Supporting Information

Tuning Diffusion Permeability of an Anti-Retroviral Drug, Emtricitabine, via Multicomponent Crystallizations

Vasanthi Palanisamy, ^a Palash Sanphui, ^{*a} Vaskuri G S Sainaga Jyothi, ^b Nalini R Shastri, ^b Geetha Bolla, ^{*c} Kandhan Palanisamy, ^a Muthuramalingam Prakash^a and Venu R. Vangala^d

^aDepartment of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Chennai TN-603203, India. Email: palashi@srmist.edu.in. ^bSolid State Pharmaceutical Research Group, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad-500037, India. ^cDepartment of Chemistry, National University of Singapore, Science Drive 3, Singapore 117543 (Singapore). Email: bolla.geetha25@gmail.com

^dCentre for Pharmaceutical Engineering Science, School of Pharmacy and Medical Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom.

Table of Contents

1.	Hydrogen bond geometry	S3
2.	SSNMR chemical shifts (ppm)	S3
3.	Literature Reports of Multicomponent Solids of Drugs with Permeability	S4
4.	Microscopic images	S10
5.	Molecular conformations	S10
6.	PXRD comparison with simulated X-ray pattterns	S11
7.	DSC endotherm plots	S14
8.	Permeability plots	S15

	d (H…A/ Å)	D (D···A/Å)	<d-h···a 0<="" th=""><th>Symmetry codes</th></d-h···a>	Symmetry codes	
	•	ECB-CPR			
O2−H2…O4	2.05	2.839(5)	161	1-x,1/2+y,1/2-z	
N2-H2A…O4	2.19	3.019(6)	170	-1+x,y,z	
N2-H2B···O2	2.15	2.957(6)	158	1-x,-1/2+y,1/2-z	
N4−H4…N3	2.08	2.942(5)	176	1+x,y,z	
С7–Н7…О4	2.45	3.252(5)	145	1-x,1/2+y,1/2-z	
C19–H19B…O3	2.32	3.225(6)	156	1+x,y,z	
		ECB-DHBA			
N1-H1…O3	1.80	2.6611(2)	177	1-x,-1/2+y,1-z	
N3–H3A…O4	1.90	2.7592(2)	176	1-x,-1/2+y,1-z	
N3-H3B····O5	1.90	2.7468(2)	168	1-x,1/2+y,1-z	
O6−H6…O2	2.12	2.8487(2)	148	-x,1/2+y,-z	
C19–H19A…O7	2.54	3.3009(2)	135	1-x,-1/2+y,-z	
		ECB-MLN			
N2-H2A…O6	1.90	2.7539(11)	170	2-x,-1/2+y,1-z	
N2-H2B····O4	1.95	2.7760(11)	161	1+x,y,1+z	
N3-H3…O7	1.81	2.6708(11)	174	2-x,-1/2+y,1-z	
O3–H3A…O8	2.04	2.7404(11)	143	1-x,1/2+y,1-z	
С13-Н13…О3	2.55	3.5060(14)	166	-x,-1/2+y,1-z	
C16–H16…O5	2.49	3.3673(14)	148	-x,-1/2+y,-z	
C17–H17A…O7	2.38	3.2324(13)	147	-1+x,y,z	
		ECB-MLE			
N1-H1…O5	1.85	2.7102(3)	175	1-x,1/2+y,1/2-z	
N2-H2A…O6	1.94	2.7951(3)	175	1-x,1/2+y,1/2-z	
N2-H2B…O7	1.91	2.7503(3)	164	-x,1/2+y,1/2-z	
O7−H7…O4	1.86	2.6651(3)	168	2-x,-1/2+y,1/2-z	
C12–H12B…O5	2.56	3.1165(3)	116	1/2-x,-y,-1/2+z	
ECB-SAC					
N1-H1A…O3	2.00	2.8038(2)	164	1-x,1/2+y,1-z	
N1-H1B···O3	2.00	2.7394(2)	172	1+x,1+y,z	
N4-H4…N3	2.18	2.9620(2)	170	1+x,1+y,z	
06–H6…01	2.02	2.7369(2)	158	1+x,y,z	
С7-Н7…О2	2.55	3.3527(3)	139	1+x,y,z	
С7-Н7…015	2.55	3.0718(3)	113	2-x,-1/2+y,-z	
C8–H8A…O15	2.47	3.1516(3)	127	2-x,-1/2+y,-z	

Table S1. Neutron normalized hydrogen bond geometry (Å/ $^{\rm O}).$

Table S2. ¹⁵N SSNMR chemical shifts (ppm) of ECB binary systems.

	N(1) ppm	N(2) ppm	N(3) ppm	Conclusion
ECB	-285.5/-289.6	-179.3/-180.3	-228.3/-237.9	
ECB–BA (Form I)	-289.1	-190.8	-225.2	Cocrystal
ECB–DHBA	-272.5	-243.6	-236.9	Salt

Sr.	Drug solid forms reported	Solubikity/permeability	Possible factors responsible	References
no.		study		
1	Acyclovir (BCS class IV)	Maleate salt decreased	Higher log P and solubility	Yan et. al.,
	Acyclovir-maleate	permeability, whereas	(coformers), lower melting	CrystEngComm, 2013,
	Acyclovir-fumaric acid dihydrate	fumaric acid/glutaric acid	points (cocrystals) than the drug	15, 6457–6460.
	Acyclovir-glutaric acid	cocrystals improved by 2-4	lead to improved permeability.	
		fold.		
2	Indomethacin (BCS class II)	Apparent permeation	Enhanced permeability of	Ferretti et al. Mol.
	Indomethacin–2-hydroxy, 4-	coefficient for cocrystals 1	cocrystal 1 was correlated with	Pharmaceutics 2015, 12,
	methylpyridine (cocrystal 1)	and 3 increased compared to	its improved dissolution and	1501–1511.
	Indomethacin–2-methoxy, 5-nitroaniline	native drug and that of	loss of barrier effect of the	
	(cocrystal 2)	cocrystal 2 is decreased.	monolayer.	
	Indomethacin-saccharine (cocrystal 3)			
3	Hydrochlorothiazide (BCS class IV)	All the cocrystals (except	Absence of (drug) sulfonamide	Sanphui et al., Mol.
	Hydrochlorothiazide-nicotinic acid	succinamide one) improved	dimer/catemer synthon in	Pharmaceutics 2015, 12,
	Hydrochlorothiazide-nicotinamide	permeability/diffusion (max.	nicotinic acid/ nicotinamide	1615-1622.
	Hydrochlorothiazide-4-aminobenzoic	2 fold) compared to the drug.	cocrystals lead to enhance	
	acid		permeability. Both polar/non-	
	Hydrochlorothiazide-resorcinol		polar interactions have pivotal	
	Hydrochlorothiazide-succinamide		role in improved diffusion.	
4	Theophylline (BCS class I)	Flux of theophylline-o-	Weaker heterosynthon and	Saikia et al., Cryst.
	Theophylline-o-aminobenzoic acid	aminobenzoic acid cocrystal	layers structure between	Growth Des. 2015, 15,
	Theophylline–o-aminobenzoic acid	hydrates and solvates	theophylline and o-	5593-5603.

Table S3. Literature reports of multicomponent solids of drugs with solubility/permeability.

	(isobutanol solvate)	exhibited improved diffusion	aminobenzoic acid improved	
	Theophylline–o-aminobenzoic acid	rate (1.3-1.7 fold) compared	solubility and diffusion	
	hydrates	to its anhydrous cocrystal and	compared to m/p-aminobenzoic	
	Theophylline-m-aminobenzoic acid	others including the drug.	acid cocrystals.	
	Theophylline-p-aminobenzoic acid			
5	5-Fluorouracil (BCS class III)	All the cocrystals improved	Drug-coformer heterosynthons,	Dai et al., Cryst. Growth
	5-Fluorouracil–3-hydroxybenzoic acid	diffusion/flux than the drug.	lower crystal density of	Des. 2016 , 16,
	5-Fluorouracil–4-aminobenzoic acid	Cinnamic acid cocrystal	cocrystals and higher log P	4430–4438.
	5-Fluorouracil– cinnamic acid	showed max. diffusion/flux	(coformers) are correlated with	
		(1.8 fold)	improved diffusion behavior.	
6	Furosemide (BCS class IV)	All the cocrystals and salts	Heterosynthons, higher	Banik et al. Cryst. Growth
	Furosemide- anthranilamide	improved permeability	improved solubility in the	Des. 2016 , 16, 5418–
	Furosemide-4-toluamide	compared to the native drug.	cocrystals/salts and	5428.
	Furosemide-2-picolinamide	Tetramethylpiperazine	hydrophobic nature of the	
	Furosemide-piperazine	cocrystal exhibited highest	coformers are considered for	
	Furosemide-2,3,5,6-tetramethylpyrazine	flux of the drug.	improved diffusion of the drug.	
	Furosemide-pyrazine			
	Furosemide–2-picolinic acid			
	Furosemide-isoniazid			
	Furosemide-theophylline			
7	Norfloxacin-sulfathiazole (BCS class	Salt improved diffusion	Lower melting point and higher	Gopi et al., Mol.
	IV, II)	permeability compared to	solubility are correlated with	Pharmaceutics 2016, 13,
	Norfloxacin-sulfathiazole salt hydrate	their physical mixture.	improved diffusion behavior	3590-3594.
8	Hydrochlorothiazide (BCS class IV)	Piperazine and picolinamide	Higher diffusion/flux of the	Gopi et al., Cryst. Growth

	Hydrochlorothiazide-piperazine	cocrystals improved	cocrystals are correlated with	Des. 2017, 17, 308–316.
	Hydrochlorothiazide-picolinamide	diffusion/flux compared to	their higher solubility.	
	Hydrochlorothiazide-malonamide	the drug alone. Other		
	Hydrochlorothiazide-isoniazide	cocrystals showed		
	Hydrochlorothiazide-tetramethylpyrazine	comparable diffusion as the		
		drug.		
9	Ethenzamide (BCS class II)	Cocrystals improved	Improved solubility and	Khatodia et al.
	Ethenzamide–2,5-dihydroxybenzoic acid	solubility and permeability	permeability are explained	CrystEngComm, 2017,
	Ethenzamide–2,6-dihydroxybenzoic acid	compared to the native drug	based on heterosynthons,	19, 6992–7000.
	Ethenzamide-3,4-dihydroxybenzoic acid	in pH 7 phosphate buffer	conformations of the drug and	
	Ethenzamide-3,5-dihydroxybenzoic acid	medium	logP of the coformers.	
10	Meloxicam (BCS class II)	Cocrystal showed enhanced	Drug-coformer interactions	Machado et al. Eur. J.
	Meloxicam-salicylic acid	drug permeation coefficient	enhanced both drug solubility	Pharm. Sci., 2018, 123,
			and cutaneous permeation.	184–190.
11	Entacapone (BCS class IV)	Entacapone-theophylline	Higher diffusion was correlated	Bommaka et al. Cryst.
	Entacapone- acetamide	hydrate exhibited improved	with high	Growth Des. 2018, 18,
	Entacapone-nicotinamide	solubility/permeability.	solubility/permeability of	6061–6069.
	Entacapone-isonicotinamide		coformer theophylline.	
	Entacapone-pyrazinamide			
	Entacapone-isoniazid			
	Entacapone-theophylline hydrate			
12	Acetazolamide (BCS class IV)	Theophylline cocrystal and	Acetazolamide dimers forming	Zhang et al. J. Mol. Struc.
	Acetazolamide-theophylline	piperazine salt hydrate	layers structures and	2019 , 1184, 225–232.
	Acetazolamide-piperazine (salt) hydrate	improve diffusion of the drug	hydrophobic interactions	

		by 1.5 and 2.2 fold.	between the layers promote	
			higher diffusion of the drug	
13	Acetazolamide (BCS class IV)	The cocrystal improve	Higher lipophilicity of proline	Song et al.
	Acetazolamide-proline	cumulative diffusion by 2	and heterosynthons in the	CrystEngComm, 2019,
		fold compared to the native	cocrystal leads to low polarity	21, 3064-3073.
		drug.	and high	
			lipophilicity/permeability.	
14	5-Fluorouracil (BCS class III)	All the cocrystals improve	Cocrystals with higher lipid	Dai et al. CrystEngComm,
	5-Fluorouracil-salicylic acid	permeability/diffusion rate	solubility and lower lattice	2019 , 21, 5095–5105.
	5-Fluorouracil–3-hydroxybenzoic acid	compared to the native drug.	energy are correlated with	
	5-Fluorouracil–4-hydroxybenzoic acid		improved diffusion behavior.	
	(Forms I/II)			
15	Naftopidil (BCS class IV)	Except nicotinate salt, other	High permeability of the salts	Mannava et al. Cryst.
	Naftopidil–oxalate	salts exhibited rapid increase	was correlated improved	Growth Des. 2020, 20,
	Naftopidil-succinate	of flux compared to native	solubility/dissolution rates.	3064–3076.
	Naftopidil–D-malate	drug. The malate salts		
	Naftopidil–L-malate	improved flux by 4 folds and		
	Naftopidil–DL-malate	permeability up to 16 times		
	Naftopidil-isonicotinate			
	Naftopidil-3,5-dinitrobenzoate			
16	Etodolac (BCS class II)	Etodolac-isopropylamine	Improved diffusion rate was	Rai et al. Cryst. Growth
	Etodolac-isopropylamine	salt exhibited highest	correlated with higher	Des. 2020, 20, 4512–
	Etodolac-n-hexylamine	dissolution and diffusion.	molecular mobility and	4522.
	Etodolac-cyclohexylamine		dissolution rate.	

	Etodolac-2-phenylethylamine			
	Etodolac-piperazine			
17	Allopurinol (BCS class IV)	Allopurinol-piperazine	Weaker interactions between	Dai et al. Cryst. Growth
	Allopurinol-piperazine	cocrystal improved	allopurinol and piperazine and	Des. 2020, 20, 5160-
	Allopurinol-2,4-dihydroxybenzoic acid	diffusion/membrane	lower solubility and density	5168.
	Allopurinol-isonicotinamide	permeability	lead to higher diffusion.	
18	Furosemide (BCS class IV)	Binary systems improved	Improved diffusion was	Diniz et al. Int. J. Pharm.
	Furosemide-imidazole (salt)	cellular transport by 2-3 fold	correlated with enhanced	2020 , 587, 119694.
	Furosemide-5-fluorocytosine	across Caco-2 monolayers.	solubility of the salt compared	
			to the cocrystal.	
19	Nicorandil (BCS class III)	All the salts and cocrystal	Improved solubility was	Mannava et al.
	Nicorandil oxalate	improved solubility,	correlated with ionic nature of	CrystEngComm, 2021,
	Nicorandil fumarate	dissolution rate and	the salts and permeability was	23, 227-237
	Nicorandil succinate	permeability compared to the	correlated with hydrophobicity	
	Nicorandil–suberic acid	native drug.	of suberic acid.	

ECB-MLE Salt

ECB-MLN salt

(block), II (fibers)

ECB-SAC salt

ECB-CPR cocrystal

Figure S1. Microscopic images of ECB multicomponent molecular crystals.

Figure S2. Molecular conformations of ECB in the drug and its multicomponent solids.

Figure S3. PXRD (red trace) comparison of (a) ECB–CPR, (b) ECB–DHBA, (c) ECB–MLN, (d) ECB–MLE, and (e) ECB–SAC with the corresponding simulated X-ray patterns (blue trace).

(a)

Figure S4. DSC endotherms of ECB cocrystals and salts indicate melting endotherms of ECB–BA/CPR (red, blue traces) is lower than that of the drug (black trace), whereas melting endotherms of salts like ECB–MLE/DHBA/SAC (except ECB–MLN salt, orange trace) are higher than that of the drug.

Figure S5. Cumulative amount of drug diffused per unit area vs time (min) of all the multicomponent systems.

Figure S6. Correlation between % drug diffused and log P of the drug/coformers.

(a)

Figure S7. Correlation between (a) flux and log *P* and (b) flux and calculated density (from crystal structures) of the ECB multicomponent solids.