Supporting Information

Metal nanoparticles/MoS₂ SERS-Based Sandwich Immunoassay for α-Fetoprotein Detection

Engin Er,^{†,‡} Ana Sánchez-Iglesias,^{†,¥} Alessandro Silvestri,[†] Blanca Arnaiz,[†]

Luis M. Liz-Marzán,^{†,+, \vee,s,*} Maurizio Prato^{†,§,||,*} and Alejandro Criado^{†,*}

† Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain

‡ Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey

 \mathcal{H} Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San Sebastián, Spain

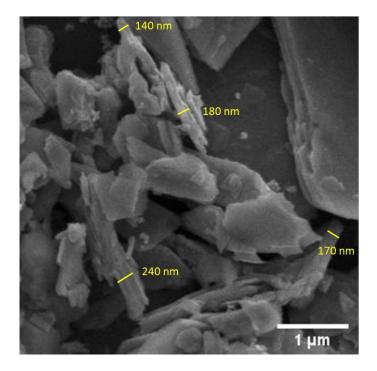
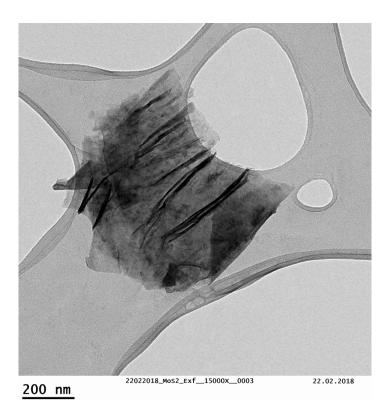
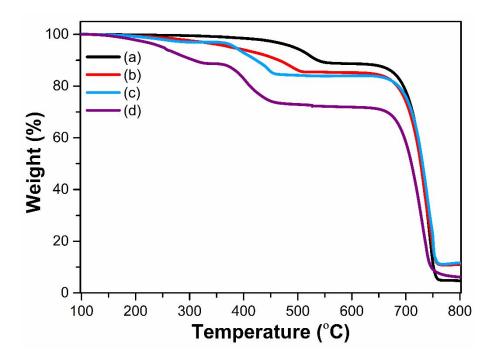
^{*v*}Department of Applied Chemistry, University of the Basque Country, 20018 Donostia-San Sebastián, Spain

§ Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain

Il Department of Chemical and Pharmaceutical Sciences, Università degli Studi di Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy

Corresponding authors

*E-mail: <u>acriado@cicbiomagune.es</u> ; <u>prato@units.it</u> ; <u>llizmarzan@cicbiomagune.es</u>

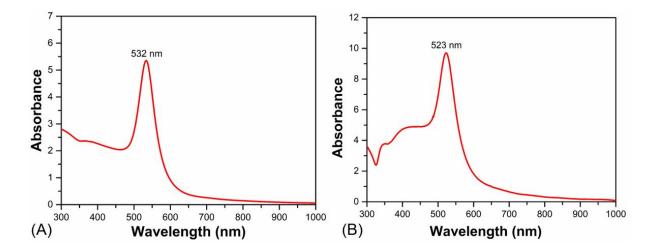

Fig. S1. Representative SEM image of Exf-MoS₂ deposited on SiO₂ with an average thickness of 220 ± 116 nm (Max value: 500 nm, min value: 50 nm) calculated from 17 different measurements.

Fig. S2. Representative TEM image of Exf-MoS₂ with an average lateral dimension of 567 ± 239 nm (Max value: 959 nm, min value: 323 nm) calculated from 10 different measurements.

Fig. S3. TGA curves for (a) bulk MoS_2 , (b) chemically exfoliated MoS_2 , (c) Exf-MoS₂ and (d) mAb functionalized Exf-MoS₂ under air.

Fig S4. UV-Vis-NIR spectra of initial gold nanospheres in aqueous solution (a) and after silver overgrowth (b).

Raman spectra of bulk MoS_2 (Bulk- MoS_2) and exfoliated MoS_2 by NaK alloy (Exf- MoS_2) excited by 633 nm laser. The two characteristic phonon mode peaks (E₂g at 380 cm⁻¹ and A₁g at 404 cm⁻¹) were observed in the Raman spectra of both MoS_2 samples. However, after exfoliation process conducted by NaK alloy, Exf- MoS_2 has the newly appeared low frequency phonon peaks at 180, 200 and 300 cm⁻¹, which correspond to the J₁-J₃ modes, respectively. These characteristic peaks are attributed to the 1T phase. ^{1,2}

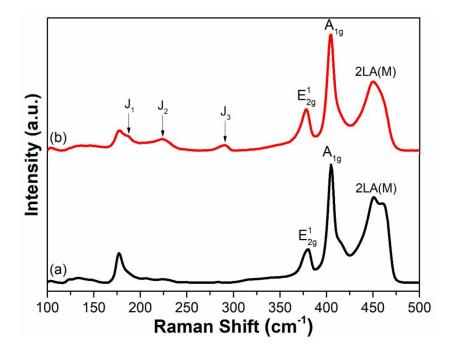


Fig. S5. Raman spectra of (a) Bulk-MoS₂ and (b) Exf-MoS₂.

The ratio 2H/1T phase in Exf-MoS₂ was performed by XPS. The fitted Mo 3d and S 2p core level spectra of Bulk-MoS₂ and Exf-MoS₂ are presented in Figure S3-S4. The binding energies of Mo $3d_{3/2}$ at 229.8 eV and Mo $3d_{5/2}$ at 232.9 eV for Bulk-MoS₂ shifted to the lower energies after exfoliation process, confirming the presence of 1T phase in Exf-MoS₂ as reported by similar studies.^{2,3} 1T phase ratio of Exf-MoS₂ was estimated to be ~93% by fitting of Mo 3d core level spectrum.

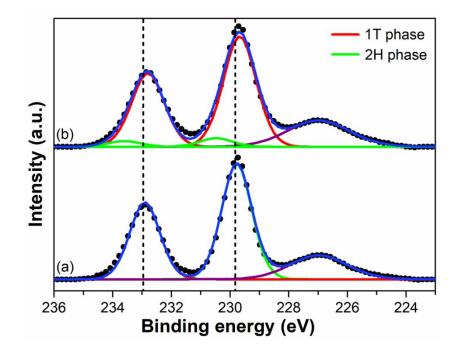
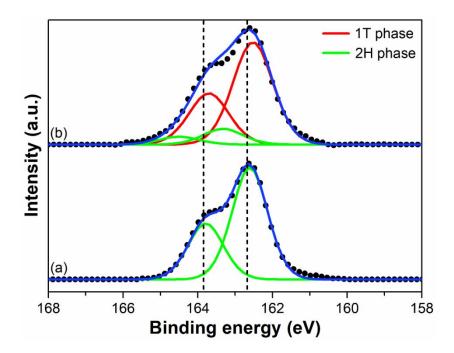
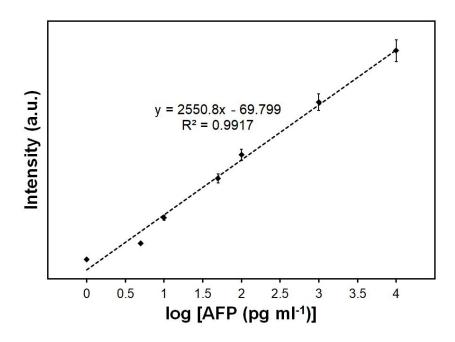
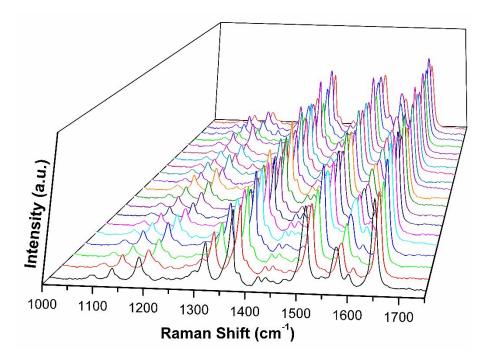
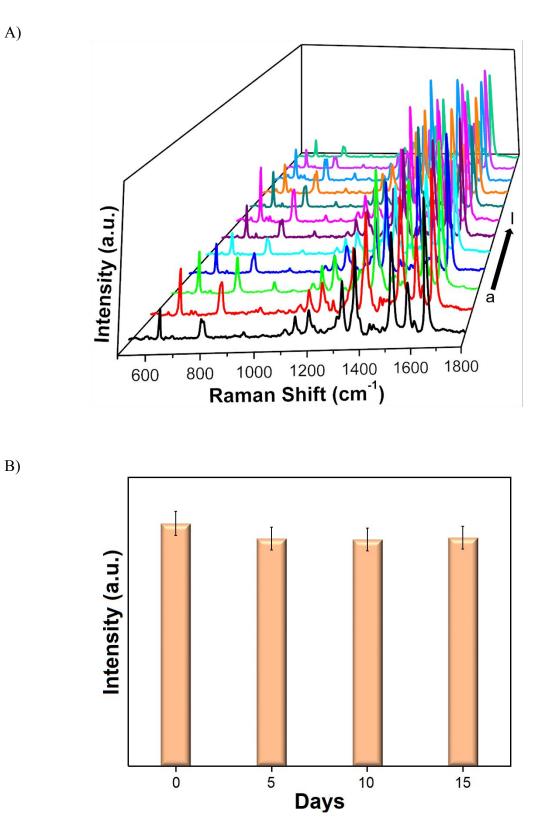
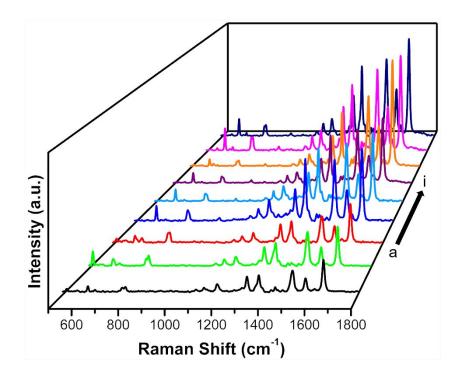


Fig. S6. XPS core level spectra of Mo 3d for (a) Bulk-MoS₂ and (b) Exf-MoS₂.


Fig. S7. XPS core level spectra of S 2p for (a) Bulk-MoS₂ and (b) Exf-MoS₂.


Fig. S8. Linear plot of the SERS peak intensity at 1648 cm⁻¹, as a function of the logarithm of AFP concentration in human serum. (Error bars indicate the standard deviation obtained from five different measurements).

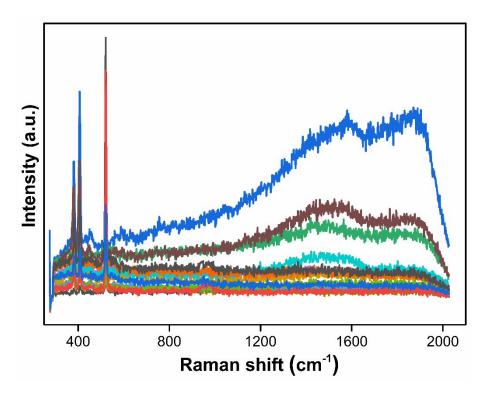

Fig. S9. Reproducibility of SERS spectra for 1.0 ng mL⁻¹ AFP collected on 20 randomly selected spots of the developed SERS immunosensor.

Fig. S10. (A) SERS spectra of R6G at 1.0 ng mL⁻¹ AFP collected for 2 weeks from the developed SERS immunosensor (n=3). (B) Histogram of the SERS intensity of the R6G peak at 1648 cm⁻¹ for 1.0 ng mL⁻¹ AFP *versus* time.

Fig. S11. SERS spectra of R6G at different concentrations of target AFP, ranging from 10 (a-c), 100 (d-f) and 1000 pg mL⁻¹ (g-i) on the developed sandwich immunosensor, in human serum.

Fig. S12. Raman spectra for the control experiment with zero concentration of AFP in serum. The R6G signals were not detected. The spectra only show the well defined peaks at 380 and 406 cm⁻¹ from exfoliated MoS₂ (E^{1}_{2g} and A_{1g} modes, repectively), and at 995 cm⁻¹ from SiO₂.

References

- Knirsch, K. C.; Berner, N. C.; Nerl, H. C.; Cucinotta, C. S.; Gholamvand, Z.; McEvoy, N.; Wang, Z.; Abramovic, I.; Vecera, P.; Halik, M.; Sanvito, S.; Duesberg, G.S.; Nicolosi, V.; Hauke, F.; Hirsch, A.; Coleman, J.N.; Backeset, C. Basal-Plane Functionalization of Chemically Exfoliated Molybdenum Disulfide by Diazonium Salts. *ACS Nano* 2015, *9*, 6018–6030.
- (2) Benson, E. E.; Zhang, H.; Schuman, S. A.; Nanayakkara, S. U.; Bronstein, N. D.; Ferrere, S.; Blackburn, J. L.; Miller, E. M. Balancing the Hydrogen Evolution Reaction, Surface Energetics, and Stability of Metallic MoS₂ Nanosheets via Covalent Functionalization. J. Am. Chem. Soc. 2018, 140, 441–450.
- Er, E.; Hou, H.-L.; Criado, A.; Langer, J.; Möller, M.; Erk, N.; Liz-Marzán, L. M.; Prato, M. High-Yield Preparation of Exfoliated 1T-MoS₂ with SERS Activity. *Chem. Mater.* 2019, *31*, 5725–5734.