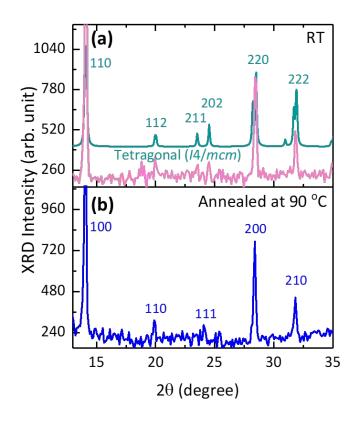
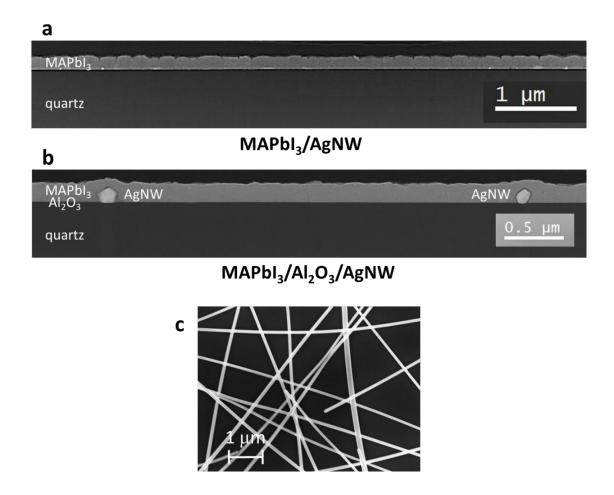
Supporting Information for

THz Analysis of CH₃NH₃PbI₃ Perovskites Associated with Graphene and Silver Nanowire Electrodes


Zhi-Wei Huang,¹ Yu-Heng Hong,¹ Yi-Jheng Du,¹ Ting-Jui Kuo,¹ Chung-Che Huang,² Tsung Sheng Kao,^{1*} and Hyeyoung Ahn^{1*}

¹Department of Photonics, College of Electrical and Computer Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan.

²Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK.


*Correspondence to: tskao@g2.nctu.edu.tw, hyahn@mail.nctu.edu.tw

S1. XRD curves of MAPbI₃ measured at room temperature and after annealing at 90 °C

Figure S1. X-ray diffraction curves of as-grown MAPbI₃ measured **a.** at room temperature and **b.** after annealing at 90 °C in ambient atmosphere. The indexed peaks are for tetragonal phase (a) and cubic phase (b) of MAPbI₃. Green curve in **a** is the calculated result of MAPbI₃ with the tetragonal I4/mcm symmetry for comparison purposes.

S2. TEM image of MAPbI₃/AgNWs and MAPbI₃/Al₂O₃/AgNW systems

Figure S2. Cross-sectional TEM images of **a.** MAPbI₃/AgNW and **b.** MAPbI₃/Al₂O₃/AgNW taken at least two days after fabrication due to the preparation process of TEM measurement. While pentagonal AgNWs are clearly observed in MAPbI₃/Al₂O₃/AgNW, no trace of AgNWs can be found in MAPbI₃/AgNW. Instead, there are clear grain boundaries running through the film in MAPbI₃/AgNW. **c.** SEM image of typical AgNW layer.

Table S1. The electrical conductivity (σ) of AgNW layer covered by different thickness (*d*) of Al₂O₃ layer measured by the Hall measurement system.

d	0 nm	1 nm	5 nm
σ (×10 ³ S/cm)	1.2	4.0	3.4

The electrical conductivity of 1-nm $Al_2O_3/AgNW$ is about 20 % larger than that of 5-nm $Al_2O_3/AgNW$. It is also larger than the bare AgNW network since the commercial AgNWs are capped by a thin polyvinylpyrrolidone layer and the ALD process at the temperature of 150 °C can remove it and improve the junction contact.

Table S2. The best fit parameters for Figure 3 in the text. ω_p and τ_0 for each sample are estimated from the fitting process of complex photoconductivity with Drude and Drude-Smith model¹ for MAPbI₃/Al₂O₃/AgNW and MAPbI₃/AgNW, respectively. DC conductivity (c_{DC}) at ω =0 Hz for MAPbI₃/AgNW is calculated from the relation, $c_{DC} = \varepsilon_0 \omega_p^2 \tau_0 (1 + c)$, where *c* is a parameter describing the fraction of the electron's original velocity after some number of scattering events and varies between -1 and 0.¹

Sample	$\omega_p/2\pi$	$ au_0$	c _{DC}
	(THz)	(fs)	$(\Omega^{-1} \mathrm{cm}^{-1})$
MAPbI ₃ /Al ₂ O ₃ /AgNW	48	18	148
MAPbI ₃ /AgNW	45	21	13

Reference

 Smith, N.V. Classical Generalization of the Drude Formula for the Optical Conductivity. *Phys. Rev. B* 2001, *64*, 155106–4.