Supporting Information:

P-C Bond Cleavage Induced Ni(II) Complexes Bearing Rare-earth-Metal-Based Metalloligand and Reactivities Toward Isonitrile, Nitrile and Epoxide.

Peng Cui,^{*, †, ‡} Xia Huang, [†] Jun Du, [†] Zeming Huang [†]

- † Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China.
- ‡ Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, Suzhou 215123, P. R. China

Table of Contents:

1. Spectroscopic Data	2
1.1 NMR spectra	2
1.2. IR Spectra	
2. X-ray Crystallography	
3. References	

1. Spectroscopic Data

1.1 NMR spectra

Figure S1. ¹H NMR spectrum of 1 in C₆D₆ at 25 °C.

7.75 7.61

Figure S2. ${}^{31}P{}^{1}H$ NMR spectrum of 1 in C₆D₆ at 25 °C

Figure S4. ¹H NMR spectrum of **2** in C₆D₆ at 25 °C. (* denotes small amount of hexane)

Figure S6. ¹³C{¹H} NMR spectrum of **2** in C₆D₆ at 25 °C. (* denotes small amount of hexane)

Figure S8. ${}^{31}P{}^{1}H$ NMR spectrum of 3 in C₆D₆ at 25 °C.

Figure S10. ¹H NMR spectrum of 4 in C₆D₆ at 25 °C. (* denotes small amount of toluene)

Figure S12. Stacked ¹H NMR spectra of 4 and 4-*d*₄ in C₆D₆ at 25 °C. (* denotes small amount of hexane)

Figure S13. ¹H NMR spectrum of 5 in C₆D₆ at 25 °C.

Figure S14. ³¹P{¹H} NMR spectrum of 5 in C₆D₆ at 25 °C.

21.35 21.25 20.79 20.69 12.26 12.16

Figure S16. ³¹P{¹H} NMR spectrum of 6 in C₆D₆ at 25 °C.

Figure S18. Stacked ¹H NMR spectra of **6** and **6**-*d*₄ in C₆D₆ at 25 °C. (*denotes small amount of THF and hexane)

Figure S19. ¹H NMR spectrum of 7 in C₆D₆ at 25 °C. (* denotes small amount of hexane)

20.42 20.33 20.33 19.86 19.76 12.64

Figure S21. VT-³¹P{¹H} NMR spectra of 8 in toluene- d_8 at various temperature (248-333K).

Figure S22. VT-¹H NMR spectra of **8** in toluene- d_8 at various temperature (248-328K).

Figure S23. VT-³¹P{¹H} NMR spectra of 8 in toluene- d_8 at various temperature (203-333K).

Figure S24. ¹H NMR spectrum of 9 in C₆D₆ at 25 °C.

Figure S26. ¹³C{¹H} NMR spectrum of 9 in C₆D₆ at 25 °C. (* denotes small amount of THF and hexane)

Figure S27. Stacked ¹H NMR spectra of **9** and **9**-*d*₄ in C₆D₆ at 25 °C. (*denotes small amount of THF)

Figure S28. HSQC spectrum of 9

1.2. IR Spectra

Figure S29. IR spectrum of solid 6.

Figure S30. IR spectrum of solid 7.

2. X-ray Crystallography

X-ray Crystallography. Diffraction was performed on a Bruker SMART APEX II CCD area detector diffractometer using graphite-monochromated Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å) and Bruker Platon II area detector diffractometer using graphite-monochromated Mo $K\alpha$ radiation ($\lambda = 0.71073$ Å) for complexes, φ and ω scan technique. An empirical absorption correction was applied using the SADABS program.¹ All structures were solved by direct methods, completed by subsequent difference Fourier syntheses, and refined anisotropically for all non-hydrogen atoms by full-matrix least-squares calculations based on F^2 using the SHELXTL program package² and Olex 2 program⁴. The hydrogen atom coordinates were calculated with SHELXTL by using an appropriate riding model with varied thermal parameters. The residual electron densities of solvent were squeezed by using PLATON.³ All crystal structural pictures drawn by Olex 2 program.⁴ Crystal parameters and refinement results are given in Table S1-S2.

				1
	1	2	4	5
formula	$C_{57}H_{55}N_4P_2Y$	$C_{59}H_{59}N_4P_2Y$	$C_{59}H_{59}N_4P_2NiY$	$C_{59}H_{59}N_4P_2NiLu$
Fw, g·mol ^{−1}	946.90	974.95	1033.66	1119.72
cryst size, mm	0.22 x 0.21 x 0.2	0.21 x 0.2 x 0.18	0.21 x 0.19 x 0.18	0.22 x 0.20 x 0.19
cryst. syst.	triclinic	monoclinic	triclinic	triclinic
space group	P -1	P 1 21/n 1	P -1	P -1
Т, К	273(2)	273(2)	273(2)	300(2)
<i>a</i> , Å	12.168(2)	13.7148(8)	12.1820(5)	12.2096(6)
b, Å	12.969(2)	19.1621(13)	12.4634(5)	12.4762(7)
<i>c</i> , Å	17.303(3)	20.6907(13)	19.2026(7)	19.1394(10)
a, °	84.336(6)	90	82.367(2)	82.165(2)
β, °	72.086(6)	108.426(2)	76.584(2)	76.565(2)
γ, °	73.669(6)	90	64.7460(10)	64.391(2)
<i>V</i> , Å ³	2493.1(8)	5158.8(6)	2563.01(18)	2555.0(2)
Z	2	4	2	2
$D_{ m calcd}, m Kg \cdot m^{-3}$	1.261	1.255	1.339	1.455
F(000)	988.0	2040.0	1076.0	1140.0
μ , mm ⁻¹	1.275	1.234	1.598	2.394
θ range /°	2.949 - 25.039	2.971 - 27.815	2.888 - 27.564	2.899 - 27.537
refns collected	8659	207071	132946	71865
indep reflns (R_{int})	8659	11995 (0.0718)	11820 (0.0594)	11738 (0.0501)
reflns obsd $[I > 2\sigma(I)]$	7609	8848	9315	9914
data/restrnts/params	8659 / 1216 / 488	11995 / 1284 / 601	11820 / 1323 / 610	11738 / 1308 / 610
$R1, wR2 (I > 2\sigma(I))$	0.1224, 0.3296	0.0545, 0.1376	0.0440, 0.1076	0.0319, 0.0624
R1, wR2 (all data)	0.1324, 0.3345	0.0832, 0.1608	0.0644, 0.1197	0.0466, 0.0681
GOF on F2	1.125	1.083	1.047	1.037
$\Delta ho_{ m max, min}$, e·Å ⁻³	2.274, -1.933	0.721, -0.418	0.644, -0.657	0.849, -0.801

Table S1. Crystallographic and Refinement Data ^{a,b} for 1, 2, 4, 5

 ${}^{a}R1 = \Sigma |F_{o}| - |F_{c}| / \Sigma |F_{o}|. {}^{b}wR2 = \{\Sigma w (F_{o}{}^{2} - F_{c}{}^{2})^{2} / \Sigma w (F_{o}{}^{2})^{2}\}^{1/2}.$

	6	7	8	9
formula	C ₆₄ H ₆₈ N ₅ P ₂ NiY	C ₆₈ H ₆₈ N ₅ NiP ₂ Y	C75H73N6NiP2Y	$C_{67}H_{67}N_4NiOP_2Y{\cdot}C_7H_8$
Fw, g·mol ^{−1}	1116.79	1164.83	1267.95	1245.94
cryst size, mm	0.22 x 0.21 x 0.2	0.22 x 0.21 x 0.2	0.22 x 0.21 x 0.2	0.22 x 0.21 x 0.2
cryst. syst.	monoclinic	triclinic	monoclinic	triclinic
space group	P 1 21/n 1	P -1	P 1 21/c 1	P -1
T, K	273(2)	273(2)	273(2)	293(2)
<i>a</i> , Å	12.2206(19)	12.443(4)	14.384(3)	14.533(5)
b, Å	22.319(4)	12.656(4)	20.649(4)	15.248(5)
<i>c</i> , Å	21.549(3)	23.095(9)	21.706(4)	16.887(6)
a, °	90	82.321(11)	90	86.604(4)
β, °	97.461(5)	82.700(11)	92.10(3)	80.637(4)
,°	90	64.088(10)	90	62.662(4)
<i>V</i> , Å ³	5827.8(16)	3232(2)	6443(2)	3279.5(19)
Z	4	2	4	2
D _{calcd} , Kg·m ⁻³	1.273	1.197	1.307	1.262
F(000)	2336.0	1216.0	2648	1304
μ, mm ⁻¹	1.412	1.275	1.286	1.262
θ range /°	2.851 -24.998	2.830 - 24.999	2.985 - 28.722	1.504 - 25.064
refns collected	101045	205675	148216	11330
indep reflns (R_{int})	10248 (0.1993)	11357 (0.1649)	15008 (0.0853)	11330
reflns obsd $[I > 2\sigma(I)]$	6408	7778	10320	7895
data/restrnts/params	10248/1425/631	11357/1519/702	15008/1764/774	11330/1618/720
$R1, wR2 (I > 2\sigma(I))$	0.1107, 0.2722	0.0647, 0.1344	0.0588, 0.1377	0.1265, 0.3446
R1, wR2 (all data)	0.1737, 0.3210	0.1081, 0.1638	0.0958, 0.1573	0.1639, 0.3628
GOF on F2	1.126	1.056	1.013	1.084
$\Delta \rho_{\rm max, min}, e \cdot {\rm \AA}^{-3}$	0.953, -0.748	0.425, -0.601	0.476, -0.451	1.704, -1.355

 Table S2. Crystallographic and Refinement Data ^{a,b} for 6-9

^a $R1 = \Sigma |F_{o}| - |F_{c}|/\Sigma |F_{o}|$. ^b $wR2 = \{\Sigma w (F_{o}^{2} - F_{c}^{2})^{2}/\Sigma w (F_{o}^{2})^{2}\}^{1/2}$.

Figure S31. Molecular structure of 1 at the 30% thermal ellipsoids probability.

Hydrogen atoms were omitted for clarity.

Figure S32. Molecular structure of 5 at the 30% thermal ellipsoids probability.

Hydrogen atoms were omitted for clarity.

3. References

- 1. Sheldrick G. M. SADABS: Program for Empirical Absorption Correction of Area Detector Data; University of Göttingen: Germany (1996).
- 2. Sheldrick G. M. SHELXT-Integrated space-group and crystalstructure determination. Acta Cryst. A71, 3-8 (2015).
- 3. Spek A. L. *PLATON* SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. *Acta Cryst.* **C71**, 9-18 (**2015**).
- 4. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. and Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339-341.