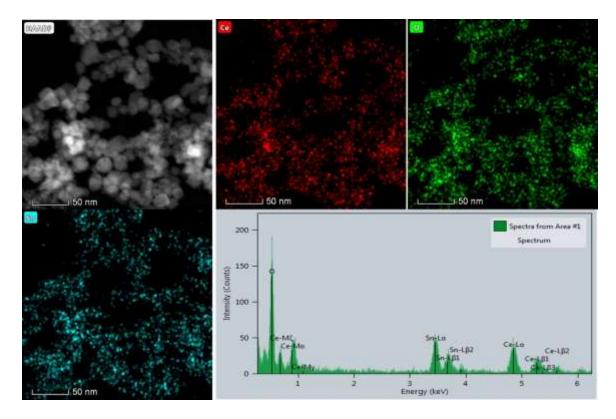
Supporting Information

Label-free and Ultrasensitive Electrochemiluminescent Immunosensor Based on Novel Luminophores of Ce₂Sn₂O₇ Nanocubes

Malik Saddam Khan, Hafsa Ameer, Yuwu Chi*

MOE Key Laboratory of Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, and College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China


* Corresponding author: E-mail address: y.w.chi@fzu.edu.cn; Tel: +86 13489967315; Fax: +86 591 22866137.

Content

1. Chemicals, Materials, and Instrumentation	-
2. HAADF STEM Image, Element Mapping Images and EDS of Ce ₂ Sn ₂ O ₇ (Figure	
S1)S3	3
3. Measurement for ECL Quantum Efficiency	ł
4. PL Spectra of Ce ₂ Sn ₂ O ₇ Nanocubes under Different Excitation Wavelengths (Figure	
\$2)	35
5. A Comparison of the Performances of Proposed and Referenced Sensors for Detection	n
of CEA (Table S1)S	6
6. Results Obtained for CEA Detection in Serum Samples (Table S2)S	7
7. ReferencesS	38

Chemicals and Materials. Human CEA antibody (anti-CEA) and Human CEA antigen were purchased from Shanghai Linc-Bio Science Co. Ltd. HAuCl₄·3H₂O, Sodium borohydride (NaBH₄), $Ce(NO_3)_3$. 6H₂O. K₂SnO₃. $3H_2O$. 3aminopropyltriethoxysilane (APTES, 98%) and NaOH were obtained from Shanghai Aladdin Chemistry Co., Ltd, China. Potassium peroxydisulfate was acquired from Fuchen Chemical Reagent Co., Ltd. (Tianjin, China). Bovine serum albumin (BSA) was obtained from the Sigma-Aldrich (Beijing, China). The phosphate-buffered saline (PBS) with a number of pH value was prepared through mixing the stock solution of NaH₂PO₄ (0.1 M) and Na₂HPO₄ (0.1 M), PBS containing potassium peroxydisulfate as an electrolyte was used to perform the entire electrochemical measurements experiments. Double-distilled water was used during the whole of experiments. All of the chemicals were of analytical reagent grade and utilised without further treatment.

Instrumentation. The Transmission Electron Microscopy (TEM), High-Resolution TEM (HRTEM) and Energy Dispersive Spectroscopic (EDS) photos of Ce₂Sn₂O₇ and Au@Ce₂Sn₂O₇ were attained by an FEI Talos F200S G2 microscope (Thermo Scientific FEI, United States). X-ray power diffraction (XRD) pattern was accomplished with a D/MAX 2200 VPC powder diffractometer (Rigaku, Japan). The Raman spectroscopic spectra were recorded by a confocal Raman microspectrometer with an excitation wavelength of 533.0 nm (Renishaw inVia, UK). ECL tests for Ce₂Sn₂O₇ were attained with an EC&ECL multifunctional analyzer (MPI-E, Remex Electronic Instrument Co., Ltd., Xi'an, China) through using three conventional electrode systems: by using glassy carbon electrode (GCE, 3 mm in diameter) as a working electrode, Ag/AgCl as a reference electrode and platinum wire as an auxiliary electrode. ECL emission spectra of $Ce_2Sn_2O_7-K_2S_2O_8$ system and the related ECL photos on GC electrodes were recorded through an IsoPlane 160 spectrometer equipped with a ProEM HS EMCCD camera (Princeton Instruments) by a cooling temperature of -60 °C. The photoluminescence (PL) spectrum was recorded in the spectral range of 300–600 nm at RT (room temperature) using a Xe laser with a wavelength of 280 nm as the excitation source. Electrochemical impedance spectroscopy (EIS) tests were accomplished by Autolab AUT302N, Metrohm Autolab .BV (Netherlands)¹.

Figure S1. HAADF STEM image and corresponding mapping images and EDS of Ce₂Sn₂O₇.

Measurement for ECL Quantum Efficiency

The ECL quantum efficiency of $Ce_2Sn_2O_7$ nanocubes was measured according to Equation S1.^{s1}

$$\phi_{ECL} = \phi_{ECL}^{\circ} \frac{IQ^{\circ}}{I^{\circ}Q} = 5\% \times \frac{11980(a.u.\ s) \times 0.1588\ (Coulombs)}{7950(a.u.\ s) \times 0.2626\ (Coulombs)} = 4.55\%$$
(S1)

whereas ϕ_{ECL} , ϕ_{ECL}° are the ECL quantum efficiencies of Ce₂Sn₂O₇ (the target ECL luminophore) and Ru(bpy)₃²⁺ (the standard ECL luminophore, ϕ_{ECL}° = 5.0%), while *I* and *I*° are their integrated ECL intensities, where *Q* and *Q*° are the charges passed through Ce₂Sn₂O₇ and Ru(bpy)₃²⁺, correspondingly. From the acquired result it can be concluded that the ECL efficiency of Ce₂Sn₂O₇ was strong with a value of 4.55%.

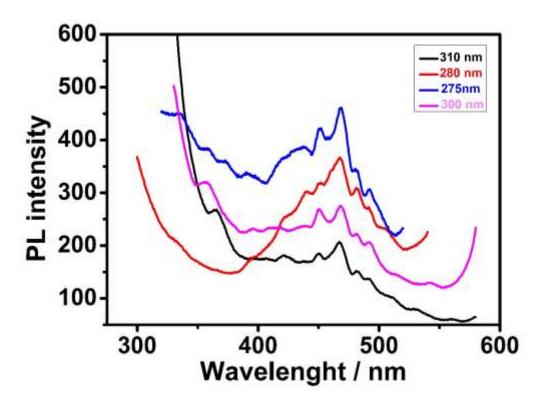


Figure S2. PL spectra of Ce₂Sn₂O₇ nanocubes under different excitation wavelengths.

ECL materials of Sensors	Linear range	Detection limit	References
ZnS-CdS/MoS ₂	0.05-20 ng/mL	31 pg/mL	S2
Au-g-C ₃ N ₄ NHs	0.02-80 ng/mL	6.8 pg/mL	\$3
GO/MWCNTs- COOH/Au@CeO ₂	0.05-100 ng/mL	20 pg/mL	S 4
AuNPs/PDDA/cit- rGO-BaYF5	0.001-80 ng/mL	0.87 pg/mL	S5
Au@Ce ₂ Sn ₂ O ₇	0.01-50 ng/mL	0.53 pg/mL	This work

Table S1. A comparison of the performances of proposed and referenced sensors for detection of CEA.

Initial CEA	Added CEA	Measured	Average	RSD	Recovery
concentration	concentration	concentration	value	(%,n=5)	(%, n=5)
in sample	(ng/mL)	after addition	(ng/mL)		
(ng/mL)		(ng/mL)			
	0.5	1.90, 2.01,	1.96	3.8	101.1
	0.0	2.05, 1.97, 1.87		5.0	101.1
1.44	1.5	2.94, 3.01,	2.95	1.8	100.3
1.44		2.91, 2.88, 2.99	2.95		
	3.0	4.42, 4.36,	4 40	0.9	00.1
		4.46, 4.39, 4.40	4.40 0.8	0.8	99.1

Table S2. Results obtained for CEA detection in serum samples

REFERENCES

(S1) Richter, M. M., Electrochemiluminescence (ecl). *Chem. Rev.* **2004**, *104* (6), 3003-3036.

(S2) Wang, Y.L.; Cao, J.T.; Chen, Y.H.; Liu, Y.M., A label-free electrochemiluminescence aptasensor for carcinoembryonic antigen detection based on electrodeposited ZnS–CdS on MoS₂ decorated electrode. *Anal. Methods.* **2016**, *8* (26), 5242-5247.

(S3) Chen, L.; Zeng, X.; Si, P.; Chen, Y.; Chi, Y.; Kim, D. H.; Chen, G., Gold nanoparticle-graphite-like C_3N_4 nanosheet nanohybrids used for electrochemiluminescent immunosensor. *Anal Chem.* **2014**, *86* (9), 4188-95.

(S4) Pang, X.; Li, J.; Zhao, Y.; Wu, D.; Zhang, Y.; Du, B.; Ma, H.; Wei, Q., Label-free electrochemiluminescent immunosensor for detection of carcinoembryonic antigen based on nanocomposites of GO/MWCNTs-COOH/Au@CeO₂. *ACS Appl. Mater. Interfaces.* **2015**, *7* (34), 19260-19267.

(S5) Zhao, L.; Li, J.; Liu, Y.; Wei, Y.; Zhang, J.; Zhang, J.; Xia, Q.; Zhang, Q.; Zhao, W.; Chen, X., A novel ECL sensor for determination of carcinoembryonic antigen using reduced graphene Oxide-BaYF5: Yb, Er upconversion nanocomposites and gold nanoparticles. *Sens. Actuators. B-Chem.* **2016**, *232*, 484-491.