Supporting Information

Supersensitive Detection of Anions in Pure Organic and Aqueous Media by Amino Acids Conjugated Ellman's Reagent

Sameer Dhawan,^a Harsha Devnani,^a Jisha Babu,^a Hanuman Singh,^a M. Ali Haider,^b Tuhin S. Khan, *^c Pravin P. Ingole*^a and V. Haridas*^a

^aDepartment of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India. ^bRenewable Energy and Chemicals Laboratory, Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India.

^cLight Stock Processing Division, CSIR-Indian Institute of Petroleum, Dehradun, 248005, India.

* Corresponding authors:

E-mail: haridasv@chemistry.iitd.ac.in Tel.: +91-11-2659 1380

E-mail: ppingole@chemistry.iitd.ac.in Tel.: +91-11-2659 7538

E-mail: tuhins.khan@iip.res.in Tel.: +91-13-5252 5915

Scheme S1: Synthesis of Ellman's reagent-cored hosts L1, F1 and W1.

Figure S1: An initial screening of anion binding potential of L1 upon addition of 50 equiv. of various anions.

Figure S2: An initial screening of anion binding potential of F1 upon addition of 50 equiv. of various anions.

Figure S3: An initial screening of anion binding potential of W1 upon addition of 50 equiv. of various anions.

Figure S4: Determination of LOD of chemosensors with anions. a) L1 with F^{-} , b) L1 with $H_2PO_4^{-}$, c) F1 with F^{-} , d) F1 with $H_2PO_4^{-}$, e) W1 with F^{-} , f) W1 with $H_2PO_4^{-}$.

Figure S5: UV-vis titration profile of a) **L1** against H₂PO₄, b) **F1** against H₂PO₄; c) colorimetric response of **W1** upon addition of different anions.

Figure S6: Job plots of host with anions a) L1 with F^{-} , b) F1 with F^{-} , c) W1 with F^{-} , d) L1 with H₂PO₄⁻, e) F1 with H₂PO₄⁻, f) W1 with H₂PO₄⁻.

http://app.supramolecular.org/bindfit/view/e77832b0-6922-460f-b31b-bd5b6cc939e1

http://app.supramolecular.org/bindfit/view/80868222-fafa-4856-856f-d67753286211

http://app.supramolecular.org/bindfit/view/f99903be-2415-403a-8f0f-d72ba62a245a

Figure S7: Fitting and residual plots for UV-vis titrations as obtained from BindFit a) L1 with F⁻, b) L1 with H₂PO₄⁻, c) F1 with F⁻, d) F1 with H₂PO₄⁻
e) W1 with F⁻, f) W1 with H₂PO₄⁻. BindFit URLs are given corresponding to each titration.

Figure S8: Stack plots of ¹H NMR spectra (500 MHz, CD₃CN:DMSO- d_6 9:1) of **F1** with increasing amount of TBAF. The region of protons involved in the binding is shown.

Figure S9: Stack plots of ¹H NMR spectra (500 MHz, CD₃CN:DMSO- d_6 9:1) of **F1** with increasing amount of TBAH₂PO₄. The region of protons involved in the binding is shown.

Figure S10: Stack plots of ¹H NMR spectra (500 MHz, CD₃CN:DMSO- d_6 9:1) of **W1** with increasing amount of TBAF. The region of protons involved in the binding is shown.

Figure S11: Stack plots of ¹H NMR spectra (500 MHz, CD₃CN:DMSO-*d*₆9:1) of **W1** with increasing amount of TBAH₂PO₄. The region of protons involved in the binding is shown.

Figure S12: Variation in the ¹H NMR chemical shifts (δ ppm) of the alpha –CH as a function of equivalents of anions added.

Figure S13: Stack plots of ¹H NMR spectra (500 MHz, $CD_3CN:DMSO-d_69:1$) of **L1** with increasing amount of a) TBACl, and b) TBABr.

Figure S14: Stack plots of ¹H NMR spectra (500 MHz, $CD_3CN:DMSO-d_69:1$) of **F1** with increasing amount of a) TBACl, and b) TBABr.

Figure S15: Stack plots of ¹H NMR spectra (500 MHz, $CD_3CN:DMSO-d_69:1$) of **W1** with increasing amount of a) TBACl, and b) TBABr.

Figure S16: Optimized geometries of (a-c) **L1**, (d-f) **F1** and (g-i) **W1**, in folded- and extendedconformations. Relative energy (E_{rel}) of the structure is mentioned in kJ/mol. Color code: Sulfur (yellow), Nitrogen (blue), Carbon (silver), Oxygen (red), Hydrogen (white).

Figure S17: Structure pool of DFT optimized geometries of L1+ F⁻ complexes having E_{rel} of a) 0.0 kJ/mol, b) -0.2 kJ/mol, c) -7.8 kJ/mol, d) -8.4 kJ/mol, e) -11.6 kJ/mol, and f) -8.5 kJ/mol. Color code: Sulfur (yellow), Nitrogen (blue), Carbon (silver), Oxygen (red), Hydrogen (white), Fluorine (green). Hydrogen atoms involved in H-bonding with anion are presented in sky-blue color.

Figure S18: Structure pool of DFT optimized geometries of L1+H₂PO₄⁻ complex having E_{rel} of a) 0.0 kJ/mol, b) 0.2 kJ/mol, c) 0.7 kJ/mol, d) 17.8 kJ/mol, and e) -1.5 kJ/mol. Color code: Sulfur (yellow), Nitrogen (blue), Carbon (silver), Oxygen (red), Hydrogen (white), Phosphorus (purple). Hydrogen atoms involved in H-bonding with anion are presented in sky-blue color.

Figure S19: Optimized geometries of host-guest complex of H₂PO₄⁻ anion with a) **L1**, b) **F1** and c) **W1**. Color code: Sulfur (yellow), Nitrogen (blue), Carbon (silver), Oxygen (red), Hydrogen (white), Phosphorus (purple). Hydrogen atoms involved in H-bonding with anion are presented in sky-blue color.

Figure S20: Schematic representation of the various steps involved in the fabrication of electrochemical sensor.

Figure S21: CVs obtained for the gold electrodes modified with **W1** in the absence and presence of 1 ppm of F^{-} and $H_2PO_4^{-}$ ions. Scan rate: 100 mVs⁻¹, Supporting Electrolyte: 0.1 M NaNO₃.

Figure S22: Differential pulse voltammograms obtained for the gold electrodes modified with **F1** with the varying concentration of a) F^- and b) $H_2PO_4^-$ ions.

Figure S23: Differential pulse voltammograms obtained for the gold electrodes modified with **W1** with the varying concentration of a) F^- and b) $H_2PO_4^-$ ions.

Figure S24: Plots of difference in redox current intensities with respect to anion concentration a)
F1 with F⁻, b) F1 with H₂PO₄⁻ (peak current values were taken as marked in Figure S23), c) W1 with F⁻, d) W1 with H₂PO₄⁻ with a linear fit.

Figure S25: ¹H NMR spectrum (300 MHz, CDCl₃) of L1.

Figure S27: ESI-Mass spectrum of L1.

Figure S28: ¹H NMR spectrum (300 MHz, CDCl₃) of F1.

Figure S29: ¹³C NMR spectrum (75 MHz, CDCl₃) of F1.

Figure S30: ESI-Mass spectrum of F1.

Figure S31: ¹H NMR spectrum (300 MHz, DMSO- d_6) of W1.

Figure S32: ¹³C NMR spectrum (75 MHz, DMSO- d_6) of W1.

Charge on H-atom	L1	L1+F	$L1 + H_2PO_4$	F1	F1 +F ⁻	$F1 + H_2PO_4$	W1	W1 + F	$W1 + H_2PO_4$
Amide -NH (1)	0.253	0.355	0.313	0.255	0.36	0.316	0.250	0.327	0.319
Amide -NH (2)	0.259	0.354	0.316	0.253	0.359	0.316	0.262	0.336	0.324
H _a (1)	0.151	0.171	0.185	0.136	0.162	0.153	0.145	0.162	0.148
H _a (2)	0.141	0.172	0.156	0.145	0.164	0.076	0.146	0.164	0.182
H _b (1)	0.157	0.102	0.154	0.159	0.107	0.159	0.159	0.146	0.164
H _b (2)	0.158	0.103	0.157	0.159	0.107	0.156	0.158	0.161	0.157
H _c (1)	0.132	0.082	0.142	0.137	0.084	0.139	0.137	0.132	0.143
H _c (2)	0.138	0.082	0.137	0.137	0.084	0.143	0.136	0.125	0.143
Indole –NH							0.238	0.289	0.277
Indole – CH							0.019	0.095	0.098

Table S1: Mulliken charges on the different H atoms of host molecules as derived from the most stable host-guest geometry.

Parameters	L1	F1	W1
E _{oxidation} (V)	0.588	0.647	1.211
I _{oxidation} (mA)	0.306	0.137	0.380
$E_{reduction}(V)$	0.515	0.566	0.678
I _{reduction} (mA)	0.297	0.127	0.985

Table S2:	Oxidation	anc	d reduc	tion p	beak p	oote	ntials	(E)	and	curre	ent v	values	(I)	of th	e g	old
		e	electrod	les m	odifie	ed w	ith ho	ost n	nolec	cules.						

Anions	L1		F	1	W1			
	$E^{o}_{free}(V)$	$E^{o}_{bound}(V)$	$E^{o}_{free}(V)$	$E^{o}_{bound}(V)$	$E^{o}_{free}(V)$	$E^{o}_{bound}(V)$		
F	0.588	0.620	0.647	0.620	1.211	1.164		
H ₂ PO ₄	0.588	0.571	0.647	0.546	1.211	1.240		

Table S3: Oxidation peak potential values of modified gold electrodes in the absence (E^{o}_{free}) and presence of target anions (E^{o}_{bound}). Measuring conditions are mentioned in Figure 5 caption.

Anions	L1		F	`1	W1		
	$E^{o}_{free}(V)$	$E^{o}_{bound}(V)$	$E^{o}_{free}(V)$	$E^{o}_{bound}(V)$	$E^{o}_{free}(V)$	$E^{o}_{bound}(V)$	
F ⁻	0.515	0.510	0.566	0.610	0.678	0.725	
H ₂ PO ₄	0.515	0.503	0.566	0.490	0.678	0.703	

Table S4: Reduction peak potential values of modified gold electrodes in the absence (E^{o}_{free}) and presence of target anions (E^{o}_{bound}) . Measuring conditions are mentioned in Figure 5 caption.

Table S5: Comparison of the performance of as-prepared anion sensors with those reported in the literature.

Anion Receptor	Solvent	Anions	Concentration	Lowest	Ref.
			Range	Concentration	
Dipyrromethene modified dipodal	Water	Cl	1.0 - 12.0 pM	1.0 pM	1
receptor based on Cu (II)					
Dipyrromethene modified dipodal	Water	Cl	1.0 - 12.0 pM	1.1 pM	1
receptor based on Co (II)					
Polypyrrole film modified	Water	F	$10^{-6} - 10^{-3} \text{ M}$	10 ⁻⁶ M	2
electrodes		Cl	10 ⁻⁷ - 10 ⁻² M	$10^{-7} M$	
Ferrocene-appended aryl triazole	CH_2Cl_2	$H_2PO_4^-$	0.08 - 0.36 mM	0.08 mM	3
Diaminobutane	CH_2Cl_2	H_2PO_4	0.1 - 7.77 μM	0.1 µM	4
poly(propyleneimine) dendrimer					
functionalized with biferrocenyl					
1,2,3,4,5-Pentaphenylferrocene-	CH_2Cl_2 :	Cl	0.25 - 5 mM	0.25 mM	5
stoppered rotaxane	CH ₃ CN				
Tetratriazole foldamer	Water	I	-	14 µM	6
Sodium callulosa	Dhosphata	NO. ⁻	10^{-8} 10^{-4} M	13 nM	7
sulfate/poly/dimethyl diallyl	1 nospitate	\mathbf{NO}_2	10 - 10 M	45 1111	/
ammonium chloride) composite	saline				
Proline-based cyclopentide + 6-	Phosphate	SQ. ²⁻	$0.5 - 2.0 \mathrm{pM}$	0.25 pM	8
mercanto-1-bevanol	Buffer	504	0.5 - 2.0 pivi	0.25 pivi	0
Nitrogen-doped cotton carbon	PRS	0°	$10^{-15} - 10^{-5}$ M	2 32 fM	9
fiber composites	I DS	02	10 - 10 101	2.32 111	,
L1	Water	H ₂ PO ₄ ⁻	0.07 - 0.50 pM	0.07 fM	This
	water	1121 04	0.07 0.30 pivi	0.07 111	Work
		F	15 0 - 685 0 pM	0.16 pM	W OIK
		1	15.0 005.0 pm	0.10 pivi	
F1	Water	H ₂ PO ₄ ⁻	0.07 - 0.92 pM	0.15 fM	This
	i ator	11/1 04			Work
		F	15.0 - 130.0 pM	0.07 pM	
		_	P	P	
W1	Water	H ₂ PO ₄ ⁻	3.0 - 18.0 pM	0.02 pM	This
		2 7	r	r	Work
		F	2.0 - 7.0 pM	0.03 pM	

References:

- Kaur, B.; Erdmann, C. A.; Daniëls, M.; Dehaen, W.; Rafiński, Z.; Radecka, H.; Radecki, J. Highly Sensitive Electrochemical Sensor for the Detection of Anions in Water Based on a Redox-Active Monolayer Incorporating an Anion Receptor. *Anal. Chem.* 2017, 89, 12756– 12763.
- Lou, B.; Chen, C.; Zhou, Z.; Zhang, L.; Wang, E.; Dong, S. A Novel Electrochemical Sensing Platform for Anions Based on Conducting Polymer Film Modified Electrodes Integrated on Paper-Based Chips. *Talanta* 2013, *105*, 40–45.
- 3. Cao, Q.-Y.; Pradhan, T.; Kim, S.; Kim, J. S. Ferrocene-Appended Aryl Triazole for Electrochemical Recognition of Phosphate Ions. *Org. Lett.* **2011**, *13*, 4386–4389.
- Villena, C.; Losada, J.; García-Armada, P.; Casado, C. M.; Alonso, B. Synthesis and Electrochemical Anion-Sensing Properties of a Biferrocenyl-Functionalized Dendrimer. *Organometallics* 2012, *31*, 3284–3291.
- Evans, N. H.; Serpell, C. J.; White, N. G.; Beer, P. D. A 1,2,3,4,5-Pentaphenylferrocene-Stoppered Rotaxane Capable of Electrochemical Anion Recognition. *Chem. - Eur. J.* 2011, 17, 12347–12354.
- Hein, R.; Borissov, A.; Smith, M. D.; Beer, P. D.; Davis, J. J. A Halogen-Bonding Foldamer Molecular Film for Selective Reagentless Anion Sensing in Water. *Chem. Commun.* 2019, 55, 4849–4852.
- Ning, J.; Luo, X.; Wang, M.; Li, J.; Liu, D.; Rong, H.; Chen, D.; Wang, J. Ultrasensitive Electrochemical Sensor Based on Polyelectrolyte Composite Film Decorated Glassy Carbon Electrode for Detection of Nitrite in Curing Food at Sub-Micromolar Level. *Molecules* 2018, 23, 2580.

- Gołębiewski, P.; Sommer, F.; Kubik, S.; Radecka, H.; Radecki, J. Ion-Channel Mimetic Sensor Incorporating an Anion-Binding Cyclopeptide Designed for Sulfate Determination in Dilute Aqueous Solutions. *J. Electroanal. Chem.* 2018, *812*, 249–257.
- Wu, T.; Li, L.; Song, G.; Ran, M.; Lu, X.; Liu, X. An Ultrasensitive Electrochemical Sensor Based on Cotton Carbon Fiber Composites for the Determination of Superoxide Anion Release from Cells. *Microchim. Acta* 2019, *186*. DOI: 10.1007/s00604-019-3304-1.