Supporting Information

Nucleolin Targeted DNA Nanotube for Precise Cancer Therapy through FRET-Indicated Telomerase Responsiveness

Chun Hong Li, [†] Wen Yi Lv, [†] Yuan Yan, [‡] Fei Fan Yang, [‡] Shu Jun Zhen ^{*, ‡} and Cheng Zhi Huang ^{*, †}

[†] Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China. E-mail: <u>chengzhi@swu.edu.cn</u>; Fax: +86 2368367257; Tel: +86 2368254659
[‡] Key Laboratory of Luminescent and Real-Time Analytical System (Southwest University), Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China. E-mail: <u>zsj@swu.edu.cn</u>; Fax: +86 2368367257; Tel: +86 2368254059

Table of Contents

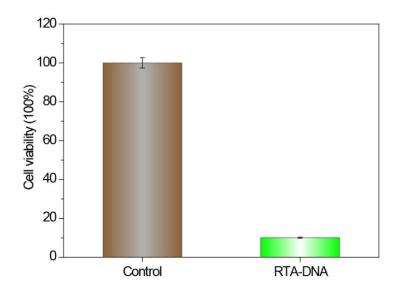

Table	S1.	Oligonu	icleotide	sequence	es fo	or DNA		
nanosheet/nanotube								
Figure	S1.	The	cell	viability	of	RTA-DNA		
conjugates			S5					
Figure S2. Detailed schematic diagrams of DNA nanosheetS5								
Figure	S3.	Gel	c	haracterization	of	DNA		
nanosheet-RTA								
Figure S4. Schematic diagram of DNA nanotube in response to telomerase								
Figure	S5.	Veri	fication	of	the	telomerase		
activity								
Figure S6. Dose-dependent inhibition of telomerase activity								
Figure S7. Verification of telomerase extracts response to DNA nanotube								
S8								
Figure S8. Time optimization of DNA nanotube in response of telomerase								
Figure S9. The relationship between $\Delta F_A/F_D$ and the number of MCF-7 cells								
Figure S10. Selectivity of telomerase detection								
Figure S11. Verification of nucleolin expression level on various cells								
Figure S	S12. The	specific	ity of	telomerase	response	in different		
cells	S1	1						
Figure S13 Optimization of incubation time of DNA nanotube in cells								
Figure S	S14. Cyte	otoxicity	of AS14	411/nanotube/R	TA in	various cell		
lines	S12							

Table S1. Oligonucleotide sequences for DNA nanosheet/nanotube.

Name	Sequence (5'to 3')
F1	TGTGTGTGTGTGTGTTCCAGCGCTTACGGCGCCAGTGGCGCCTTGGTG
	ATGGCATGGATGCGACGAGATCACCTCCTTC
F2	TGTGTGTGTGTGTGTGTGTGGGGGCCCGTATCTGATGCTAAAACCGTAC
	GAAGCGTGCAAATCCGTCCGAGAGTATGGAT
F3	TTTTTTTTTTTTTTTTCGTGCTTCACGTTCGGCGATAATGTGATCCTAGC
	AACCTACTCTATCCACCACGGGTTGGAC
F4	TGTGTGTGTGTGTGTGGGTATGGGATGTCGGAATTATGGGTCCCTGAGC
	TTGCACTTTGTTCACAGGTGAAAGAAGATGT
F5	TGTGTGTGTGTGTTTAGTTCCGGACCCTCCCGCATTCTAGGAAGTG
	AATTGACATTATAATCGTCACCCACACCGCC
F6	TTTTTTTTTTACACGGGTTCAAGAACCTGTCCTCCGCCCAAAGGA
	GTTCGTCTACTGATTAACTTCGACTACGG
F7	ATCGCCGCCGGACGTAGAGCCTAATGTGGGCAGTGACTACGAACT
	GACCAGATGAGGGCGGTTG
F8	CGGCGCTGTTAATATTCCATTTATCATTTCTTTGGGTAGCTTAGGA
	GTGTTCGCACAAGCACAC
F9	CACACTACGGAGGCCCCATCTCATAATGGTTTATGGGATTTGTGTG
	AGTCTAACCTACCGAGGC
F10	TTTTTTTTTTACCAAGGCGCCCAAAGTGCAAGTT
F11	ACTGGCGCCGTAAGCGCTGGATACGGTTTTAGAATGTCAATTCAC
	ATCTTCTTTCACCTGTGAA
F12	CATCAGATACGGGCCTCACATGGATCACATTAAGACGAACTCCGG
	CGGTGTGGGTGACGATTAT
F13	TTTTTTTTTTTCTCAGGGACCCTTCGTAGTCACTT
F14	ATAATTCCGACATCCATACCTACTTCCTAGAATAAGCTACCCACAA
	CCGCCCTCATCTGGTCAG

F15	TGCGGGAGGGTCCGGAACTAATTTGGGCGGAGACAAATCCCATGT
	GTGCTTGTGCGAACACTCC
F16	TCCATGCCATCTT
F17	TGCACGCTTCGGAAGGAGGTGATCTCGTCGCAAATCCGTCGAGCA
	GAGTT
F18	GTAGGTTGCTAATCCATACTCTCGGACGGATTAATCCGTCGAGCA
	GAGTT
F19	TTTGCCCACATTA
F20	Cy5-TTAGGGTTAGGGGGCTCTACGTCCGGCGGCGATAAGAAATGA
	ТА
F21	Cy5-TTAGGGTTAGGGAATGGAATATTAACAGCGCCGAAACCATTA
	TG
F22	TCGCCGAACGTGAAGCACGATTTTTTTTTTTTTTTTTTT
	AGTCGAAGTTAATCAGT
F23	GACAGGTTCTTGAACCCGTGTTTTTTTTTTTTTTTTTTT
	GGTAGGTTAGACTCAC
F24	TTTTTGTCCAACCCGTGGTGGATAGAAATCCGTCGAGCAGAGTT
F25	Cy5-TTAGGGTTAGGGAGATGGGGCCTCCGTAGTGTGTTTTT
F26	CCCTAACCCTAACCC (T-cy3) AACTCTGCTCGACGGATT
F27	ACACACACACATTTTTTTTTT-SH
F28	AAAAAAAAAGGTGGTGGTGGTTGTGGTGGTGGTGG
F281	АААААААААААААААААААААААААААААААААААА
F29	GGTGGTGGTGGTTGTGGTGGTGGTGGTT-FAM

Supplementary Figures

Figure S1. The cell viability of RTA-DNA conjugates. HeLa cells were seeded in a 96-well plate at a density of 1×10^4 cells per well and incubated for 24 h at 37 °C and 5% CO₂. After that 40 nM RTA-DNA conjugates was added and incubated for further 24h. The RTA-DNA conjugates exhibit excellent cell toxicity, indicating the feasibility of RTA for tumor therapy.

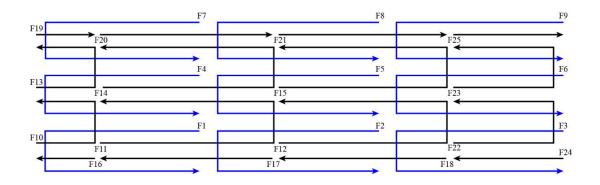
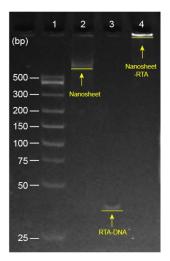
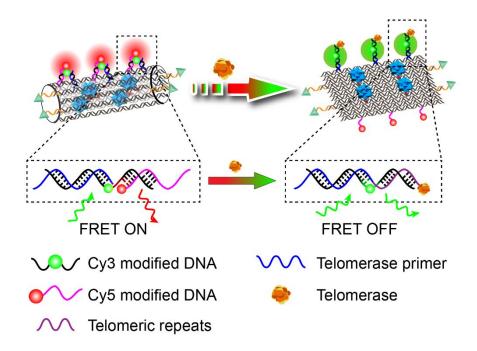
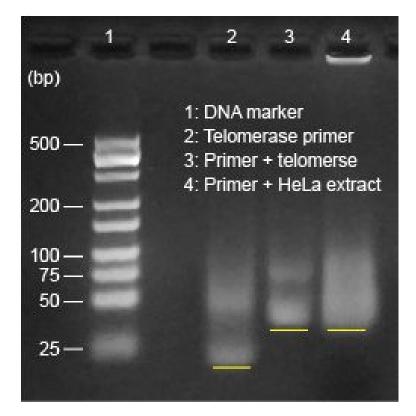
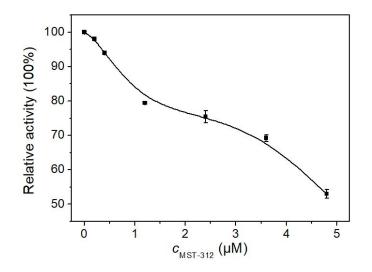



Figure S2. Detailed schematic diagrams of DNA nanosheet.

Figure S3. Gel characterization of DNA nanosheet-RTA. The band of DNA nanosheet-RTA was distinct retarded than that of pure DNA nanosheet on the 8% PAGE, indicating the successful loading of RTA on DNA nanosheet. Lane 1–4: DNA marker, DNA nanosheet, RTA-DNA conjugates and DNA nanosheet-RTA.

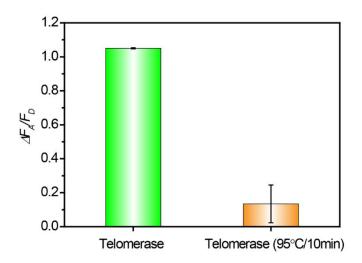

Figure S4. Schematic diagram of DNA nanotube in response to telomerase.

Figure S5. Verification of the telomerase activity. A 11 bp telomerase primer strand was reacted with pure telomerase, telomerase extraction from HeLa cells and incubated at 37 °C for 1 h. A distinct retarded band appeared in the case of pure telomerase and HeLa lysate in the 2% agarose gel electrophoresis compare to the telomerase primer strands alone, indicating that the telomerase was successfully extracted from HeLa cells. Lane 1–4: DNA marker, telomerase primer strand, telomerase primer incubated with telomerase, telomerase primer incubated with HeLa cells extract.

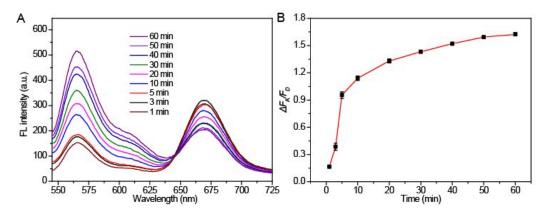


Figure S6. Dose-dependent inhibition of telomerase activity by telomerase inhibitor in HeLa cells. The telomerase inhibitor, N, N'-1, 3-phenylenebis-[2,3-dihydroxy-benzamide] (MST-312) was used to explore the inhibition effect upon telomerase activity. After incubation with $0 - 4.8 \mu M$ MST-312 for 62 h, the HeLa cells were collected and telomerase was extracted to measure its activity. The relative activity of telomerase decreases with the increase of MST-312 concentration, indicating that the DNA nanotube could applied for the recognition and response of telomerase.

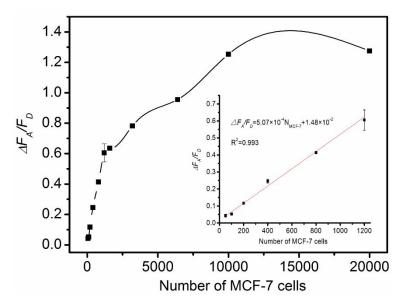
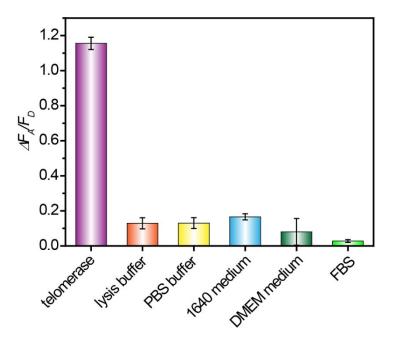
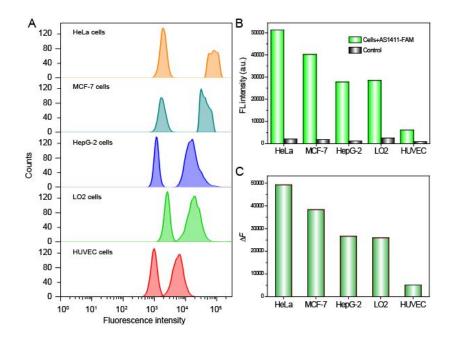
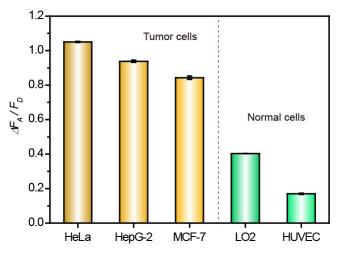
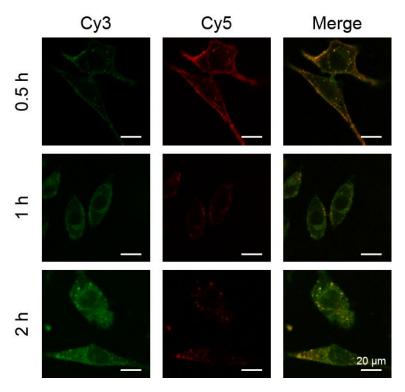


Figure S7. Verification of telomerase extracts response to DNA nanotube. The DNA nanotube was treated with HeLa cells lysate or heat-inactive Hela lysate. Experimental Conditions: DNA nanotube, 50 nM; dNTP, 200 μM; HeLa cells, 2400


cells; incubation at 37 °C for 1h.


Figure S8. Time optimization of DNA nanotube in response of telomerase. (A) Fluorescence spectra of 50 nM DNA nanotube after incubating with telomerase from HeLa cells at different time ($\lambda_{ex} = 525$ nm, $\lambda_{em} = 570$ nm and 670 nm). (B) Relationship between the relative acceptor/donor ratio ($\Delta F_A/F_D$) and different incubation time.


Figure S9. The relationship between $\Delta F_A/F_D$ and the number of MCF-7 cells. The results demonstrated the positive correlation between $\Delta F_A/F_D$ and the number of MCF-7 cells, the limit of detection (LOD, 3 σ) was calculated to be 64 MCF-7 cells with the linear relationship ranges from 100-2400 cells.


Figure S10. Selectivity of telomerase detection in the presence of various interfering substances. Equal amount of DNA nanotube was co-incubated with different media including lysis buffer, PBS buffer, DMEM medium, 1640 medium and FBS at 37 °C for 1h.

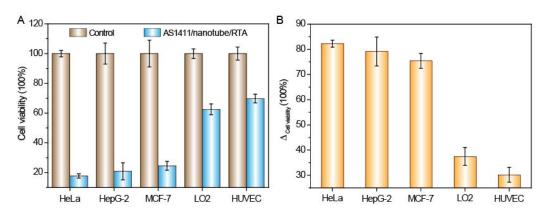

Figure S11. Verification of nucleolin expression level on various tumor cells and normal cells. (A) Flow cytometric histograms of various cell lines after incubated with or without FAM-labeled AS1411 (AS1411-FAM). The left line in each histogram correspond to the control groups of HeLa, MCF-7, HepG-2, LO2 and HUVEC cells, respectively. (B) The quantified profiles of mean fluorescence intensity in various cell lines treated with or without AS1411-FAM by flow cytometry. (C) The relative fluorescence intensity related to nucleolin expression in various cells.

Figure S12. The specificity of telomerase response in different cells. Experimental conditions: DNA nanotube, 50 nM; dNTPs, 200 μ M; HeLa, HepG-2, MCF-7, LO2, HUVEC cells, 2400 cells.

Figure S13 Optimization of incubation time of DNA nanotube in cells. Fluorescent confocal microscopy images of HeLa cells after incubation with AS1411/nanotube (20 nM) for different time (0.5, 1, 2 h).

Figure S14. Cytotoxicity comparison of AS1411/nanotube/RTA in various cell lines. (A-B) The absolute and relative cytotoxicity of AS1411/nanotube/RTA on HepG-2, MCF-7, HeLa, LO2, and HUVEC cells.