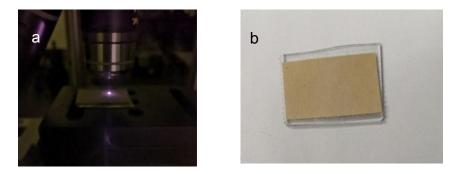
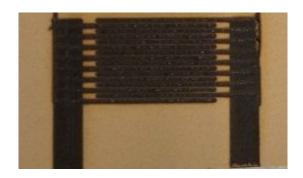
Fabricating nanodiamonds from biomass by direct laser writing under ambient conditions

Yan Lin,^{†,‡} Qijun Zhang,[‡] Yongjun Deng,[†] Kuizhong Shen[†] Kaimeng Xu,[§] Yongchao Yu,^{††} Siqun Wang,^{*,‡} and Guigan Fang^{*,†}

[†] Institute of Chemical Industry of Forestry Products, CAF; Key Lab of Biomass Energy and Material, Jiangsu Province; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province; National Engineering Lab for Biomass Chemical Utilization; No. 16, 5th Suojin, Xuanwu District, Nanjing 210042, PR China; email address: fangguigan@icifp.cn


[‡] Center for Renewable Carbon, University of Tennessee, 2506 Jacob Drive, Knoxville, TN 37996, USA; email address: swang@utk.edu

[§] College of Materials Science and Engineering, Southwest Forestry University, 300 Bailongsi, Panlong District, Kunming, 650224, PR China


^{††} Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, 1512 Middle Drive, Knoxville, TN 37996, United States Number of pages: 11

Number of Figures: 8

Number of Tables: 3

Figure S1. (a) Photograph of laser irradiating the CNF film; (b) the CNF film with paper substrate after laser irradiation.

Figure S2. Photograph of a paper-based sensor from LCNF composites by femtosecond laser irradiation.

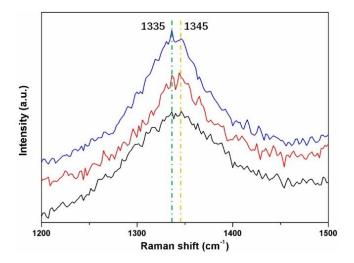
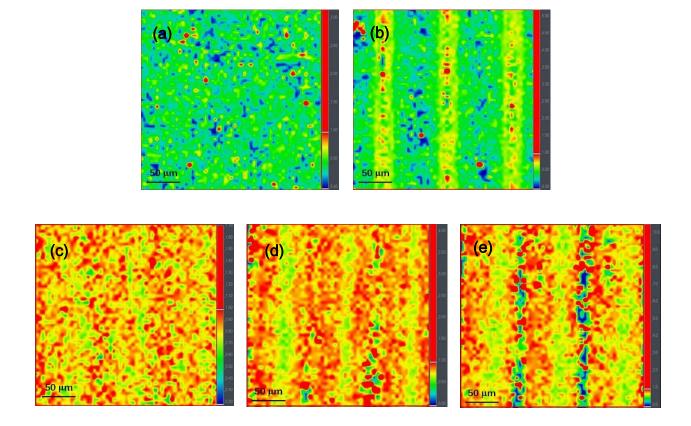
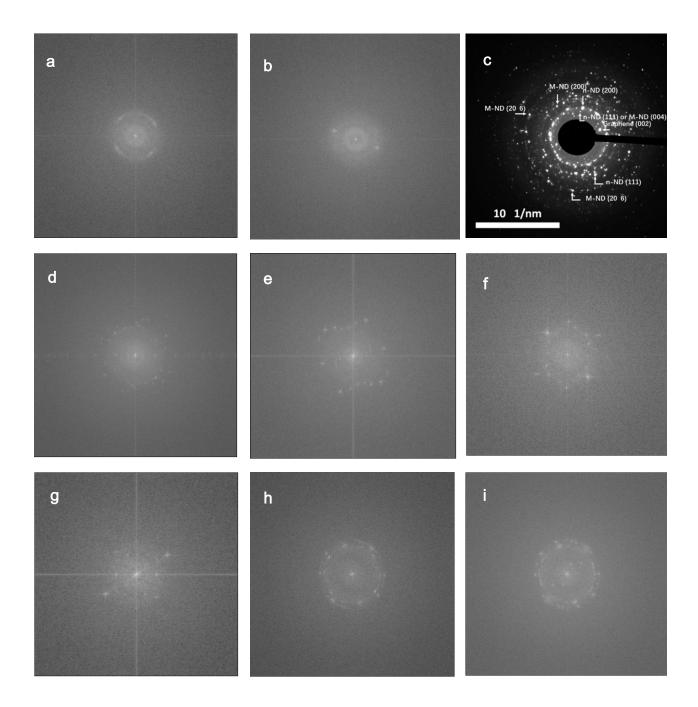




Figure S3. Raman spectra of P600S3.5 pattern.

Figure S4. A selection of 2D Raman spectra mapping of I_D/I_G : (a) H-LCNF film; (b) P150S3.5 pattern; (c) P300S3.5 pattern; (d) P450S3.5 pattern; (e) P600S3.5 pattern.

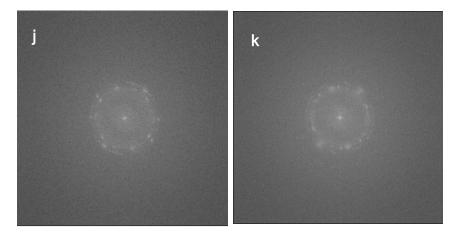
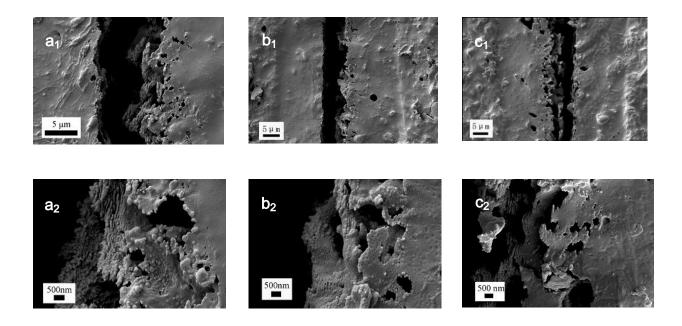



Figure S5. The Fast Fourier Transform (FFT) patterns: (a) the red part in Figure 4a; (b) Figure 4b; (d) upper left part in Figure 4c; (e) upper right part in Figure 4c; (f) lower left part in Figure 4c; (g) lower right part in Figure 4c; (h) Figure 4e; (i) Figure 4f; (j) Figure 4g; (k) Figure 4h. Image (c) was a typical SAED of NDs in P600S3.5 pattern.

Figure S6. SEM images of laser-induced patterns at different laser writing speeds (H-LCNF film): (a) 1 mm/s; (b) 2.5 mm/s; (c) 3.5 mm/s.

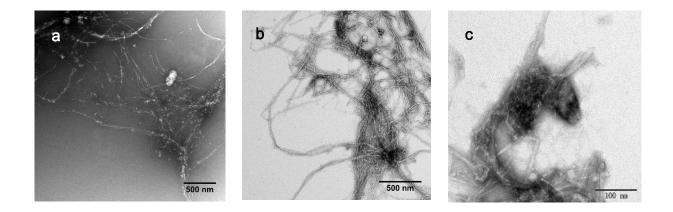
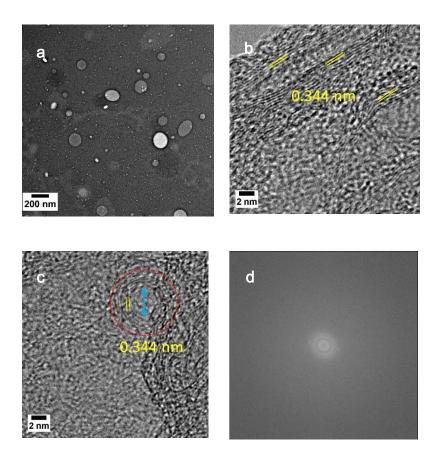



Figure S7. TEM images of LCNF: (a) L-LCNF; (b) M-LCNF; (c) W-LCNF.

Figure S8. (a) TEM images of nano-lignin; (b-c) High-resolution TEM micrographs of laserinduced nano-lignin pattern in **Figure 8d**; (d) The Fast Fourier Transform (FFT) patterns of the selected parts in **Figure 8f**.

Groups	Temperature/	Time/	Cellulose content/	Hemicellulose content/	Lignin content/	
	°C	min	%	%	%	
Control	-	-	35.85	25.68	28.81	
H-LCNF	200	60	46.19	2.48	36.67	
M-LCNF	180	90	47.83	2.83	30.54	
L-LCNF	180	30	50.74	1.96	26.70	
W-LCNF	120	60	32.91	19.33	28.66	

 Table S1 Parameters of hydrothermal pretreatment and the main chemical compositions of switchgrass after pretreatment

Type of ND	LI-ND	MW-ND ¹	M-ND ²	n-ND ³	n-ND ⁴	h-ND ^{1, 5}	ND ⁶
	(this study)						
d-spacings	0.315	0.319	0.312	0.315			
in nm			(004)	(111)			
	0.272-0.273	0.266-0.272		0.273			
				(200)			
	0.254					0.253	
						(110)	
	0.230						0.230
	0.217	0.218-0.226	0.217			0.218	
			(200)			(100)	
	0.208-0.209	0.209			0.206-0.209	0.206	
					(111)	(002)	
	0.154	0.153	0.151			0.150	
			(20 6)			(102)	

Table S2 Comparison of d-spacings of laser-induced NDs (LI-ND) with some reported NDs

Groups	P150S3.5	P300S3.5	P450S3.5	P600S3.5	NL-900
Square resistance/(k Ω / \Box)	65.41	18.01	1.33	11.17	0.51

Table S3 Square resistance of laser-induced patterns

References

- (1) Roy, S.; Bajpai, R.; Biro, R. P.; Wagner, H. D. Fast growth of nanodiamond in a microwave oven under atmospheric conditions. *J. Mater. Sci.* **2020**, *55*, 535-544.
- (2) Huang, Q.; Yu, D.; Xu, B.; Hu, W.; Ma, Y.; YanbinWang; Zhao, Z.; Wen, B.; He, J.; Liu, Z.; Tian, Y. Nanotwinned diamond with unprecedented hardness and stability. *Nature* **2014**, *510*, 250-253.
- (3) Xiao, J.; Li, J. L.; Liu, P.; Yang, G. W. A new phase transformation path from nanodiamond to new-diamond via an intermediate carbon onion. *Nanoscale* **2014**, *6*, 15098-15106.
- (4) Wen, B.; Zhao, J. J.; Li, T. J. Synthesis and crystal structure of n-diamond. *Int. Mater. Rev.*2007, 52 (3), 131-151.
- (5) Yang, L.; May, P. W.; Yin, L.; Smith, J. A.; Rosser, K. N. Growth of diamond nanocrystals by pulsed laser ablation of graphite in liquid. *Diam. Relat. Mater.* **2007**, *16*, 725-729.
- (6) Das, T.; Saikia, B. K. Nanodiamonds produced from low-grade Indian coals. *ACS Sustain. Chem. Eng.* **2017**, *5*, 9619-9624.