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A. WTP: Model parameters and assumptions

This section presents relevant information for the WTP as well as the assumptions considered in 

this case study. Table A.1 presents the nominal steady-state value of the states, the capacity of 

bioreactor  and the area of the decanter . Note that the lower bounds for  and  are set to 𝑽𝒓 𝑨𝒅 𝒒𝒑 𝒒𝟐

zero, whereas the upper bound for these two MVs is set tot 600.

Table A.1. Nominal values of states, design parameters and process model 
parameters

Process Variables Base case value
𝑥𝑤 280.18 (mg/L)
𝑠𝑤 100.02 (mg/L)
𝑥𝑑 102.03 (mg/L)
𝑥𝑏 951.73 (mg/L)
𝑥𝑟 5975.82 (mg/L)
𝑐𝑤 0.08 (mg/L)
𝑉𝑟 2500.00 (m3)
𝐴𝑑 1100.00 (m2)
, 𝑞𝑙

2 𝑞𝑢
2 0-600 (m3/hr)

, 𝑞𝑙
𝑝 𝑞𝑢

𝑝 0-600 (m3/hr)
, 𝑓𝑙

𝑘 𝑓𝑢
𝑘 0.01-2.5

The WTP case study considers the following assumptions:

i) The observability for the states , , and  was confirmed by checking that the observability 𝑠𝑤 𝑥𝑑 𝑐𝑤

matrix is full rank (not shown for brevity).

ii) The length of estimation (N), prediction (L) and control (C) horizon were set to 3, 10, 5, 

respectively, and the time interval is 1 hour. N has to be small enough such that the effect of 

the AC method in the MHE estimation can be considered. Preliminary tests involving multiple 

combinations between L and C were performed to obtain the appropriate prediction and control 

horizons in the NMPC framework. The corresponding horizons considered in this work 

presented acceptable closed-loop performance at the nominal conditions reported in Table A.1.



3

iii) There are two standard choices of importance function in C-PF (or in overall PF), namely the 

posterior and the prior50. In the current study, the prior importance function has been 

considered, which is the most frequently used importance function due to its simplicity. This 

probability distribution function has a zero mean bounded distribution that is assigned to the 

process uncertainties ( ). That is,  are the samples that are drawn randomly 𝒘𝑗 𝒘𝒑𝑗 ∈ ℝ𝑁𝑃 × 𝑛𝑥

from the probability distribution assigned to the process uncertainties at jth time interval ( ). 𝒘𝑗

The samples are selected using Monte Carlo sampling techniques. These samples are imposed 

on the estimated states calculated from MHE at the time step k-N-1 ( ) to generate the 𝒙𝑘 ― 𝑁 ― 1

NP particles used as the prior estimation of the states in the C-PF estimation. Moreover, it is 

critical to select a large enough number of particles to represent an acceptable approximation 

of the actual distribution of the states of the system while keeping reasonable computational 

costs. Preliminary simulations showed that 100 particles provided an acceptable representation 

of the states in the C-PF method at reasonable computational costs.

iv) Both the MHE and NMPC are subject to bounds on the MVs (see Table A.1).

v) Step changes in the set-point for the biomass concentration  were considered. Note that for 𝑥𝑤

the case of symmetric bounded process uncertainties, set points of CVs have not been 

considered the same as those used for non-symmetric bounded process uncertainties. This is 

because process uncertainties are identified as model structural errors. Due to the non-

symmetric process uncertainty tested in this work, the plant may not operate around the 

nominal operating point depicted in Table A.1. Thus, in order to make the WTP dynamically 

operable in closed-loop, the set points of CVs were modified for the case of non-symmetric 

bounded uncertainty.
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vi)  The weight matrix for the CVs is as follows: . The diagonal elements 𝑸𝑇
𝒐𝒖𝒕 = 𝑑𝑖𝑎𝑔([1,200,1])

are the weights for  and  and , respectively. These weights have been tuned based on 𝑥𝑤 𝑠𝑤 𝑐𝑤

preliminary tests. Note that  and is at least two orders of magnitude higher than ; hence, 𝑥𝑤 𝑠𝑤

the larger weight on . 𝑠𝑤

vii)Weights on the MVs were not considered in the NMPC framework to simplify the analysis.

B. WTP: Scenarios I-III: Open-loop estimation

For the open-loop operation, all the input variables remained constant and equal to their nominal 

values reported in Table A.1 in section A. Table B.1 summarizes the results obtained from 

Scenarios Ⅰ and Scenario Ⅱ during open-loop operation. As shown in Table B.1, the highest 

 corresponds to MHE results using 0.5TS whereas the lowest  is that obtained from 𝑆𝑆𝐸(𝑛) 𝑆𝑆𝐸(𝑛)

using TS as the AC method. In Scenario Ⅰ, using C-PF as the AC estimator slightly reduces the 

estimation error in MHE when compared to an MHE estimation associated with EKF as the AC 

estimator (  reduction). Scenario Ⅱ considers non-symmetric bounded distribution; hence, it ~1%

was expected that EKF may not perform well since the process uncertainty significantly deviates 

from a Gaussian distribution. Nevertheless, the results obtained for this scenario using the different 

approximation methods showed no significant differences in performance. This is mostly because 

the process uncertainty has zero mean value with narrower bounds; hence, process uncertainties 

may not significantly impact open-loop operation. 

Table B.1. Open-loop operation of the WTP, Scenarios Ⅰ-Ⅱ 𝑆𝑆𝐸(𝑛) 

AC estimation method (n) Scenario Ⅰ Scenario II
TS 0.0165 0.0208

0.5TS 1.0000 1.0000
EKFexpc 0.0409 0.0216
C-PFexpc 0.0306 0.0228

EKF 0.0382 0.0217
C-PF 0.0305 0.0238
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Table B.2 presents the averaged CPU time needed to execute Scenario Ⅰ and Scenario Ⅱ at each 

time interval, respectively. As shown in this table, the required CPU time for Scenario Ⅰ in the 

case of using EKF is almost 24% smaller than that using C-PF. Similarly, for Scenario Ⅱ, using 

EKF as the AC estimator reduces the required CPU time by almost 20% in comparison to the case 

of using C-PF. Since minimizing computational expenses is a critical element in an online 

estimation and control framework, the performance improvement achieved by using C-PF 

(measured in this work as a function of ) is not significant enough to make the computational 𝑆𝑆𝐸(𝑛)

efforts worthwhile. Note that the averaged CPU times reported for the cases of TS and 0.5TS can 

be used as benchmarks to determine the additional computational expenses required to apply an 

AC estimation method, i.e. no additional calculations are needed for those two AC estimation 

methods. For instance, compared to the benchmark, an additional 1.71s and 1.78s are required on 

average to estimate the AC parameters using EKFexpc for Scenario I and Scenario II, respectively.

Table B.2. Averaged CPU time (s), Scenarios Ⅰ and Ⅱ
AC approximation approach Scenario Ⅰ Scenario Ⅱ

TS 1.85 1.86
0.5TS 1.88 1.87

EKFexpc 3.56 3.63
C-PFexpc 4.41 4.36

EKF 3.78 3.77
C-PF 4.37 4.42

Table B.3 compares the MHE performance obtained from the different instances considered in 

Scenario Ⅲ. As presented in Table 1 in section 4.1, this scenario aims to perform open-loop MHE 

estimation using smaller and larger plant designs while considering both symmetric and non-

symmetric bounded process uncertainties. A comparison between  for Scenario Ⅲ.A and 𝑆𝑆𝐸(𝑛)

Scenario Ⅲ.B shows the effect of different plant designs under symmetric bounded distributions. 
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As shown in Table B.3, the  reported for TS, EKFexpc, C-PF-excpc, EKF, and C-PF in 𝑆𝑆𝐸(𝑛)

Scenario Ⅲ.B are larger than those obtained for Scenario Ⅲ.A. For a fixed estimation horizon, a 

higher plant capacity (Scenario Ⅲ.B) is expected to be more dependent to the AC since the 

response time of the process is larger in comparison with a smaller plant design (Scenario Ⅲ.A). 

Therefore, a more significant loss in open-loop performance is expected in the absence of an 

acceptable AC approximation method (e.g., 0.5TS) for the case of a larger plant design, as shown 

in Figure B.1. Note however that the normalized SSE ( ) reported in Table B.3 are smaller 𝑆𝑆𝐸(𝑛)

for larger plant sizes (Scenario III.B) than those obtained for a smaller plant size (Scenario III.A). 

This is because of the normalization performed using the SSE reported for 0.5TS, which resulted 

in the worst estimation method for both scenarios. As a result, the need of using an adequate AC 

approximation method becomes more important as the plant capacity increases (i.e. Scenario 

Ⅲ.B). Moreover, the effect of plant design in the case of non-symmetric bounded uncertainties, 

i.e. Scenarios Ⅲ.C and Ⅲ.D, is depicted in Table B.3. This table shows that, regardless of the 

plant capacity, the estimation during open-loop operation remains fairly the same for all the AC 

approximation methods.

Table B.3.  Open-loop MHE estimation for the WTP, Scenario Ⅲ𝑆𝑆𝐸(𝑛)

Scenarios
AC approximation approach

Ⅲ.A Ⅲ.B Ⅲ.C Ⅲ.D
TS 0.0301 0.0109 0.0248 0.0217

0.5TS 1.0000 1.0000 1.0000 1.0000
EKFexpc 0.0715 0.0210 0.0261 0.0256
C-PFexpc 0.0558 0.0223 0.0260 0.0249

EKF 0.0693 0.0213 0.0295 0.0258
C-PF 0.0559 0.0222 0.0262 0.0256
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Figure B.1. Open-loop MHE estimation, Scenario Ⅲ.A and Ⅲ.B 

Based on the above, both EKF and C-PF returned similar performances in terms of SSE. However, 

EKF is capable of providing an accurate AC approximation during open-loop operation at lower 

computational costs.

C. HIPS: Model parameters and assumptions

This section presents the information and assumptions that have been considered in the HIPS case 

study. Table C.1 shows the main parameters of HIPS process that has been adopted in the present 

work for this case study. The manipulated variables (MVs) considered in NMPC framework for 

this process are the outlet flowrate (Q) and the cooling water flowrate ( ). The lower and upper 𝑄𝑐𝑤

bounds for these two MVs are presented in Table C.1. 

Table C.1. Nominal values of states at steady-state, and model parameters for HIPS
Process Variable Scaled case value (SCV) Base case value

𝐶𝑖 0.61 6.14e-05 (mol/L)
𝐶𝑚 1.00 6.07 (mol/L)
𝐶𝑏 1.00 1.05 (mol/L)
𝐶𝑟 2.51e-11 2.51e-11 (mol/L)
𝐶𝑏𝑟 2.24e-12 2.24e-12 (mol/L)
𝑇 0.78 389.31 (K)
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𝑇𝑗 0.64 320.52 (K)
𝜇0

𝑟 4.55 4.55e-08 (mol/L)
𝜇0

𝑏 1.97e-09 1.97e-09 (mol/L)
, 𝑄𝑙 𝑄𝑢 0-1 0-1.14 (L/s)

, 𝑄𝑙
𝑐𝑤 𝑄𝑢

𝑐𝑤 0-1 0-1 (L/s)
Process 
Parameters

Value Process Parameters Value

𝐶𝑓
𝑖 0.9815 (mol/L) 𝑄𝑠

𝑖 0.0015 (L/s)
𝐶𝑓

𝑚 8.63 (mol/L) 𝑄𝑠
𝑐𝑤 1 (L/s)

𝐶𝑓
𝑏 1.0548 (mol/L) 𝑄𝑠 1.1412 (L/s)

𝑇𝑓 333 (K) 𝑈 80 (J/(s.K.m2))
𝑇𝑓

𝑗 350 (K) 𝐴𝐻 19.5 (m2)
𝑄𝑖 0.0015 (L/s) 𝑉 94.50 (L)
𝐶𝑠

𝑖 0.0001 (mol/L) 𝜌𝑠 0.9150 (Kg/L)
𝐶𝑠

𝑚 6.0723 (mol/L) 𝐶𝑝𝑠 1647.265 (J/kg.K)
𝐶𝑠

𝑏 1.0545 (mol/L) 𝑒𝑓 0.57
𝐶𝑠

𝑟 1 (mol/L) 𝜌𝑐𝑤 1 (Kg/L)
𝐶𝑠

𝑏𝑟 1 (mol/L) 𝐶𝑝𝑠𝑤 4045.7048 (J/kg.K)
𝑇𝑠 500 (K) 𝑉𝑐 2.000 (L)
𝜇0𝑠

𝑟 1 (mol/L) Δ𝐻𝑟 69919.56 (J/mol)

𝜇0𝑠

𝑏 1 (mol/L) 𝑅 1.9858 cal/(mol.K)

The underlying assumptions considered for the HIPS case study are as follows:

i) The observability matrix for the states , , ,  and  is a full rank matrix that confirms 𝐶𝑏 𝐶𝑟 𝐶𝑏𝑟 𝑇 𝜇0
𝑏

the observability of the system (not shown for brevity).

ii) The length of estimation (N), prediction (L) and control (C) horizon are set to 10. These tuning 

parameters were obtained from preliminary simulations. The time interval is set to 1 s. 

iii) The HIPS process requires to produce a variety of grades of polystyrene based on consumer 

demands31. Hence, three step changes in the set-point of the monomer concentration  were 𝐶𝑚

considered to develop the closed-loop framework for three different grades of the product 

where the conversion of monomer is 20%, 25%, and 30% 31,32.

iv) The weight matrix for CVs is as follows: , i.e., the weights are the same for both 𝑸𝒐𝒖𝒕 = 𝑰2 × 2

CVs (i.e. Cm and T). No weights on the MVs are considered in the NMPC framework.
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D. AC estimation methods

This section provides a brief overview of the EKF and PF methods. 

Extended Kalman Filter (EKF): There are two main steps involved in the EKF algorithm, i.e., the 

predictor and corrector steps shown in Equations (26) and (27). This EKF algorithm interacts with 

the MHE as shown in Figure 1, i.e., past estimation results of MHE problem  are used for 𝒙𝑘 ― 𝑁 ― 1

initialization of AC estimator (EKF). Moreover, the EKF uses the measurement outputs of the 

process plant for the corrector update step.  As a result,  and  are the 𝒙(𝑬𝑲𝑭)
𝑘 ― 𝑁|𝑘 ― 𝑁 𝑷𝑬𝑲𝑭

𝑘 ― 𝑁|𝑘 ― 𝑁

mean value and covariance of the posterior distribution of the states at time k-N. The estimated 

terms  and  represent the approximation of the AC parameters, i.e.  𝒙(𝑬𝑲𝑭)
𝑘 ― 𝑁|𝑘 ― 𝑁 𝑷𝑬𝑲𝑭𝑘 ― 𝑁|𝐾 ― 𝑁 𝒙𝑘 ― 𝑁

and , are they are used as inputs to the MHE estimation at time step k.𝑷𝑘 ― 𝑁

Particle Filtering method (PF): In this method, a set of particles is used to estimate the conditional 

posterior density function for states at time k-N thus providing an approximation of AC. These 

particles are selected by taking the advantage of Sequential Monte Carlo sampling. In fact, the PF 

method assumes that the weighted sum of a sufficiently large NP samples approximates the true 

posterior distribution function as follows36,37:

𝑝(𝒙𝑷𝑭
𝑘 ― 𝑁│𝒀𝑘 ― 𝑁) ≈

1
𝑁𝑃

𝑁𝑃

∑
𝑖 = 1

𝛿(𝒙𝑷𝑭
𝑘 ― 𝑁 ― 𝒙𝑷𝑭𝑖

𝑘 ― 𝑁) ≡ 𝑝(𝒙𝑷𝑭
𝑘 ― 𝑁│𝐘𝑘 ― 𝑁) (D1)

where  is the Dirac delta function,  that includes all the past 𝛿(.) 𝐘𝑘 ― 𝑁≔{𝒚0,𝒚1,…, 𝒚𝑘 ― 𝑁}

measurements from the initial time instance  to time k-N ( ), and the samples  are 𝒚0 𝒚𝑘 ― 𝑁 𝒙𝑷𝑭𝑖
𝑘 ― 𝑁

independently distributed particles taken from . Based on the approximation in 𝑝(𝒙𝑷𝑭
𝑘 ― 𝑁│𝐘𝑘 ― 𝑁)

equation (D1) the expected value of a given nonlinear function  is36,37:𝑓(.)
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𝔼[𝑓(𝒙𝑷𝑭
𝑘 ― 𝑁)] ≈ ∫𝑓(𝒙𝑷𝑭

𝑘 ― 𝑁)𝑝(𝒙𝑷𝑭
𝑘 ― 𝑁│𝐘𝑘 ― 𝑁)𝑑𝒙𝑷𝑭

𝑘 ― 𝑁 =
1

𝑁𝑃

𝑁𝑃

∑
𝑖 = 1

𝑓(𝒙𝑷𝑭𝑖
𝑘 ― 𝑁) (D2)

Evaluation of the expected value based on Equation (D2) needs sampling from a posterior 

distribution; however, usually the shape or type of the distribution is unknown. As an alternative, 

a completely defined trial or importance distribution is considered to obtain the samples. At each 

sampling time, particles are taken from the importance density . Therefore, the (𝒙𝑷𝑭
𝑘 ― 𝑁│𝐘𝑘 ― 𝑁)

expectation approximation can be determined by modifying the previous equation as follows36,37:

𝔼[𝑓(𝒙𝑷𝑭
𝑘 ― 𝑁)] = ∫𝑓(𝒙𝑷𝑭

𝑘 ― 𝑁)
𝑝(𝒙𝑷𝑭

𝑘 ― 𝑁│𝐘𝑘 ― 𝑁)
𝜋(𝒙𝑷𝑭

𝑘 ― 𝑁│𝐘𝑘 ― 𝑁)𝜋(𝒙𝑷𝑭
𝑘 ― 𝑁│𝐘𝑘 ― 𝑁)𝑑𝒙𝑷𝑭

𝑘 ― 𝑁

≈
𝑁𝑃

∑
𝑖 = 1

𝑓(𝒙𝑷𝑭𝑖
𝑘 ― 𝑁)𝑤𝑖

𝑘 ― 𝑁(𝒙𝑷𝑭𝑖
𝑘 ― 𝑁)

(D3)

=𝒘𝒈𝒕𝑖
𝑘 ― 𝑁(𝒙𝑷𝑭𝑖

𝑘 ― 𝑁)  
𝑝(𝒙𝑷𝑭𝑖

𝑘 ― 𝑁│𝐘𝑘 ― 𝑁)
𝜋(𝒙𝑷𝑭𝑖

𝑘 ― 𝑁│𝐘𝑘 ― 𝑁)
(D4)

where  is the weight function for each of these samples. Based on the above, the recursive 𝒘𝒈𝒕𝑖
𝑘 ― 𝑁

form of the chosen importance distribution can be described as follows36,37:

𝜋(𝒙𝑷𝑭
𝑘 ― 𝑁│𝐘𝑘 ― 𝑁) = 𝜋(𝒙𝑷𝑭

𝑘 ― 𝑁│𝒙𝑷𝑭
𝑘 ― 𝑁 ― 1,𝒚𝑘 ― 𝑁)𝜋(𝒙𝑷𝑭

𝑘 ― 𝑁 ― 1│𝐘𝑘 ― 𝑁 ― 1)
𝜋(𝒙𝑷𝑭

0)~𝑝(𝒙𝑷𝑭
0)

(D5)

As the result, the weighted function can be reformulated as follows36,37:
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𝒘𝒈𝒕𝑖
𝑘 ― 𝑁(𝒙𝑷𝑭𝑖

𝑘 ― 𝑁) = 𝒘𝒈𝒕𝑖
𝑘 ― 𝑁 ― 1(𝒙𝑷𝑭𝑖

𝑘 ― 𝑁 ― 1)
𝑝(𝒚𝑘 ― 𝑁| 𝒙

𝑷𝑭𝑖
𝑘 ― 𝑁)𝑝(𝒙𝑷𝑭𝑖

𝑘 ― 𝑁| 𝒙
𝑷𝑭𝑖

𝑘 ― 𝑁 ― 1
)

𝜋(𝒙𝑷𝑭𝑖
𝑘 ― 𝑁│𝑿  

𝑘 ― 𝑁 ― 1,𝐲𝑘 ― 𝑁)
(D6
)

Note that is a matrix of all the estimations from time instant zero to time k-N-1,  𝑿  
𝑘 ― 𝑁 ― 1 𝒙𝑷𝑭𝑖

𝑘 ― 𝑁 ― 1

denotes the samples around the past estimation results of MHE problem, i.e., . Based on 𝒙𝑘 ― 𝑁 ― 1

the equations (D5), (D6), (2), the AC expression for PF can be approximated as follows:

𝜑𝑘 ― 𝑁 ≈
𝑁𝑃

∑
𝑖 = 1

𝒘𝒑𝑖
𝑘 ― 𝑁‖𝒙𝑘 ― 𝑁 ― 𝒙𝑷𝑭𝑖

𝑘 ― 𝑁‖2

[𝑷𝑖
𝑘 ― 𝑁|𝑘 ― 𝑁] ―1

(D7)

here  and  are the mean and the covariance associated with the posterior 𝒙𝑷𝑭𝑖
𝑘 ― 𝑁 𝑷𝑖

𝑘 ― 𝑁|𝑘 ― 𝑁

distribution of ith particle at time k-N. The chosen importance distribution is a key aspect of the PF 

approach since it can significantly reduce the number of required particles to approximate the 

posterior distribution. Particularly, in the presence of bounds on the state variables it is essential 

to choose a consistent importance distribution with respect to these bounds. In fact, the key factor 

is that the particles should be drawn from the bounded distributions, which makes Constrained-PF 

(C-PF) an adequate constrained estimator for approximating AC parameters for constrained 

nonlinear systems.


