Supplementary Information for

A high efficiency Trivalent chromium-doped near-infrared-emitting phosphor and its NIR spectroscopy application

Yunpeng Zhou^a, Xinjuan Li^b, Takatoshi Seto^{*a}, Yuhua Wang^{*a}

^a Key Laboratory for Special Function Materials and Structural Design of the Ministry of Education;

National & Local Joint Engineering Laboratory for Optical Conversion Materials and Technology;

School of Physical Science and Technology, Lanzhou University, No. 222, South Tianshui Road, Lanzhou, Gansu, 730000, P. R. China;

E-mail: wyh@lzu.edu.cn

^b Department of Materials, Royal School of Mines, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom

* Corresponding author: Prof. Yuhua Wang & Prof. Takatoshi Seto

E-mail: wyh@lzu.edu.cn

This supporting information contains 4 pages, 1 figure, and 7 tables.

Figure S1. The XRD Rietveld refinement spectrum of a) CSS: $0.01Cr^{3+}$, b) CSS: $0.03Cr^{3+}$, c) CSS: $0.01Ce^{3+}$ and d) CSS: $0.01Ce^{3+}$.

Table S1. Lattice parameter and cell volume for CSS host, CSS:0.01Cr³⁺,CSS:0.03Cr³⁺, CSS:0.01Ce³⁺ and CSS:0.03Ce³⁺

Formula	CSS	CSS:0.01	CSS:0.03	CSS:0.01	CSS:0.03	
	C35	Cr ³⁺	Cr ³⁺	Ce ³⁺	Ce ³⁺	
lattice	12 1094(1)	12 1004(1)	12 1970(1)	12 2000(1)	12 20(5(1)	
parameter (Å)	12.1984(1)	12.1884(1)	12.10/9(1)	12.2000(1)	12.2003(1)	
Cell	1015 14(2)	1010 (0(())	1010 45(2)	1015 05(6)	1010 77(4)	
volume (Å ³)	1815.14(3)	1810.69(6)	1810.45(3)	1815.85(6)	1818.//(4)	

Table S2.	Crystallog	graphic	data for	Ca ₃ Sc	$_2Si_3O_{12}$
-----------	------------	---------	----------	--------------------	----------------

Formula	$Ca_3Sc_2Si_3O_{12}$		
Crystal system	cubic		

Ζ	8
Space-group	Ia-3d (230)
V	1815.14(3) Å ³
a	12.1984(1) Å
b	12.1984(1) Å
c	12.1984(1) Å
β	90 °

Table S3. Atomic coordinates for $Ca_3Sc_2Si_3O_{12}$

Atom	Wyckoff	x/a	y/b	z/c
Cal	24c	0.12500	0	0.25000
01	96h	0.04443	0.05062	0.66039
Si1	24d	0.37500	0	0.25000
Scl	16a	0	0	0

Table S4. Selected average bond lengths (\AA)

Bond	Distance
Ca-O(CN=8)	2.4049(6)
Sc-O(CN=6)	2.0901(1)
Si-O(CN=4)	1.6499(3)

Table	S5 .	Thermal	stability	of this	work	and	some	previous	reported	Cr ³⁺	doped
phospł	nors					_					

Materials	Temperature (°C)	Relative to the emission intensity at room	
Waterrais	remperature (C)	temperature (~25°C)	
This work	150	$82\% ({}^{4}T_{2} \rightarrow {}^{4}A_{2})$	
NaScGe ₂ O ₆ : Cr ³⁺	150	$20.5\% ({}^{4}T_{2} \rightarrow {}^{4}A_{2})$	
Bi ₂ Ga ₄ O ₉ :Cr ³⁺	150	$\sim 6\% (^2 E \rightarrow {}^4A_2)$	

$Ca_2LuZr_2Al_3O_{12}:Cr^{3+}$	150	~67% ($^{4}T_{2} \rightarrow ^{4}A_{2}$)
Ca ₂ LuHf ₂ Al ₃ O ₁₂ :Cr ³⁺	150	$\sim 72\% ({}^{4}\mathrm{T}_{2} \rightarrow {}^{4}\mathrm{A}_{2})$
Ca ₃ Hf ₂ Al ₂ SiO ₁₂ :Cr ³⁺	150	$\sim 18\% ({}^{4}\mathrm{T}_{2} \rightarrow {}^{4}\mathrm{A}_{2})$

Table S6. Output power and photoelectric efficiency of the 450 nm chip with

	Valtara (V)	NIR Output	Photoelectric	
Current (mA)	voltage (v)	power (mW)	efficiency (%)	
100	2.778	1.218	9.053	
150	2.847	2.329	7.96	
200	2.909	3.500	7.072	
250	2.973	5.096	6.24	
300	3.03	6.263	5.584	
350	3.087	8.024	4.991	

 $Ca_3Sc_2Si_3O_{12}{:}0.03Cr^{3+} \ \text{under different drive current}$

Table S7. Output power and photoelectric efficiency of the 450 nm chip with $Ca_3Sc_2Si_3O_{12}:0.06Ce^{3+}, 0.03Cr^{3+}$ under different drive current

		NIR Output	Photoelectric	
Current (mA)	voltage (v)	power (mW)	efficiency (%)	
100	2.988	4.163	17.961	
150	3.149	7.986	16.937	
200	3.302	12.234	15.939	
250	3.438	15.622	15.154	
300	3.575	18.990	14.361	
350	3.708	21.653	13.684	