectively, for a combined yield of 423 mg (90%), corresponding to an 80% yield **15b** and 10% yield **15c**. The melting point, mass, ¹⁹F NMR and ¹H NMR spectra match the literature.^{14,16,17} ¹⁹F NMR (564 MHz, Chloroform-d) δ - 117.02 - -117.24 (m, 2F), -135.84 - -135.98 (m, 2F), -148.46 - -148.73 (m, 2F). ¹H NMR (599 MHz, Chloroform-d) δ 7.24 - 7.16 (m, 2H).

1,2,3,4,5,8-hexafluoronaphthalene 15c

See entry for **15b** for procedure. ¹⁹F NMR (564 MHz, Chloroform-d) δ -115.19 – -115.28 (m, 2F), -132.88 – - 132.97 (m, 2F), -150.10 – -150.21 (m, 2F). ¹H NMR (599 MHz, Chloroform-d) δ 7.14 – 7.08 (m, 2H).

100

CN

16b

2,3,5,6-tetrafluorobenzonitrile 16b

Into a reaction vial is placed pentafluorobenzonitrile (97 mg, 500 μ mol) and NaBH₄ (19 mg, 500 μ mol) suspended in 2 mL of THF, set stirring with a magnetic stir bar. When the reaction was found to be complete by ¹⁹F NMR the THF was removed under reduced pressure and the residue extracted with hexanes, affording **16b** as a colorless oil (77 mg, 88% yield). Mass spectrum matched the literature,¹⁸ as well as the ¹³C NMR.¹⁴ ¹⁹F NMR (376 MHz, Chloroform-d) δ -131.77 – -131.92 (m, 2F), -134.81 – -134.99 (m, 2F). ¹H NMR (400 MHz, Chloroform-d) δ 7.45 – 7.35 (tt, J = 9.4, 7.3, 1H).

1,3-difluoro-5-nitrobenzene 17b

To a stirring suspension of NaBH₄ (34 mg, 900 μ mol) in 3 mL of THF, cooled to 0 °C, is added H₂O (15 mg, 900 μ mol) and pentafluoronitrobenzene (64 mg, 300 μ mol). The reaction mixture is allowed to gradually warm to room temperature and is carefully monitored by ¹⁹F NMR. When complete, the reaction is quenched by dilution with EtOAc, which precipitates the reactive salts, and the solution is decanted into a round-bottom

17b flask. The decanted solution is dry loaded onto silica and subjected to silica gel flash chromatography to afford the product **17b** as a yellow oil (38 mg). ¹H and ¹⁹F NMR suggested trace contamination of 10 mol% trifluoroaniline isomers and 3 mol% ethyl acetate, making the isolated yield 71%. ¹⁹F NMR (376.48 MHz, Chloroform-d) δ -105.08 (dd, J = 8.1, 6.5 Hz, 2F). ¹H NMR (400 MHz, Chloroform-d) δ 7.83 – 7.77 (dd, J = 6.5, 2.3 Hz, 2H), 7.22 – 7.17 (tt, J = 8.1, 2.3, 1H). GC/MS (m/z, relative intensity) 159 (M+, 60), 129 (7), 113 (100), 101 (19).

3,4,6-trifluorophthalonitrile 18b

To a stirring suspension of NaBH₄ (38 mg, 1 mmol) and H₂O (20 mg, 1.1 mmol) in THF (20 mL) at 0 °C is added tetrafluorophthalonitrile (200 mg, 1 mmol). This mixture is stirred for 30 minutes before quenching with trifluoroacetic acid (200 μ L) and concentrating under reduced pressure onto silica for flash chromatography using hexane/DCM for elution. Product **18b** was obtained as a pale-yellow oil (133 mg,

73% yield). Yield for this substrate was found to be highly time-dependent, with the product being highly prone to subsequent chemistry if left for longer than 30 minutes; moreover, it does not store well (highly moisture-

sensitive). ¹⁹F NMR (564 MHz, Chloroform-d) δ -101.71 (ddd, J = 12.9, 9.3, 8.0 Hz, 1F), -117.02 (dt, J = 20.9, 9.0 Hz, 1F), -128.85 (ddd, J = 20.9, 12.9, 6.3 Hz, 1F). ¹H NMR (599 MHz, Chloroform-d) δ 7.45 (td, J = 8.4, 6.3 Hz, 1H). ¹³C NMR (151 MHz, Chloroform-d) δ 159.7 (ddd, J = 263.4, 10.9, 3.3 Hz), 153.8 (dt, J = 266.5, 12.6 Hz), 149.4 (ddd, 264.6, 15.5, 4.0 Hz), 112.5 (dd, J = 25.6, 21.3 Hz), 109.3 (t, J = 2.4 Hz), 109.0 (t, J = 3.7 Hz), 106.7 (dt, J = 16.1, 3.4 Hz), 100.8 (dd, J = 20.2, 4.8 Hz). GC/MS (m/z, relative intensity) 182 (M+, 100).

3,6-difluorophthalonitrile 19b

To a stirring suspension of NaBH₄ (82 mg, 2.2 mmol) in THF (10 mL) cooled to 0 °C is added H₂O (40 mg, 2.2 mmol) and subsequently tetrafluorophthalonitrile (200 mg, 1 mmol) as a solution in THF (20 mL, 0 °C). The reaction mixture warmed to room temperature and is monitored by ¹⁹F NMR. After 3 hours, the reaction is complete and concentrated onto silica for flash column chromatography using CH₂Cl₂: hexane (ramp) for elution to afford 19b (95 mg, 58% yield). Similar to 18b, this reaction product degrades readily under ambient laboratory conditions (moisture-sensitive) and stores poorly. ¹³C NMR was found to match the literature.¹⁴ ¹⁹F

NMR (376 MHz, Chloroform-d) δ -106.57 – -106.62 (m, 2F). ¹H NMR (400 MHz, Chloroform-d) δ 7.58 – 7.54 (m, 2H). GC/MS (m/z, relative intensity) 164 (M+, 100).

20b

2-chloro-1,3-difluoro-5-nitrobenzene 20b

To a stirring suspension of NaBH₄ (28 mg, 740 μmol) in 3 mL of THF is added 1-chloro-2,3,5,6-tetrafluoro-4nitrobenzene 20a (92 mg, 400 µmol). When the reaction was deemed complete by ¹⁹F NMR, the mixture was concentrated in vacuo and quenched by dilution with pentane, which precipitated out insoluble species. The remaining solution was filtered and concentrated in vacuo to afford the product 20b as an orange oil (65 mg, 77% yield). Product appears to be moisture sensitive. ¹⁹F NMR (376 MHz, Chloroform-d) δ -107.10 – 107.16 (m, 2F). ¹H NMR (400 MHz, Chloroform-d) δ 7.94 – 7.88 (m, 2H). GC/MS (m/z, relative

intensity) 195 (M+2, 13), 193 (M+, 40).

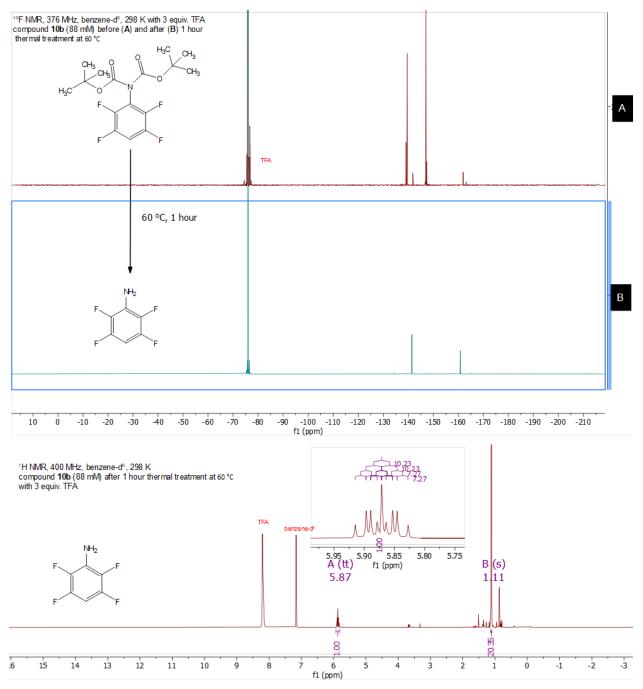
1,2,4,5-tetrafluorobenzene 21b

General Procedure A was followed using hexafluorobenzene (100 mg, 537 µmol) and NaBH₄ (100 mg, 2.6 mmol) in 5 mL of DMSO. When the reaction was complete, 1 mL of reaction mixture (20% of the total volume) was taken into an NMR tube charged with a benzene-d⁶ capillary and fluorobenzene (20 µL, 213 µmol) as internal standard. The aliquot was calculated to contain 87 µmol of 7b corresponding to an 81% yield. Mass spectrum was found to be in accord with the literature.³ 19 F NMR (564 MHz, DMSO) δ -134.78 – 134.84 (t, J = 9.0, 4F).

1,2,4,5-tetrafluoro-3-methylbenzene 22b

General Procedure A was followed using 1,2,3,4,5-pentafluoro-6-methylbenzene (100 mg, 550 µmol) and NaBH₄ (104 mg, 2.6 mmol) in 5 mL of DMSO heated to 80 °C. When the reaction was complete, 500 μL of reaction mixture was taken into an NMR tube charged with a benzene-d⁶ capillary and fluorobenzene (20 µL, 213 µmol) as internal standard. The aliquot was calculated to contain 39 µmol of 22b corresponding to a 72% yield. The mass spectrum was a match for the literature.³ ¹⁹F NMR (564 MHz, DMSO) δ -140.03 (m, 2F),

-143.23 (m, 2F).

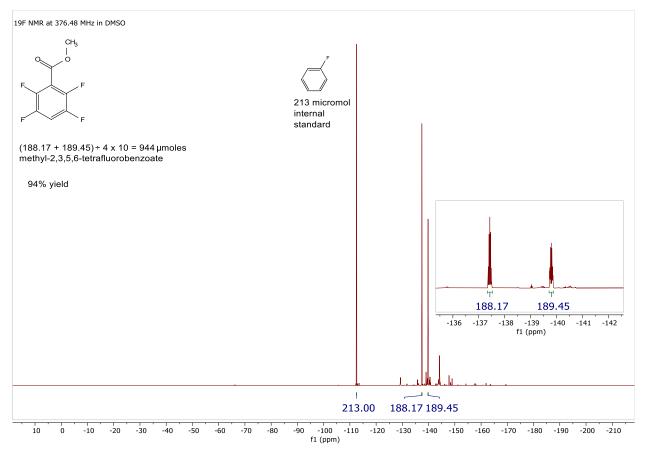


methyl 2,3,5,6-tetrafluorobenzoate 1b (5 g scale)

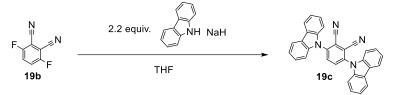
General Procedure A was followed using methyl pentafluorobenzoate (5.00 g, 22.1 mmol) and 1 equiv NaBH₄ (837 mg, 22.1 mmol) in 75 mL DMSO. The desired product **1b** was obtained as a colorless oil (4.15 g, 90% yield). A known compound, characteristic NMR spectra match the literature.⁸ ¹⁹F NMR (376 MHz, Chloroform-d) δ -137.45 – -137.60 (m, 2F), -139.48 – -139.63 (m, 2F). ¹H NMR (400 MHz, Chloroform-d) δ 7.20 (tt, J = 9.4, 7.2 Hz, 1H), 4.00-3.97 (s, 3H)

NMR Demonstration of Deprotection of N,N-(boc)₂-tetrafluoroaniline 10b

To demonstrate the facility of converting **10b** to the corresponding 2,3,5,6-tetrafluoroaniline, 16 mg (44 μ mol) of **10b** were taken into an NMR tube charged with benzene-d⁶ (500 μ L) and trifluoroacetic acid (15 mg, 132 μ mol). NMR spectra collected prior to and following a one-hour thermal treatment at 60 °C showed complete conversion to 2,3,5,6-tetrafluoroaniline (**Figure 2**), consistent with the literature spectrum in benzene-d⁶.¹⁹

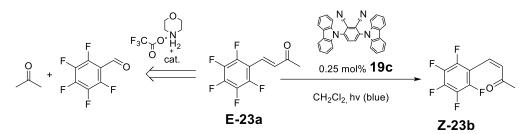

Figure 2. NMR Spectra of 10b Before and After Heating in TFA Solution

Stability Test Using Methyl Pentafluorobenzoate

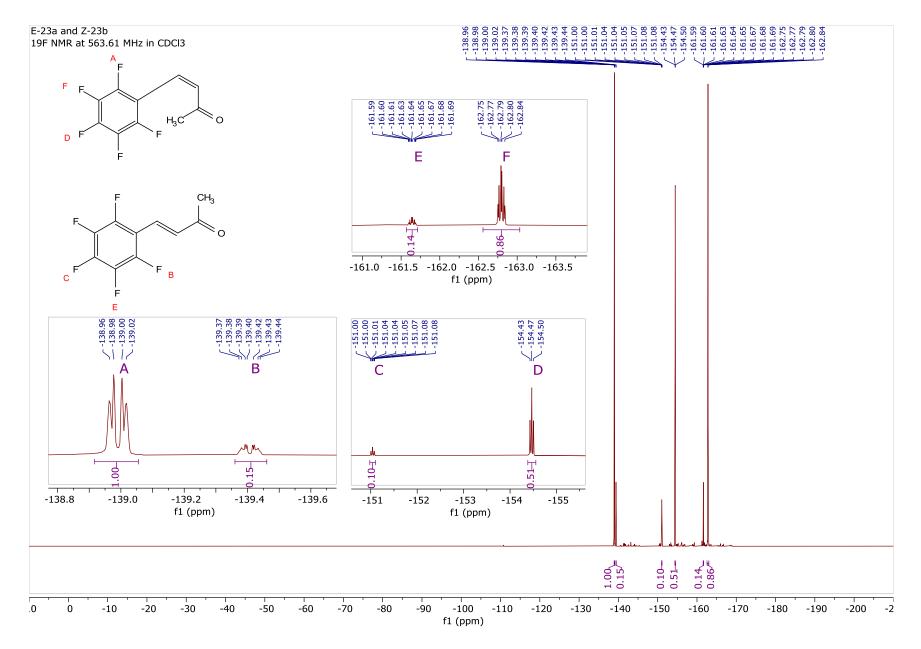

In order to make a statement regarding the stability of substrates like **1b** under reaction conditions over extended periods, a 1 mmol scale synthesis of **1b** was set up according to General Procedure A (in 5.00 mL of DMSO) and left to stir for a period of time in excess of 40 hours. Periodic monitoring of the reaction by GCMS indicated complete consumption of the starting material within 4 hours, and no evidence for the formation of undesired side-products. After approximately 40 hours, aliquots subjected to GCMS still showed primarily methyl 2,3,5,6-tetrafluorobenzoate.

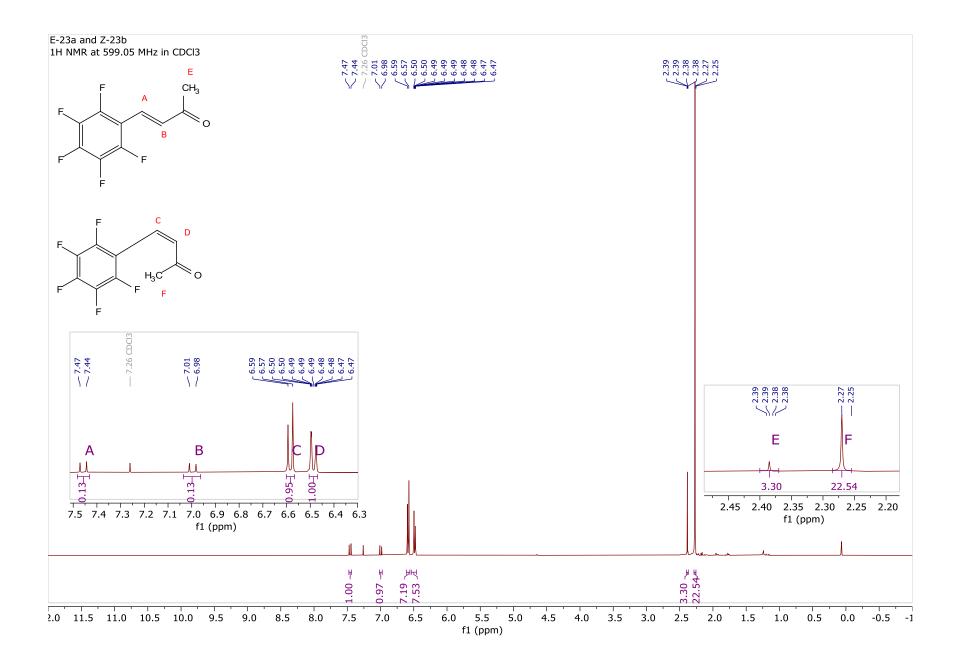
Finally, a 1/10 volume sample from the reaction mixture was taken into an NMR tube charged with a benzene-d⁶ capillary and fluorobenzene as an internal standard (20 microliters, 213 micromoles) for an expedient ¹⁹F NMR yield of 94%. No attempt was made to characterize any trace side products or the fate of the remaining 3 equivalents of hydrides, although a distinct odor of dimethylsulfide suggested that the complex hydride side products preferentially react with the solvent over the methyl 1,3,5,6-tetrafluorobenzoate.

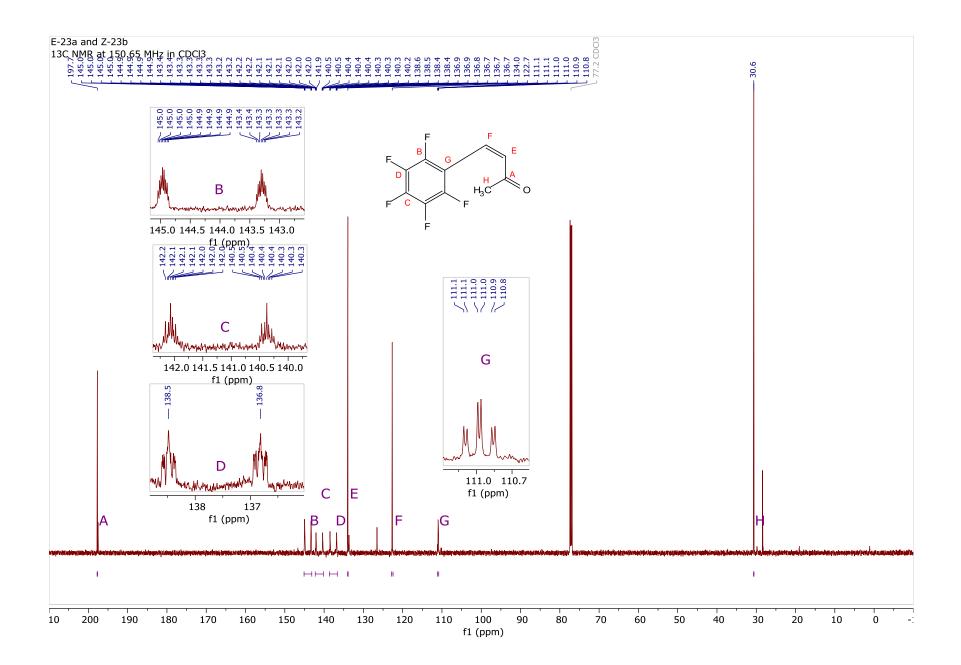
It is important to note that several of the other tested substrates were very much less stable under reaction conditions, requiring careful monitoring and timely workup to mitigate subsequent functional group reduction (**17b**, **18b**, **19b**, and **20b**)



Synthesis of 3,6-di(9H-carbazol-9-yl)phthalonitrile 19c

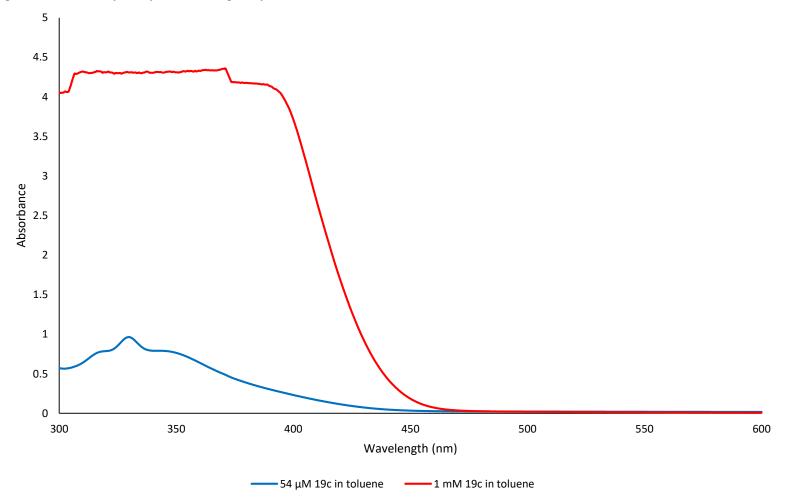

Following the procedure of Adachi et al.,²⁰ NaH (110 mg 60% paraffin dispersion, 2.7 mmol) was added portion-wise to a stirring solution of carbazole (450 mg, 2.7 mmol) in dry THF (3 mL) under argon. The stirring was continued until the exotherm and effervescence had entirely subsided, then the suspension was carefully transferred via syringe to another stirring 3 mL THF solution of 3,6-difluorophthalonitrile **19b** (200 mg, 1.22 mmol). The S_NAr reaction was essentially diffusion controlled but allowed to stir for 30 minutes before being quenched in ice water and extracted with CH₂Cl₂ until the extractions no longer fluoresced under 365 nm irradiation. The organic layer was dried over MgSO₄ and subjected to silica gel flash chromatography eluting with 60% CH₂Cl₂ 40% hexane affording 455 mg of **19c** (81% yield) as a bright yellow, fluorescent powder. ¹H NMR (599 MHz, Benzene-*d*₆) δ 7.97 (d, *J* = 7.7 Hz, 4H), 7.36 (t, *J* = 7.6 Hz, 6H), 7.27 (t, *J* = 7.4 Hz, 4H), 7.03 (d, *J* = 8.1 Hz, 4H), 6.72 (s, 2H). ¹³C NMR (151 MHz, Benzene-*d*₆) δ 140.86, 140.51, 134.48, 126.89, 124.87, 122.18, 121.26, 117.81, 113.10, 110.07

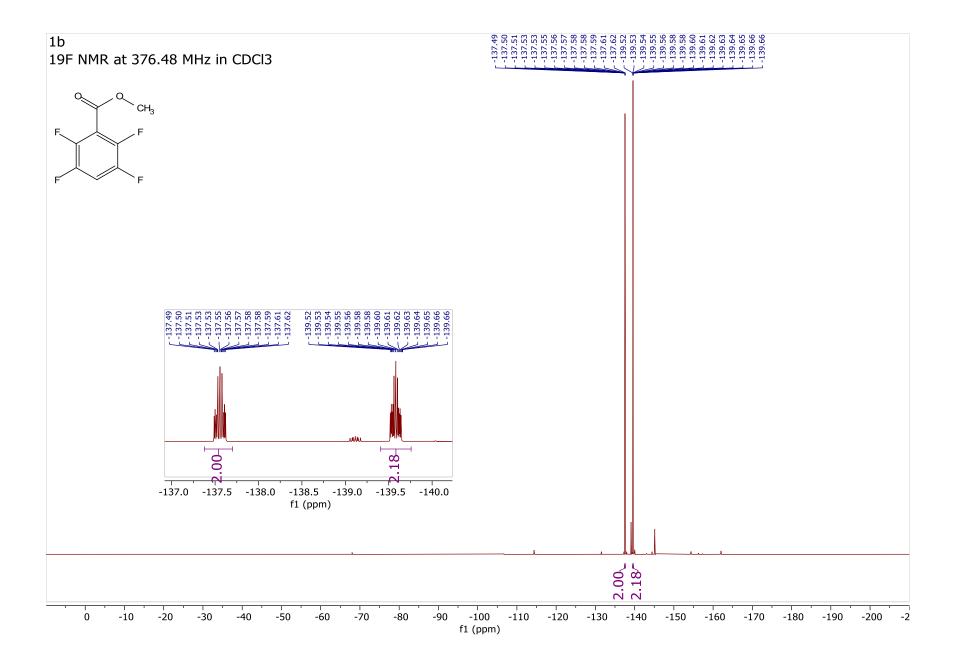

Scheme 3. Contrathermodynamic Isomerization of E-23a

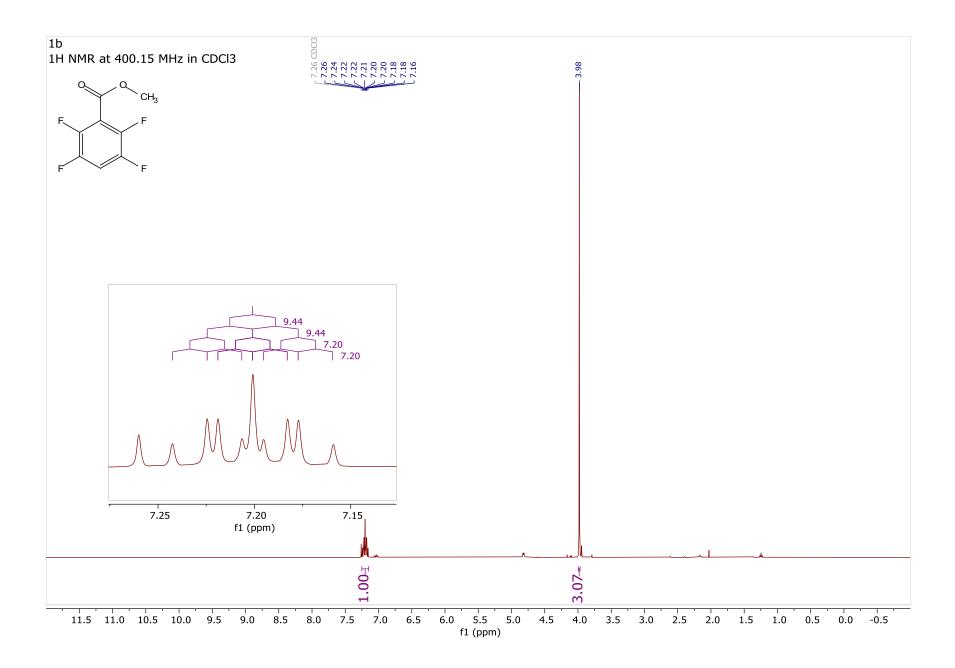


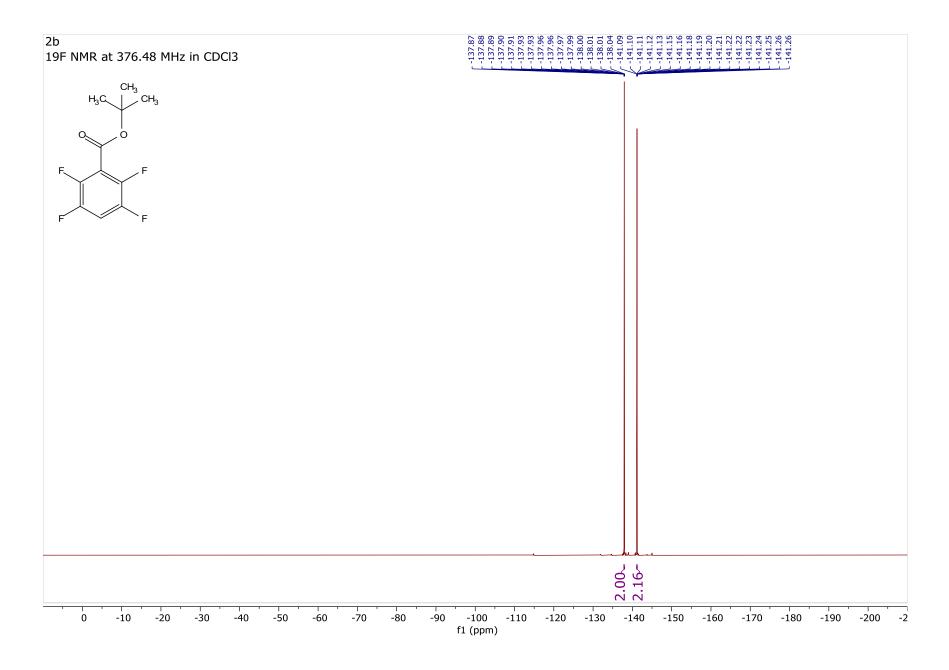
19c – Photocatalyzed Synthesis of (Z)-4-(perfluorophenyl)but-3-en-2-one (Z-23b)

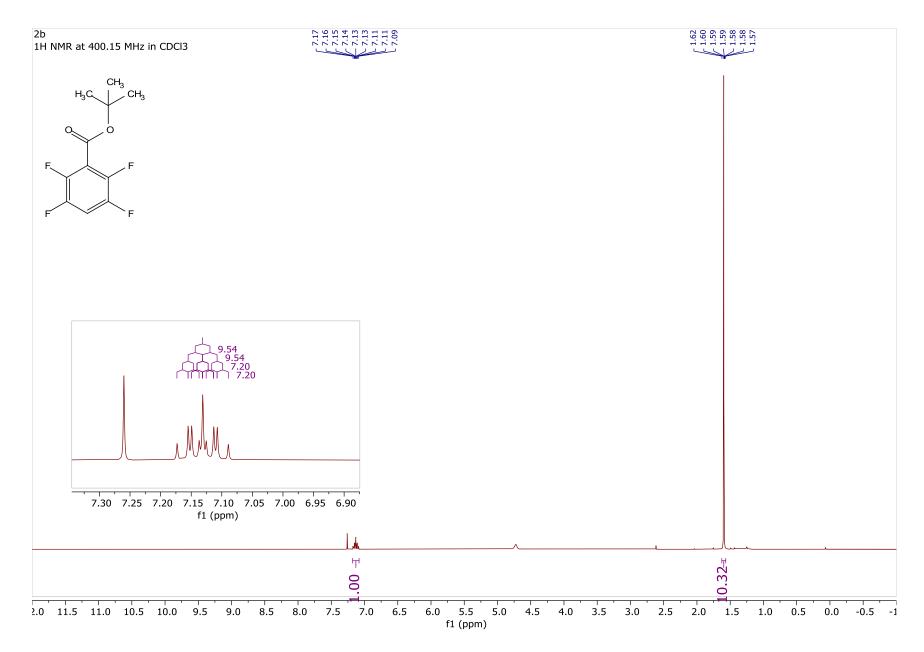
The procedure reported by Sun et al.²¹ was followed scaled to 980 mg of pentafluorobenzaldehyde, affording **E-23a** in 80% yield. 100 mg (424 µmol) of **E-23a** was placed into glass culture tube charged with **19c** in CH₂Cl₂ (4 mL, 280 µM), which was subsequently placed in the 447 nm light bath described in the general experimental at 0 °C for 1 hour. The solution was concentrated *in vacuo* and subjected to silica gel chromatography with hexane/EtOAc to afford **Z-23b** (70 mg combined, 70% combined yield as a mixture of 8 : 1 **Z-23b** : **E-23a**). ¹⁹F NMR (564 MHz, chloroform-d) δ -138.99 (m, 2F), -154.47 (t, J = 20.7 Hz, 1F), -162.78 (m, 2F). ¹H NMR (599 MHz, chloroform-d) δ 6.58 (d, J = 11.9 Hz, 1H), 6.49 (dq, J = 11.9, 1.5 Hz, 1H), 2.27 (s, 3H). ¹³C NMR (151 MHz, chloroform-d) δ 197.72 (s), 144.12 (dddt, J = 249.0, 11.2, 7.4, 3.8 Hz,), 141.22 (dtt, J = 255.6, 13.9, 5.4 Hz), 137.37 (m, J_{C-F} = 251.2 Hz), 133.96 (s, 1C), 122.65 (s), 110.98 (td, J = 17.7, 4.1 Hz), 30.63 (s).

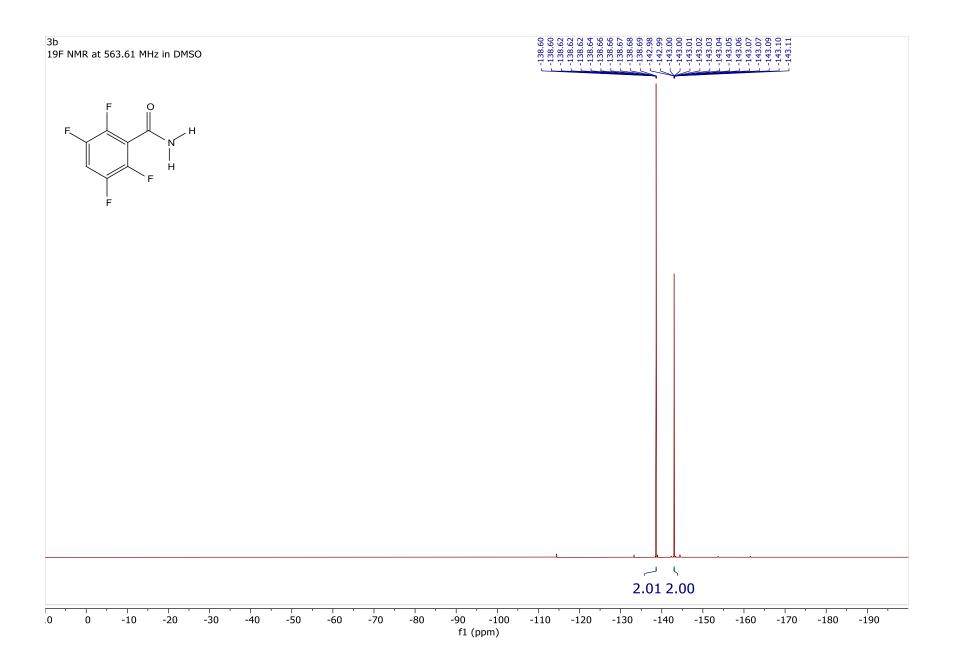


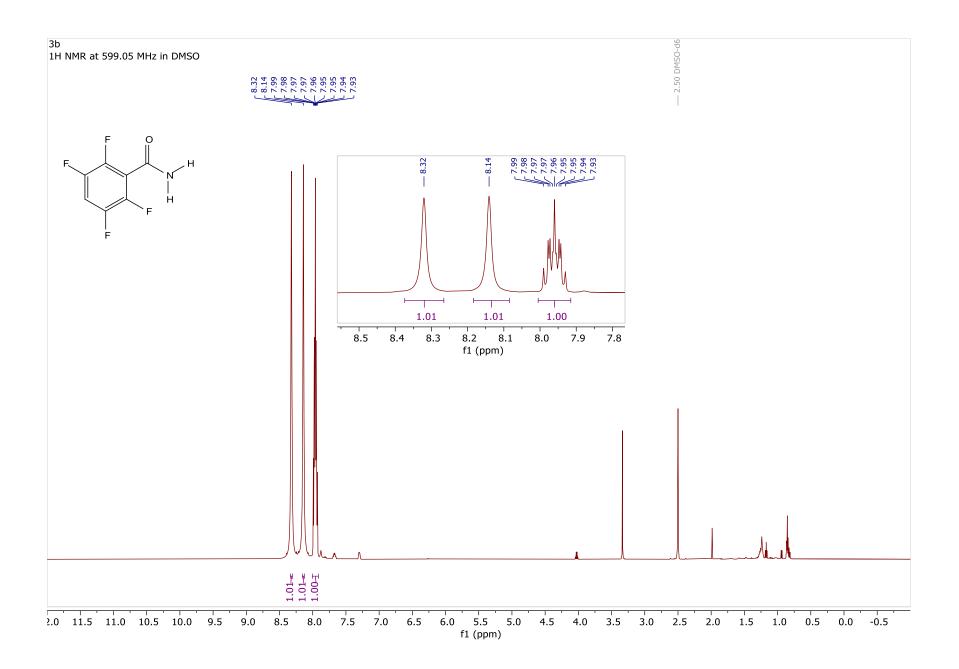

REFERENCES

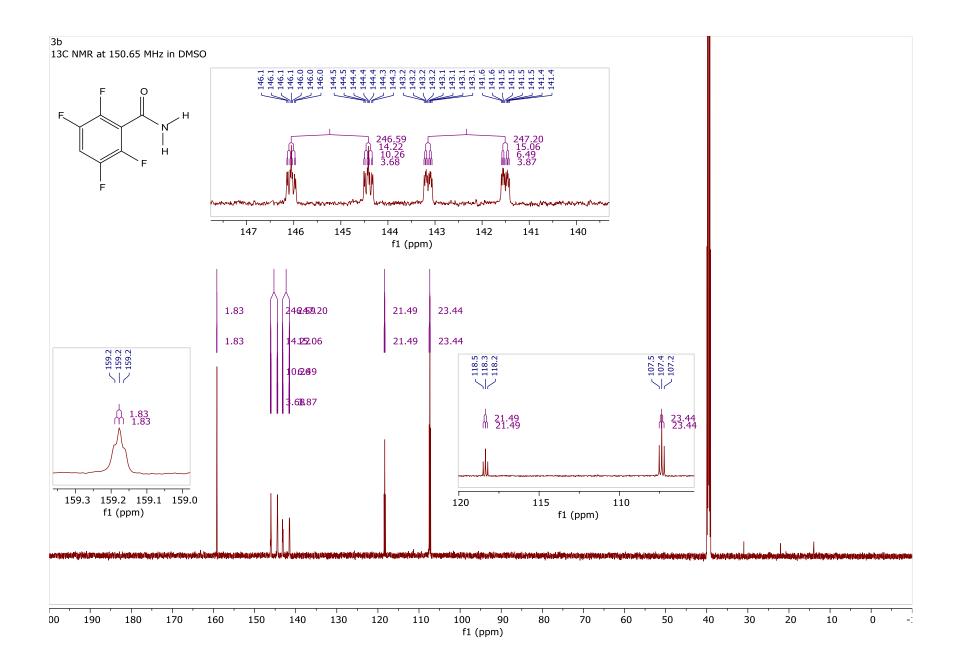

- (1) Harris, R.; Becker, E. D.; Cabral de Menezes, S. M.; Goodfellow, R.; Granger, P. NMR Nomenclature. Nuclear Spin Properties and Conventions for Chemical Shifts. *Pure Appl. Chem.* 2001, 73 (11), 1795–1818.
- (2) Davies, L. C.; Friedlos, F.; Hedley, D.; Martin, J.; Ogilvie, L. M.; Scanlon, I. J.; Springer, C. J. Novel Fluorinated Prodrugs for Activation by Carboxypeptidase G2 Showing Good in Vivo Antitumor Activity in Gene-Directed Enzyme Prodrug Therapy. J. Med. Chem. 2005, 48 (16), 5321– 5328. https://doi.org/10.1021/jm0502182.
- (3) Wallace, W. E.; NIST Mass Spectrometry Data Center. "Mass Spectra." In NIST Chemistry WebBook, NIST Standard Reference Database Number 69; Linstrom, P. J., Mallard, W. G., Eds.; National Institute of Standards and Technology: Gaithersburg MD, 20899, 2018. https://doi.org/10.18434/T4D303.
- (4) Nicholls, T. P.; Robertson, J. C.; Gardiner, M. G.; Bissember, A. C. Identifying the Potential of Pulsed LED Irradiation in Synthesis: Copper-Photocatalysed C-F Functionalisation †. *Chem. Commun* **2018**, *54*, 4589. https://doi.org/10.1039/c8cc02244e.
- (5) Zhang, X.; Fan, S.; He, C.-Y.; Wan, X.; Min, Q.-Q.; Yang, J.; Jiang, Z.-X. Pd(OAc) 2 Catalyzed Olefination of Highly Electron-Deficient Perfluoroarenes. J. Am. Chem. Soc. 2010, 132 (13), 4506–4507. https://doi.org/10.1021/ja908434e.
- (6) Matsuyama, N.; Kitahara, M.; Hirano, K.; Satoh, T.; Miura, M. Nickel- and Copper-Catalyzed Direct Alkynylation of Azoles and Polyfluoroarenes with Terminal Alkynes under O2 or Atmospheric Conditions. *Org. Lett.* **2010**, *12* (10), 2358–2361. https://doi.org/10.1021/ol100699g.
- (7) Iwasaki, T.; Min, X.; Fukuoka, A.; Zhu, L.; Qiu, R.; Yang, T.; Ehara, M.; Sudalai, A.; Kambe, N. Ni-Catalyzed Dimerization and Hydroperfluoroarylation of 1,3-Dienes. J. Org. Chem. 2018, 83, 9267. https://doi.org/10.1021/acs.joc.8b01266.
- (8) Senaweera, S. M.; Singh, A.; Weaver, J. D. Photocatalytic Hydrodefluorination: Facile Access to Partially Fluorinated Aromatics. J. Am. Chem. Soc. 2014, 136, 3002. https://doi.org/10.1021/ja500031m.
- (9) Laev, S. S.; Shteingarts, V. D. Reductive Dehalogenation of Polyfluoroarenes by Zinc in Aqueous Ammonia. J. Fluor. Chem. 1999, 96 (2), 175– 185. https://doi.org/10.1016/S0022-1139(99)00082-2.
- (10) Aroskar, E. V.; Brown, P. J. N.; Plevey, R. G.; Stephens, R. Aromatic Polyfluoro-Compounds. PArt XLI.1 Some Reactions of Pentafluorobenzaldehyde. J. Chem. Soc. C 1966, 1569–1575. https://doi.org/10.1039/J39680001569.
- (11) Wiles, M. R.; Massey, A. G. Synthesis of 1-Phenylethynyl- 4-Substituted Tetrafluorobenzenes. *Tetrahedron Lett.* **1967**, *8* (51), 5137–5138. https://doi.org/10.1016/S0040-4039(01)89629-5.
- (12) Krebs, F. C.; Jensen, T. Fluorinated Molecules Relevant to Conducting Polymer Research. J. Fluor. Chem. 2003, 120 (1), 77–84. https://doi.org/10.1016/S0022-1139(02)00289-0.
- (13) Chambers, R. D.; Hall, C. W.; Hutchinson, J.; Millar, R. W. Polyhalogenated Heterocyclic Compounds. Part 42. Fluorinated Nitrogen Heterocycles with Unusual Substitution Patterns. J. Chem. Soc. Perkin Trans. 1 1998, No. 10, 1705–1713. https://doi.org/10.1039/a709291a.
- (14) Kikushima, K.; Grellier, M.; Ohashi, M.; Ogoshi, S. Transition-Metal-Free Catalytic Hydrodefluorination of Polyfluoroarenes by Concerted Nucleophilic Aromatic Substitution with a Hydrosilicate. Angew. Chemie - Int. Ed. 2017, 56 (51), 16191–16196. https://doi.org/10.1002/anie.201708003.
- (15) Deacon, G. B.; Phillips, R. J. Organothallium Compounds. XIV. Thermal Decomposition of Some Polyfluorobenzoatobis(Polyfluorophenyl)-Thallium(III) Compounds. Aust. J. Chem 1978, 31, 1709–1724. https://doi.org/10.1071/CH9781709.
- (16) Facundo, A. A.; Aré, A.; Fundora-Galano, G.; Flores-A ´lamo, M.; Orgaz, E.; Garcí, J. J. Hydrodefluorination of Functionalized Fluoroaromatics with Triethylphosphine: A Theoretical and Experimental Study ⁺. New J. Chem **2019**, *43*, 6897. https://doi.org/10.1039/c9nj00721k.
- (17) Yow, S.; Gates, S. J.; White, A. J. P.; Crimmin, M. R. Zirconocene Dichloride Catalyzed Hydrodefluorination of C Sp 2^{IIF} Bonds. Angew. Chemie Int. Ed. 2012, 51 (50), 12559–12563. https://doi.org/10.1002/anie.201207036.
- (18) Senaweera, S. M.; Singh, A.; Weaver, J. D. Photocatalytic Hydrodefluorination; Facile Access to Partially Fluorinated Aromatics-SI; 2014.
- (19) Andreevskaya, O. I.; Furin, G. G.; Yakobson, G. G. AROMATIC FLUORO-SUBSTITUTED DERIVATIVES. LXXV. BENZIDINE REARRANGEMENT OF 2,2',3,3',5,5',6,6'-OCTAFLUOROHYDRAZOBENZENE AND WALLACH REARRANGEMENT OF 2,2',3,3',5,5',6,6'-OCTAFLUOROAZOXYBENZENE IN ULTRASTRONG ACIDS. *Zhurnal Org. Khimii* 1977, 13, 1648–1693. https://doi.org/10.1002/chin.197748097.
- (20) Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly Efficient Organic Light-Emitting Diodes from Delayed Fluorescence. *Nature* **2012**, *492* (7428), 234–238. https://doi.org/10.1038/nature11687.
- (21) Song, X.; Zhu, X.; Li, T.; Liang, C.; Zhang, M.; Shao, Y.; Tao, J.; Sun, R. Dehydrozingerone Inspired Discovery of Potential Broad-Spectrum Fungicidal Agents as Ergosterol Biosynthesis Inhibitors. J. Agric. Food Chem. 2019, 67 (41), 11354–11363. https://doi.org/10.1021/acs.jafc.9b04231.

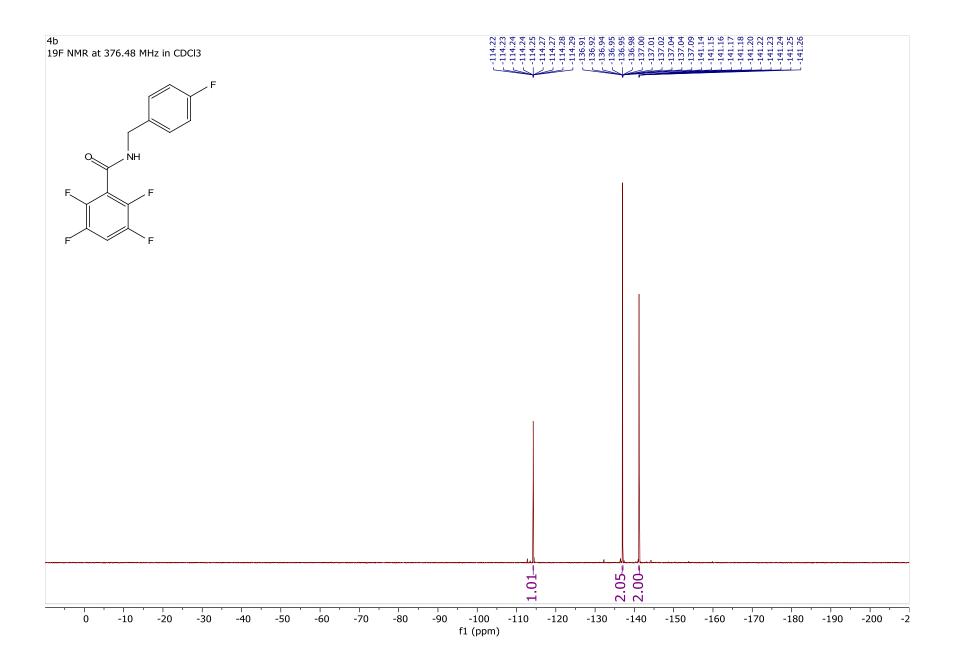

UV-Vis absorption spectra were collected at reaction concentration (approximately 1 mM) and at 54 μ M for the organodye **19c** as part of the substance characterization.

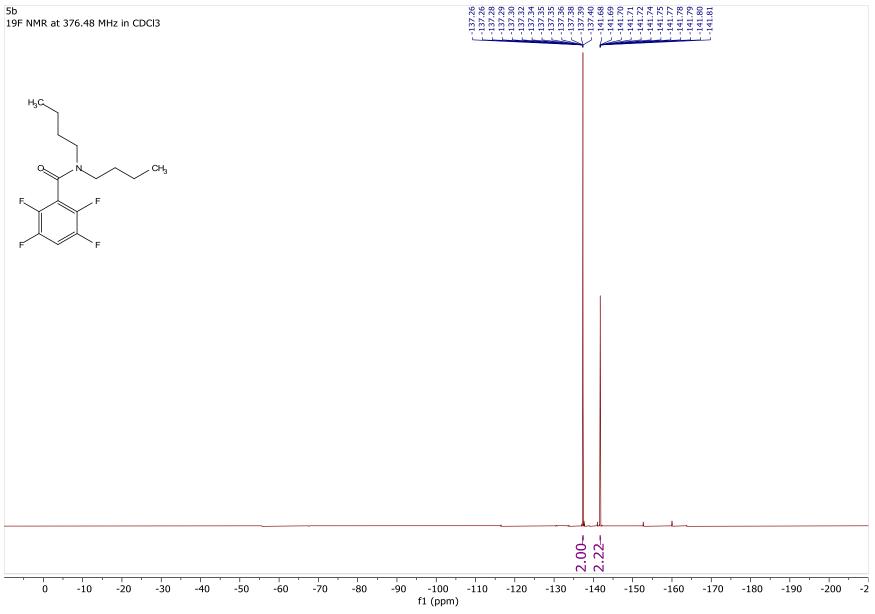


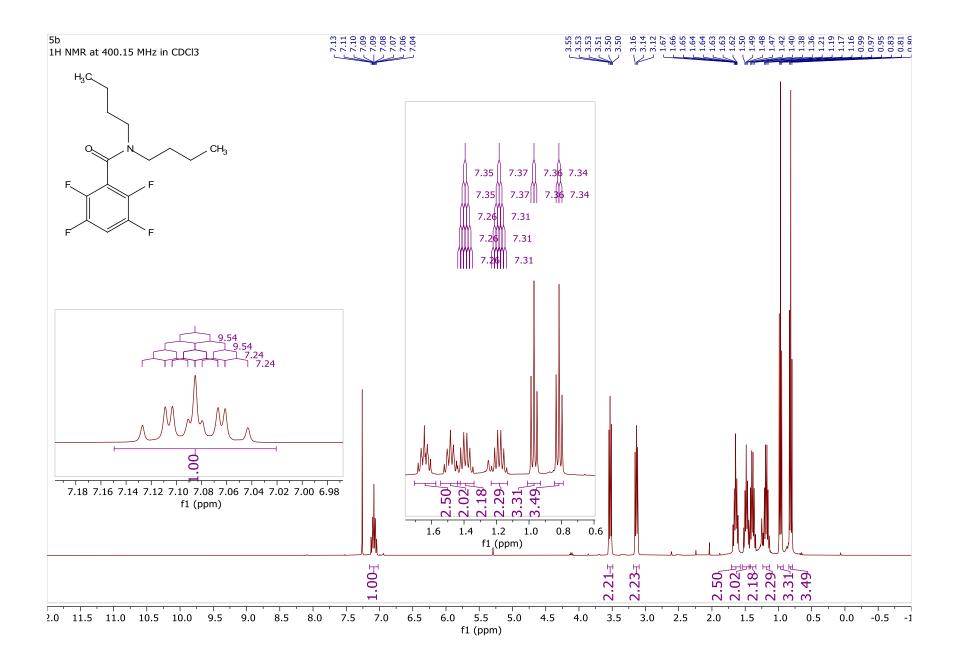


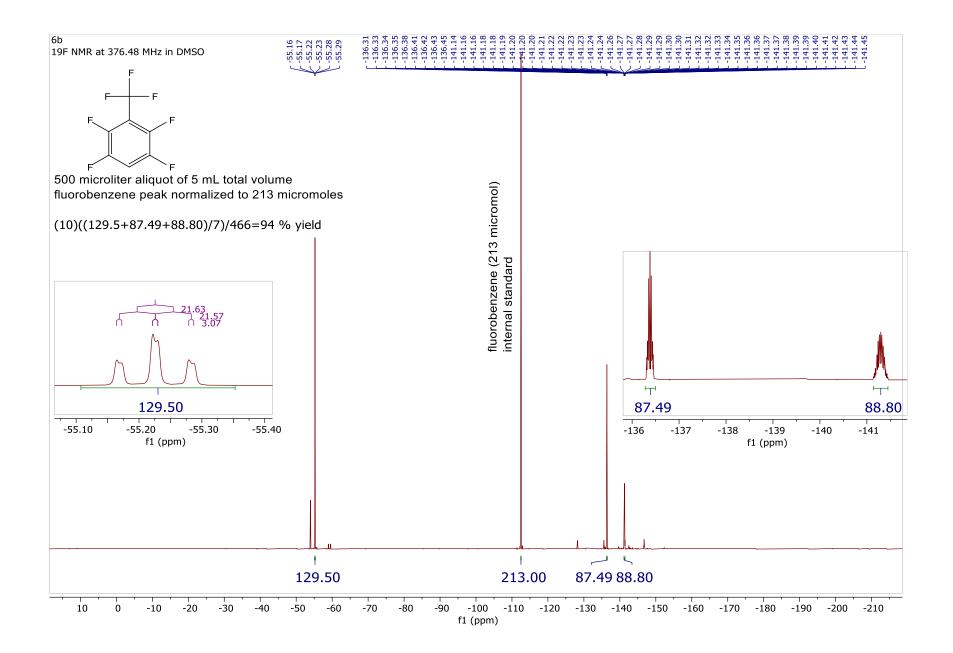


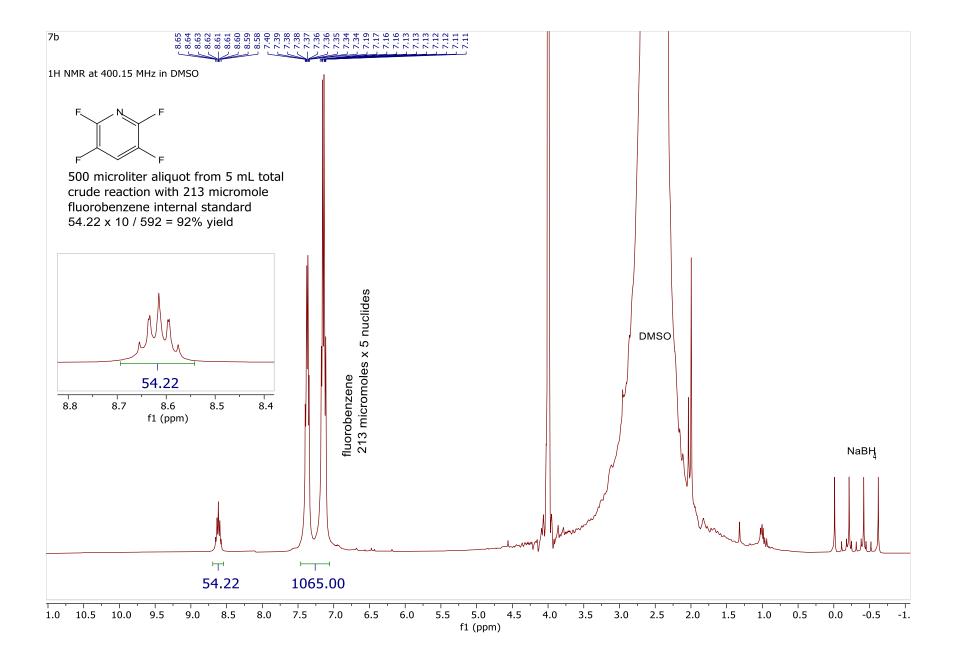


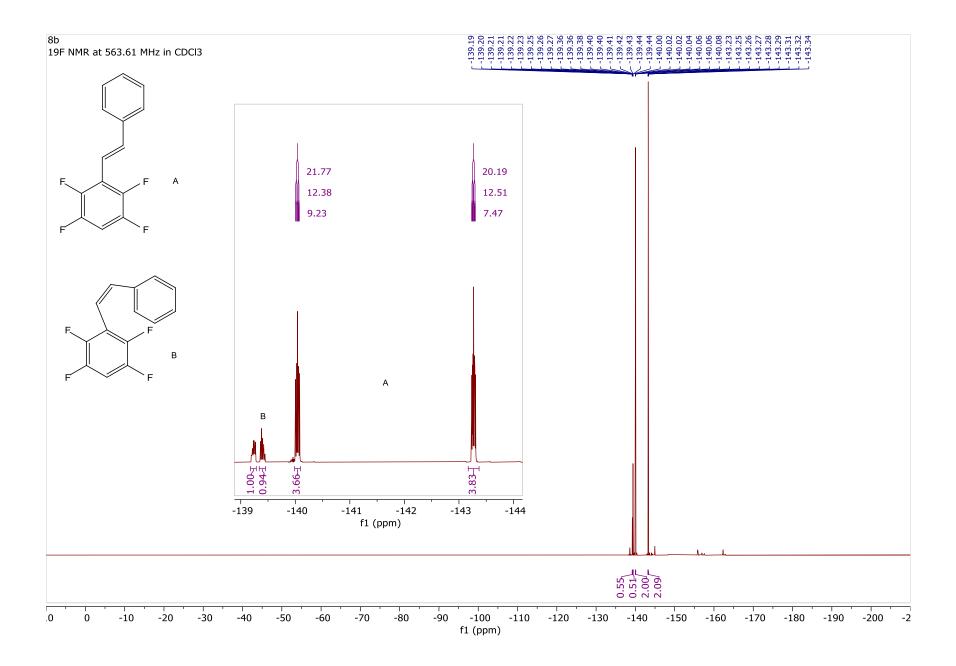


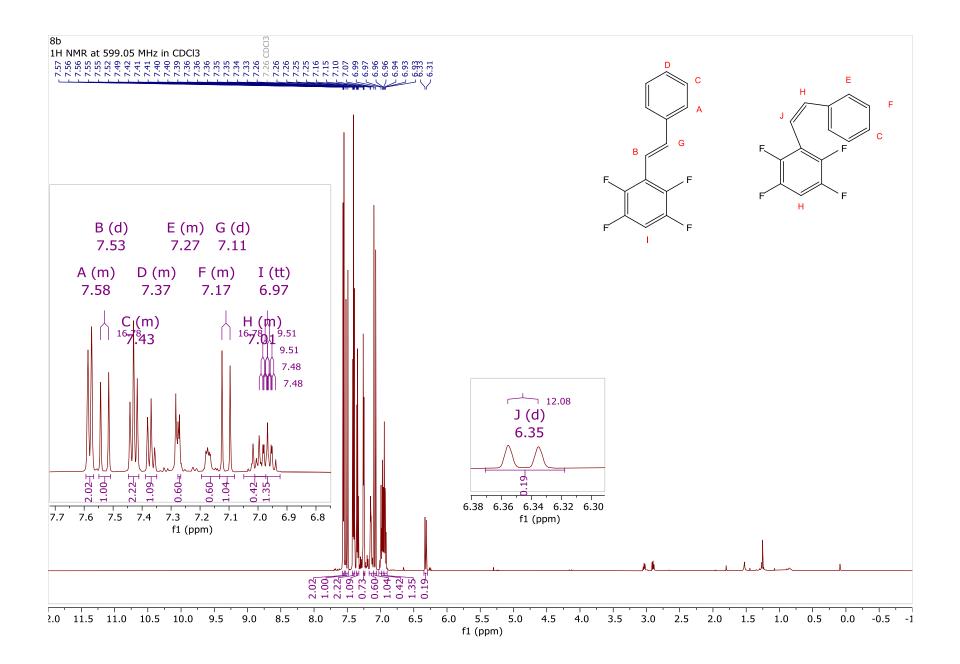







m




m

