Supporting information

Enzyme-Triggered Disassembly of Polymeric Micelles by Controlled Depolymerization via Cascade Cyclization for Anticancer Drug Delivery

Jaehyun Park^{1, ‡}, Seokhee Jo^{2, ‡}, Yeong Mi Lee², Gurusamy Saravanakumar^{2,3}, Junseok Lee^{2,3}, Dongsik Park², and Won Jong Kim^{1, 2, 3, *}

¹School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.

²Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, POSTECH, Pohang 37673, South Korea.

³OmniaMed Co., Ltd, Pohang 37673, South Korea.

[‡]These authors contributed equally to this work.

*Corresponding author: Won Jong Kim, Ph. D. (e-mail: wjkim@postech.ac.kr)

Scheme S1. Synthesis of (a) carboxylic acid functionalized QPA trigger moiety and (b) precursor compound 4-(aminomethyl)cyclohexanone ethylene ketal (1).

Scheme S2. Reaction scheme for the synthesis of enzyme-responsive (γ -QPA- ϵ -CL, 4a) and control caprolactone monomer (γ -Bz- ϵ -CL, 4b).

Polymer	Composition ^a	<i>M</i> _n , NMR (kDa) ^a	<i>M</i> _n , GPC (kDa) ^b	$M_{\rm w}/M_{\rm n}^{\rm b}$
QPA-P	PEG ₄₅ -b-(PCL-QPA) _{2.22}	2.83	2.80	1.23
Bz-P	PEG ₄₅ - <i>b</i> -(PCL-Bz) _{2.44}	2.60	2.67	1.15

Table S1. Properties of diblock copolymers.

^aThe compositions of copolymers are calculated from ¹H NMR in CDCl₃, ^bDetermined by GPC.

 Table S2. Characteristics of blank and DOX loaded QPA-PM and Bz-PM.

Micelles	Feed (wt.%)	DLC (wt.%)	DLE (%)	Size (nm) ^a	PDI ^a
QPA-PM-DOX	20	5.67±1.16	28.3±5.8	25.29±2.8	0.278 ± 0.011
Bz-PM-DOX	20	4.81±0.76	24.0±3.8	23.0±0.7	0.295 ± 0.015

^aDetermined using DLS at 25 °C in distilled water.

Figure S1. ¹H-NMR spectrum of quinone propionic acid (QPA) in CDCl₃

Figure S2. ¹H-NMR spectrum of acetal-methylamine (Compound 1) in CDCl_{3.}

Figure S3. $^1\mathrm{H}\text{-}\mathrm{NMR}$ spectrum of (a) acetal-QPA (Compound 2a) and (b) acetal-Bz (Compound 2b) in CDCl_3

Figure S4. ¹H-NMR spectrum of (a) ketone-QPA (Compound 3a) and (b) acetal-Bz (Compound 3b) in CDCl₃.

Figure S5. ¹H-NMR spectrum of (a) ester-QPA (Compound 4a) and (b) ester-Bz (Compound 4b) in $CDCl_3$

(b)

Figure S6. (a) ¹H-NMR and (b) GPC profiles of Bz-P before and after incubation with NQO1.

Figure S7. HPLC chromatogram of QPA-P before and after incubation with NQO1.

Figure S8. (a) Zeta potential and (b) Serum stability of QPA-PM-DOX and Bz-PM-DOX.

Figure S9. Critical micellar concentration (CMC) of (a) QPA-PM and (b) Bz-PM.

Figure S10. Change in particle size distribution of (a) QPA-PM and (b) Bz-PM without enzyme NQO1.

Figure S11. In vitro cytotoxicity of DOX-free micelles on (a) A549 and (b) H596 cell lines.

Figure S12. Histological evaluation of major organs after treatment of free DOX and DOX-loaded micelles. Vacuolization in heart tissue was depicted by yellow arrows.