Supporting Information

Impact of the Gas-Liquid interface on Photochemical Vapor Generation

Ying Yu[†], Hanjiao Chen[‡], Qian Zhao[†], Qing Mou[†], Liang Dong[†], Ruilin Wang[§], Zeming Shi[†], and Ying Gao^{†,*}

† State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Earth Sciences, Chengdu University of Technology, Sichuan 610059, China

‡ Analytical & Testing Center, Sichuan University, Sichuan 610064, China

§ College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Sichuan 610059, China

*Corresponding author E-mail: Ying.gaoy@gmail.com;

Ying Yu and Hanjiao Chen made equal contributions to this work.

Table of Contents

Figure S1. Time-resolved profiles of W, Ir, Se, Os, Sb, and Te in LS-FI-PVG and AS-FI-PVG
systems S3
Figure S2. Effect of the volume of the air segment on Hg, Fe, Co, Tl, and Ni detectionS4
Figure S3. Effect of the air/Ar slug(s) on As, Sn, Ir, Os, Cd, Ni, Hg, and Mo detectionS5
Figure S4. Effect of the concentration of H ₂ O ₂ on Sn detectionS6
Figure S5. EPR results for Sn PVG medium in LS-FI-PVG systemS7
Figure S6. Effect of the internal temperature of PVG reactor on Sn, As, Cd, and Mo detection-
S8
Figure S7. Effect of the sample solution temperature on As and Sn detectionS9
Figure S8. Effect of the gas-liquid interfaces on As and Sn detectionS10
Figure S9. Effect of the Ar carrier gas flow rate on As and Sn detectionS11
Figure S10. Calibration curves established by LS-FI-PVG and AS(s)-FI-PVG methodsS12
Table S1. Precision obtained using peak area by LS-FI-PVG and AS(s)-FI-PVG methods-S13
Table S2. Interferences from coexisting ions obtained in AS(s)-FI-PVG systemS14

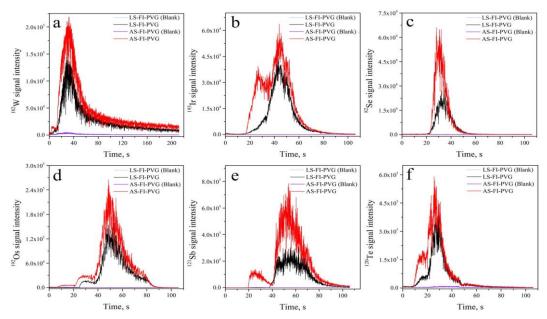


Figure S1. Time-resolved profiles of W, Ir, Se, Os, Sb, and Te in LS-FI-PVG, and AS-FI-PVG (air slug preceding the sample solution): a) 20 ng mL⁻¹ W, 40% (v/v) FA, 500 mg L⁻¹ Cd²⁺, 120 s UV irradiation time, and 2.24 mL of air slug; b) 2 ng mL⁻¹ Ir, 20% (v/v) FA; 25 mg L⁻¹ Cu²⁺, 45 s UV irradiation time, and 1.60 mL of air slug; c) 10 ng mL⁻¹ Se (IV), 15% (v/v) FA, 13 s UV irradiation time, and 2.88 mL of air slug; d) 5 ng mL⁻¹ Os, 5% (v/v) HNO₃, 150 s UV irradiation time, and 0.77 mL of air slug; e) 10 ng mL⁻¹ Sb, 5% (v/v) FA, 20% (v/v) AA, 60 s UV irradiation time, and 2.24 mL of air slug; f) 10 ng mL⁻¹ Te, 2% (v/v) FA, 20% (v/v) FA, 20 mg L⁻¹ Fe²⁺, 5 g L⁻¹ nano-TiO₂, 50 s UV irradiation time, and 1.28 mL of air slug.

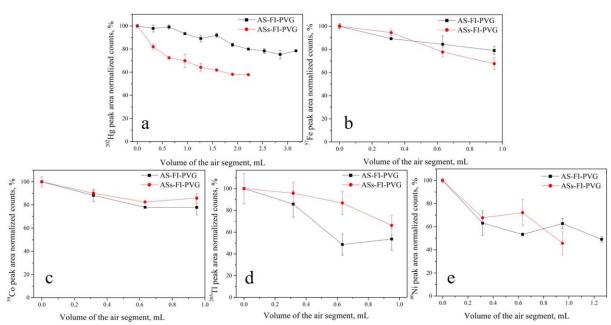


Figure S2. Effect of the volume of the air segment on 202 Hg, 57 Fe, 59 Co, 205 Tl and 60 Ni responses: a) 10 ng mL $^{-1}$ Hg, 15% (v/v) FA, and 13 s UV irradiation time; b) 10 ng mL $^{-1}$ Fe, 60% (v/v) FA, and 180 s UV irradiation time; c) 10 ng mL $^{-1}$ Co, 50% (v/v) FA, and 180 s UV irradiation time; d) 20 ng mL $^{-1}$ Tl, 20% (v/v) FA, 20 mg L $^{-1}$ Co $^{2+}$ and 110 s UV irradiation time; e) 10 ng mL $^{-1}$ Ni, 50% (v/v) FA, and 180 s UV irradiation time.

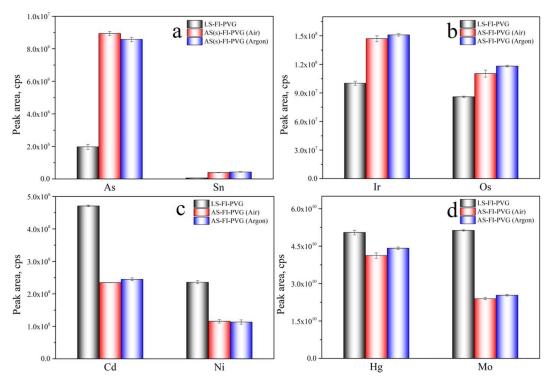


Figure S3. Effect of the air/Ar slugs on As, Sn, Ir, Os, Cd, Ni, Hg and Mo responses in AS(s)-FI-PVG system. a) As, 4% (v/v) FA, 20% (v/v) AA, 15 mg L⁻¹ Fe³⁺, 30 s irradiation, and 2.88 mL of air slug preceding the sample; Sn, 0.8% (v/v) AA, 0.01% (v/v) HCl, 32 s irradiation, and 1.60 mL of air slugs preceding and succeeding the sample; b) Ir, 20% (v/v) FA, 25 mg L⁻¹ Cu²⁺, 45 s UV irradiation time, and 1.60 mL of air slug preceding the sample; Os, 5% (v/v) HNO₃, 150 s UV irradiation time, and 0.77 mL of air slug preceding the sample; c) Cd, 40% (v/v) FA, 30 mg L⁻¹ Co²⁺, 80 s UV irradiation time, and 1.28 mL of air slug preceding the sample; Ni, 50% (v/v) FA, 180 s UV irradiation time, and 1.28 mL of air slug preceding the sample; d) Hg, 15% (v/v) FA, and 13 s UV irradiation time, and 3.20 mL of air slug preceding the sample; Mo, 20% (v/v) FA, 20 mg L⁻¹ Co²⁺, 2.5 mg L⁻¹ Cu²⁺, and 60 s UV irradiation time, and 1.28 mL of air slug preceding the sample.

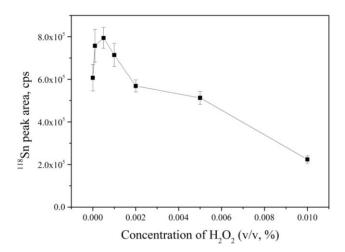


Figure S4. Effect of the concentration of H_2O_2 on ^{118}Sn response with 32 s UV irradiation in the absence of gas-liquid interface.

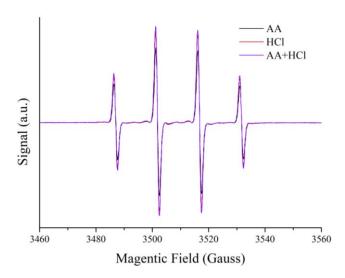


Figure S5. EPR results for PVG medium of Sn in LS-FI-PVG system: 0.01% (v/v) HCl, or/and 0.8% (v/v) AA.

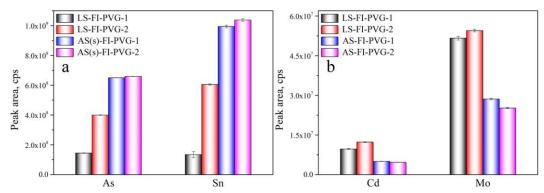


Figure S6. Effect of the internal temperature of PVG reactor on 118 Sn, 75 As, 111 Cd, and 98 Mo responses: a) 5 ng mL⁻¹ As, 4% (v/v) FA, 20% (v/v) AA, 15 mg L⁻¹ Fe³⁺, and 30 s irradiation; 50 ng mL⁻¹ Sn, 0.8% (v/v) AA, 0.01% (v/v) HCl, and 32 s irradiation; b) 20 ng mL⁻¹ Cd, 40% (v/v) FA, 30 mg L⁻¹ Co²⁺, and 80 s irradiation; 10 ng mL⁻¹ Mo, 20% (v/v) FA, 20 mg L⁻¹ Co²⁺, 2.5 mg L⁻¹ Cu²⁺, and 60 s UV irradiation time.

LS-FI-PVG-1: the blank solution was firstly introduced into the PVG reactor and followed by sample solution as described in the section of Analytical Procedure.

LS-FI-PVG-2: the blank solution was firstly introduced into the PVG reactor and undergone UV irradiation for a while (with the total UV irradiation time of 45 s for As, 25 s for Sn, and 20 s for Cd and Mo) and then sample solution was introduced into the reactor for PVG.

AS(s)-FI-PVG-1: the air slug was firstly injected into the PVG reactor and undergone UV irradiation for a while (with the total UV irradiation time of 45 s for As, 25 s for Sn, and 20 s for Cd and Mo) and then sample solution was introduced into the reactor for PVG.

AS(s)-FI-PVG-2: the air slug was injected continuously into PVG reactor (45 s for As, 25 s for Sn, and 20 s for Cd, Mo) and then sample solution was introduced into the reactor for PVG.

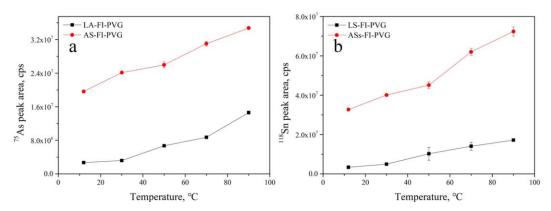
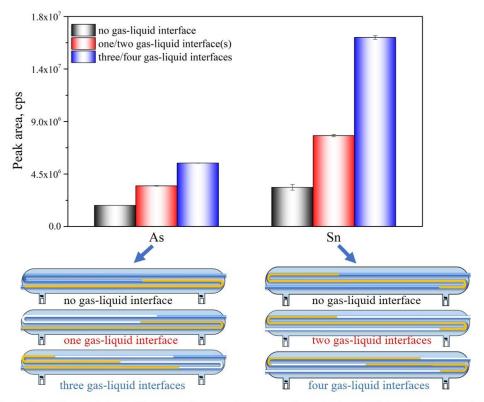



Figure S7. Effect of the sample solution temperature on 75 As and 118 Sn response in LS-FI-PVG and AS(s)-FI-PVG systems: a) As, 4% (v/v) FA, 20% (v/v) AA, 15 mg L $^{-1}$ Fe $^{3+}$, and 30 s irradiation; b) Sn, 0.8% (v/v) AA, 0.01% (v/v) HCl, and 32 s irradiation.

Blue color: the PVG medium; yellow color: sample solution; white color: air slug.

Figure S8. Effect of the gas-liquid interfaces on As and Sn detection with 0.3 mL of sample consumption and 0.3 mL of total air-segmented: As, 4% (v/v) FA, 20% (v/v) AA, 15 mg L⁻¹ Fe³⁺, and 30 s irradiation; Sn, 0.8% (v/v) AA, 0.01% (v/v) HCl, and 32 s irradiation.

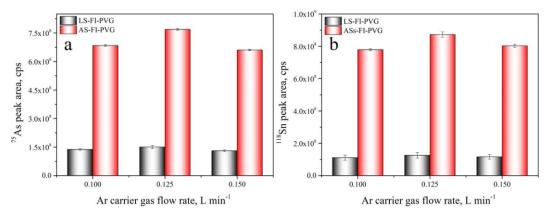


Figure S9. Effect of the Ar carrier gas flow rate on As and Sn responses in PVG. a) As, 4% (v/v) FA, 20% (v/v) AA, 15 mg L⁻¹ Fe³⁺, and 30 s irradiation; b) Sn, 0.8% (v/v) AA, 0.01% (v/v) HCl, and 32 s irradiation.

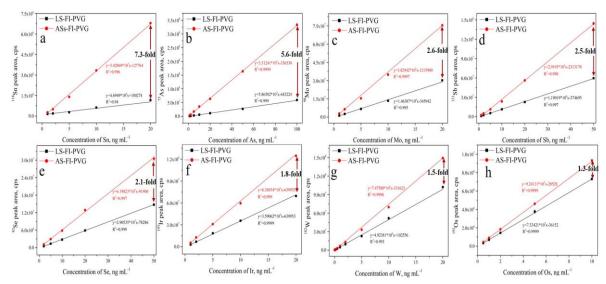


Figure S10. Calibration curves established using LS-FI-PVG and AS(s)-FI-PVG methods for elements: a) Sn, 0.8% (v/v) AA, 0.01% (v/v) HCl, 32 s UV irradiation time in the presence or absence of 1.60 mL air slugs; b) As, 4% (v/v) FA, 20% (v/v) AA, 15 mg L⁻¹ Fe³⁺, and 30 s irradiation in the presence or absence of 2.88 mL air slug; c) Mo, 30% (v/v) FA, 38 s UV irradiation time in the presence or absence of 1.09 mL air slug; d) Sb, 5% (v/v) FA, 15% (v/v) AA, 60 s UV irradiation time in the presence or absence of 2.24 mL air slug; e) Se (IV), 15% (v/v) FA, 13 s UV irradiation time in the presence or absence of 2.88 mL air slug; f) Ir, 20% (v/v) FA, 25 mg L⁻¹ Cu²⁺, 45 s UV irradiation time in the presence or absence of 1.60 mL air slug; g) W, 40% (v/v) FA, 500 mg L⁻¹ Cd²⁺, 120 s UV irradiation time in the presence or absence of 2.24 mL air slug; h) Os, 5% (v/v) HNO₃, 150 s UV irradiation time in the presence or absence of 0.77 mL air slug.

Table S1. Precision (n=7) obtained using peak area by LS-FI-PVG and AS(s)-FI-PVG methods.

A	RSD %			
Analytes	LS-FI-PVG	AS(s)-FI-PVG		
Sn	8.6	3.0		
As	2.9	1.6		
Bi	2.3	1.5		
Se	3.2	1.1		
Sb	2.6	2.4		
W	3.6	3.0		
Os	2.8	3.3		
Mo	3.7	3.1		
Ir	3.8	2.8		

Table S2. Interferences from coexisting ions obtained in AS(s)-FI-PVG system.

Element	Interfering Concentration ions (mg L ⁻¹)	[Interferent]/	Recovery/%		
		$(mg L^{-1})$	Analytes	LS-FI-PVG	AS(s)-FI-PVG
As	Co ²⁺	0.2	400	127±1	129±2
	Cu^{2+}	0.4	800	83±2	76±1
	Ni ²⁺	1	2000	106±1	111±1
Bi	Co ²⁺	0.02	40	109±1	110±1
Мо	NO ₂ -	0.05	100	76±1	73±1
	NO_3^-	0.02	40	82±1	91±1
Sn	Fe ³⁺	0.05	100	112±3	103±1
	Co^{2^+}	0.02	40	106±2	105±1
	Ni^{2+}	0.02	40	104±1	106±1
	Cu^{2+}	0.02	40	27±2	46±1