Synthesis and Characterization of Biobased Polyesters with Tunable T_{g} by ROCOP of Beta-Elemene Oxides and Phthalic Anhydride

Francesco Della Monica* and Arjan W. Kleij*

* Francesco Della Monica - Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute for Science \& Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain; orcid.org/0000-0001-6530-7351; Email: fdellamonica@iciq.es
* Arjan Willem Kleij - Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute for Science \& Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain. Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 - Barcelona (Spain); orcid.org/0000-0002-7402-4764; Email: akleii@iciq.es

SUPPORTING INFORMATION

57 pages, 84 figures, 2 tables
General Considerations 5
Reagents and Complexes5
Reaction Conditions Screening for β-elemene Epoxidation 6
Scheme S1 Possible stereoisomers for BEM, BED and BET obtained after β-elemene epoxidation. 6
Table S1 Epoxidation of BE with mCPBA6
Synthesis of β-elemene monoxide (BEM) 7
Figure S1 APCI-HRMS spectra of of a 3,4-BEM/11,12-BEM mixture7
Synthesis of β-elemene dioxide (BED) 8
Figure S2 ESI-HRMS spectra of BED 8
Synthesis of β-elemene trioxide (BET) 9
Figure S3 ESI-HRMS spectra of BET. 9
Reaction Conditions Screening for the ROCOP of BEM/PA 10
Table S2 ROCOP of BEM with PA 10
General Procedure for the ROCOP of BEM/PA in Toluene (entry 1, Table 1) 11
Figure S4 ${ }^{1} \mathrm{H}$ NMR spectra of an aliquot of the reaction mixture for the formation of poly(BEM-alt-PA) todetermine the conversion (entry 1, Table 1) ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$).. 11
General Procedure for the ROCOP of BEM/PA without Solvent (entry 5, Table 1) 12
Figure S5 ${ }^{1} \mathrm{H}$ NMR spectra of an aliquot of the reaction mixture for the formation of poly(BEM-alt-PA) to determine the conversion (entry 5, Table 1) $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$. 12
Gram-scale ROCOP of BEM/PA in Toluene (entry 6, Table 1) 12
Gram-scale ROCOP of BEM/PA without solvent (entry 7, Table 1) 12
General Procedure for the ROCOP of BED/PA in Toluene (entry 8, Table 1) 13
Figure S6 ${ }^{1} \mathrm{H}$ NMR spectra of an aliquot of the reaction mixture for the formation of poly(BED-alt-PA) to determine the conversion (entry 8, Table 1) ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) 13
General Procedure for the ROCOP of BED/PA without Solvent (entry 11, Table 1) 14
Figure $\mathbf{S 7}{ }^{1} \mathrm{H}$ NMR spectra of an aliquot of the reaction mixture for the formation of poly(BED-alt-PA) to determine the conversion (entry 11, Table 1) $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ 14
Epoxidation of Poly(BEM-alt-PA) to Poly(BED-alt-PA) 15
Epoxidation of Poly(BEM-alt-PA) to Poly(BET-alt-PA) 15
NMR Characterization of BE. 16
Figure $\mathbf{S 8}{ }^{1} \mathrm{H}$ NMR of $\mathbf{B E}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$. 16
Figure $\mathbf{S 9}{ }^{13} \mathrm{C}$ NMR of $\mathbf{B E}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$. 16
Figure S10 ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of $\mathbf{B E}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$ 17
Figure $\mathbf{S 1 1}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR of $\mathbf{B E}$ from 6.0 to $4.3 \mathrm{ppm}\left(400 \mathrm{MHz}\right.$, rt, CDCl_{3}) 17
Figure S12 ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of BE from 2.4 to $0.7 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$ 18
Figure $\mathbf{S 1 3}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR of $\mathbf{B E}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$ 18
NMR Characterization of BEM 19
Figure $\mathbf{S 1 4}{ }^{1} \mathrm{H}$ NMR of $\mathbf{B E M}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$. 19
Figure S15 ${ }^{13} \mathrm{C}$ NMR of BEM ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$), 19
Figure S16 ${ }^{1 \mathrm{H}} \mathrm{H}^{1} \mathrm{H}$ COSY NMR of BEM (400 MHz , rt, CDCl_{3}). 20
Figure S17 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR of BEM from 6.5 to $4.2 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$ 20
Figure S18 ${ }^{1} \mathrm{H}^{-1} \mathrm{H}$ COSY NMR of BEM from 3.0 to $0.7 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$ 21
Figure S19 ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR of BEM (400 MHz, rt, CDCl ${ }_{3}$) 21
NMR Characterization of 11,12-BEM 22
Figure S20 ${ }^{1} \mathrm{H}$ NMR of 11,12-BEM ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$) 22
Figure S21 ${ }^{13} \mathrm{C}$ NMR of 11,12-BEM (400 MHz , rt, CDCl_{3}). 22
Figure S22 ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of 11,12-BEM (400 MHz, rt, CDCl_{3}) 23
Figure S23 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR of $11,12-\mathrm{BEM}$ from 6.0 to $4.3 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$. 23
Figure $\mathbf{S 2 4}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR of 11,12-BEM from 3.0 to $0.7 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right.$). 24
Figure S25 ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR of 11,12 -BEM ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$). 24
NMR Characterization of BED 25
Figure S26 ${ }^{1} \mathrm{H}$ NMR of BED (400 MHz , rt, CDCl_{3}). 25
Figure $\mathbf{S 2 7}{ }^{13} \mathrm{C}$ NMR of BED (400 MHz , rt, CDCl_{3}) 25
Figure S28 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR of BED ($400 \mathrm{MHz}, ~ r t, \mathrm{CDCl}_{3}$). 26
Figure S29 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR of BED from 6.3 to $4.5 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$ 26
Figure $\mathbf{S 3 0}{ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of BED from 3.0 to $0.7 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$ 27
Figure $\mathbf{S 3 1}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR of BED (400 MHz , rt, CDCl_{3}) 27
NMR Characterization of BET 28
Figure S32 ${ }^{1} \mathrm{H}$ NMR of BET (400 MHz , rt, CDCl_{3}). 28
Figure S33 ${ }^{13} \mathrm{C}$ NMR of BET ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$) 28
Figure S34 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR of BET (400 MHz , rt, CDCl_{3}). 29
Figure S35 ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR of BET (400 MHz , rt, CDCl_{3}). 29
NMR Characterization of Poly(BEM-alt-PA) 30
Figure S36 ${ }^{1} \mathrm{H}$ NMR of poly(BEM-alt-PA) ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$). 30
Figure $\mathbf{S 3 7}{ }^{13} \mathrm{C}$ NMR of poly(BEM-alt-PA) ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$) 30
Figure $\mathbf{S 3 8}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR of poly(BEM-alt-PA) (400 MHz , rt, CDCl_{3}) 31
Figure S39 ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of poly(BEM-alt-PA) from 6.0 to $4.0 \mathrm{ppm}\left(400 \mathrm{MHz}\right.$, rt, CDCl_{3}) 31
Figure S40 ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of poly(BEM-alt-PA) from 2.6 to $0.7 \mathrm{ppm}\left(400 \mathrm{MHz}\right.$, rt, CDCl_{3}) 32
Figure S41 ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR of poly(BEM-alt-PA) (400 MHz, rt, CDCl_{3}) 32
NMR Characterization of Crosslinked Poly(BED-alt-PA) 33
Figure S42 ${ }^{1} \mathrm{H}$ NMR of crosslinked poly(BED-alt-PA) ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$) 33
Figure S43 ${ }^{13} \mathrm{C}$ NMR of crosslinked poly(BED-alt-PA) (400 MHz, rt, CDCl_{3}). 33
Figure S44 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR of crosslinked poly(BED-alt-PA) $\left(400 \mathrm{MHz}\right.$, rt, $\left.\mathrm{CDCl}_{3}\right)$ 34
Figure S45 ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of crosslinked poly(BED-alt-PA) from 6.5 to $4.2 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$. 34
Figure S46 ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of crosslinked poly(BED-alt-PA) from 3.0 to $0.6 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$. 35
Figure S47 ${ }^{1} \mathrm{H}-{ }^{-13} \mathrm{C}$ HSQC NMR of crosslinked poly(BED-alt-PA) ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$). 35
NMR Characterization of Poly(BED-alt-PA) 36
Figure S48 ${ }^{1} \mathrm{H}$ NMR of poly(BED-alt-PA) ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$) 36
Figure S49 ${ }^{13} \mathrm{C}$ NMR of poly(BED-alt-PA) (400 MHz , rt, CDCl_{3}). 36
Figure S50 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR of poly(BED-alt-PA) ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$), 37
Figure S51 ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of poly(BED-alt-PA) from 6.0 to $4.0 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$. 37
Figure S52 ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of poly(BED-alt-PA) from 3.1 to $0.6 \mathrm{ppm}\left(400 \mathrm{MHz}\right.$, rt, CDCl_{3}) 38
Figure S53 ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR of poly(BED-alt-PA) (400 MHz, rt, CDCl ${ }_{3}$) 38
NMR Characterization of Poly(BET-alt-PA) 39
Figure S54 ${ }^{1} \mathrm{H}$ NMR of poly(BET-alt-PA) (400 MHz, rt, CDCl_{3}). 39
Figure S55 ${ }^{13} \mathrm{C}$ NMR of poly(BET-alt-PA) ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$) 39
Figure $556{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR of poly(BET-alt-PA) ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$). 40
Figure $557{ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of poly(BET-alt-PA) from 6.0 to $4.3 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$. 40
Figure S58 ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of poly(BET-alt-PA) from 3.0 to $0.6 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$. 41
Figure S59 ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR of poly(BET-alt-PA) (400 MHz, rt, CDCl_{3}). 41
Gas chromatography-mass spectrometry analyses of BEM 42
Figure S60 GC-MS analysis of a 3,4-BEM/11,12-BEM mixture ($49: 51$ ratio by NMR). 42
Figure S61 GC-MS analysis of a $3,4-$ BEM/11,12-BEM mixture ($20: 80$ ratio by NMR). 43
Gel Permeation Chromatography of BE-Based Polyesters 44
Figure S62 GPC trace of poly(BEM-alt-PA) sample related to entry 1 table 1 44
Figure S63 GPC trace of poly(BEM-alt-PA) sample related to entry 2 table 1. 44
Figure S64 GPC trace of poly(BEM-alt-PA) sample related to entry 6 Table 1 45
Figure S65 GPC trace of poly(BEM-alt-PA) sample related to entry 7 Table 1 45
Figure S66 GPC trace of THF-soluble fraction of crosslinked poly(BED-alt-PA) sample related to entry 8 Table

1. 46
Figure S67 GPC trace of THF-soluble fraction of crosslinked poly(BED-alt-PA) sample related to entry 11 Table
2. 46
Figure S68 GPC trace of poly(BED-alt-PA). 47
Figure S69 GPC trace of poly(BET-alt-PA). 47
Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry of BE-Based Polyesters 48
Figure S70 MALDI-TOF spectrum of poly(BEM-alt-PA) sample related to entry 7 table 1. 48
Figure S71 MALDI-TOF spectrum of poly(BEM-alt-PA) sample related to entry 2 Table 1 49
Differential Scanning Calorimetry of BE-Based Polyesters 50
Figure S72 DSC thermogram of poly(BEM-alt-PA) sample related to entry 6 Table 1 50
Figure S73 DSC thermogram of poly(BEM-alt-PA) sample related to entry 7 Table 1 50
Figure S74 DSC thermogram of crosslinked poly(BED-alt-PA) sample related to entry 8 Table 1 51
Figure S75 DSC thermogram of crosslinked poly(BED-alt-PA) sample related to entry 11 Table 1. 51
Figure S76 DSC thermogram of poly(BED-alt-PA) 52
Figure S77 Comparison of first and second cycle of DSC thermogram of poly(BED-alt-PA) 52
Figure S78 DSC thermogram of poly(BET-alt-PA) 53
Thermogravimetric Analyses of BE-Based Polyesters 54
Figure S79 TGA thermogram of poly(BEM-alt-PA) sample related to entry 6 Table 1. 54
Figure S80 TGA thermogram of poly(BED-alt-PA) sample related to entry 7 Table 1 54
Figure S81 TGA thermogram of crosslinked poly(BED-alt-PA) sample related to entry 8 Table 1 55
Figure S82 TGA thermogram of crosslinked poly(BED-alt-PA) sample related to entry 11 Table 1 55
Figure S83 TGA thermogram of poly(BED-alt-PA) 56
Figure S84 TGA thermogram of poly(BET-alt-PA) 56
References 57

General Considerations

All water-sensitive operations were carried out under a nitrogen atmosphere using an MBraun glovebox, standard vacuum line, and Schlenk techniques. Solvents were purchased from Sigma-Aldrich (HPLC grade) and dried using an MBraun MBSPS800 purification system. NMR spectra were recorded on a Bruker AV-400 spectrometer operating at 400 MHz to collect ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$ NMR spectral data. ${ }^{1} \mathrm{H}$ NMR spectra are referenced to the residual solvent peak at $\delta 7.26 \mathrm{ppm}$ for $\mathrm{CDCl}_{3} .{ }^{13} \mathrm{C}$ NMR spectra are referenced to the residual solvent peak at $\delta 77.16 \mathrm{ppm}$ for CDCl_{3}. Differential scanning calorimetry (DSC) analyses for determination of the glass transition temperatures $\left(T_{g}\right)$ were measured under a N_{2} atmosphere using a Mettler Toledo equipment (model DSC822e). Samples were weighed into $40 \mu \mathrm{~L}$ aluminum crucibles and subjected to two heating cycles at a heating rate of $10{ }^{\circ} \mathrm{C} / \mathrm{min}$. Thermogravimetric analyses (TGA) were recorded under air atmosphere using Mettler Toledo equipment (model TGA/SDTA851). Samples were weighed into $40 \mu \mathrm{~L}$ aluminum crucibles and heated to $600^{\circ} \mathrm{C}$ at a heating rate of 10 ${ }^{\circ} \mathrm{C} / \mathrm{min}$. Gel permeation chromatography (GPC) measurements were performed using an Agilent 1200 series HPLC system, equipped with PSS SDV Analytical linear M GPC column ($8 \times 300 \mathrm{~mm} ; 5 \mu \mathrm{~m}$ particle size) in tetrahydrofuran at $30{ }^{\circ} \mathrm{C}$ at a flow rate of $1 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$. Samples were analyzed at a concentration of $1 \mathrm{mg} \cdot \mathrm{mL}^{-1}$ after filtration through a $0.45 \mu \mathrm{~m}$ pore-size membrane. $M_{\mathrm{n}}, M_{\mathrm{w}}$, and \emptyset data were derived from the RI signal by a calibration curve based on polystyrene standards (PS from Polymer Standards Service) for the analysis of the polymers. The crosslinked poly(BED-alt-PA) GPC samples were prepared by extracting the polymer ($3-4 \mathrm{mg}$) with THF (2 mL), shaking the suspension for 10 minutes with an ultrasonic bath at room temperature and filtering the solution through a $0.45 \mu \mathrm{~m}$ pore-size membrane. Gas-chromatography mass (GC-MS) analyses were performed using an Agilent equipment (model 6890 N , with MSD model 5973) equipped with a HP5 column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm}, 0.25 \mu \mathrm{~m}$) via direct injection $\left(280{ }^{\circ} \mathrm{C}\right.$) in MeOH -formic acid 0.1% and ESI as ionization mode with the following temperature program: $80^{\circ} \mathrm{C}$ (110') $-325^{\circ} \mathrm{C}\left(5^{\prime}\right) / 20^{\circ} \mathrm{C} \cdot \mathrm{min}^{-1}$, at a flow rate of $1.5 \mathrm{~mL} \cdot \mathrm{~min}^{-1}$. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) was performed by the on a BRUKER Autoflex spectrometer using the following conditions: sample ($4 \mu \mathrm{~L}, 1 \mathrm{mg} / \mathrm{mL}$), dithranol as a matrix ($20 \mu \mathrm{~L}, 10 \mathrm{mg} / \mathrm{mL}$) and $\mathrm{CF}_{3} \mathrm{COONa}$ as an additive ($1 \mu \mathrm{~L}, 1$ $\mathrm{mg} / \mathrm{mL}$).

Reagents and Complexes

All reagents were purchased from commercial suppliers (Aldrich and Acros) and used as received. Phthalic anhydride (PA) is commercially available and was used after recrystallization from hot chloroform and drying under vacuum for 48 h . The additive bis(triphenylphosphine)iminium chloride (PPNCl) is commercially available and was used after recrystallization from dichloromethane and drying under vacuum for 48 h . β-elemene was kindly provided by Isobionics. ${ }^{1}$ The complexes $\mathbf{1}^{2}$ and $\mathbf{2}^{3}$ were prepared following previously reported procedures. β-elemene monoxides (BEM) and β-elemene dioxides (BED) were dissolved in dry hexane or dichloromethane, stirred over CaH for 24 h , filtered through Celite and vacuum-dried prior to use in the copolymerization reactions.

Reaction Conditions Screening for β-elemene Epoxidation

BEMs

BEDs

BETs

Scheme S1 Possible stereoisomers for BEM, BED and BET obtained after β-elemene epoxidation.

Table S1 Epoxidation of BE with mCPBA.

Reaction conditions: β-elemene $=1.00 \mathrm{~g}(4.9 \mathrm{mmol}) ;[B E]=0.1 \mathrm{M}$; temperature $=0{ }^{\circ} \mathrm{C}$; reaction time $=1 \mathrm{~h}$. Difference between conversion and yield is due to formation of BE dioxide. a) Determined by ${ }^{1} \mathrm{H}$ NMR on the basis of signals of methyl 14 on cyclohexyl ring. b) β-elemene $=3.07 \mathrm{~g}$ (15.0 mmol). c) β-elemene $=7.0 \mathrm{~g}$. d) β-elemene $=3.0 \mathrm{~g}$. e) from isolated yields. f) β-elemene $=2.00 \mathrm{~g}$; reaction time $=4 \mathrm{~h}$. g) β-elemene $=1.00$ g , reaction time $=20 \mathrm{~h}, \mathrm{~T}=$ from 0 to RT . h) β-elemene $=1.00 \mathrm{~g}$, reaction time $=24 \mathrm{~h}, \mathrm{~T}=$ from 0 to r.t.

Synthesis of β-elemene monoxide (BEM)

BE ($3.00 \mathrm{~g}, 14.68 \mathrm{mmol}$) was weighed into a vial and transferred to a 250 mL round-bottomed flask. After dissolving in dichloromethane ($147 \mathrm{~mL},[\mathrm{BE}]=0.1 \mathrm{M}$), the solution was cooled to $0^{\circ} \mathrm{C}$ with an ice bath. Meta-chloroperbenzoic acid, mCPBA ($77 \% \mathrm{w} / \mathrm{w}, 3.29 \mathrm{~g}, 14.68 \mathrm{mmol}$) was added portion-wise during 15 minutes, and the suspension was stirred for further 45 min . The suspension was then filtered, washed with cold hexane and the filtrate dried by rotary evaporation. The resulting mixture was suspended in cold hexane and filtered again. The filtrate was dried obtaining a clear liquid. The mixture was dissolved into hexane (50 mL) and washed with a saturated aqueous solution of NaHCO_{3} ($50 \mathrm{~mL}, 4$ times). The organic phase was dried over sodium sulfate and dried giving a clear liquid (3.0 g). The mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR to determine the conversion (71%). The product was purified by column chromatography (from $\mathrm{Hex}: \mathrm{Et}_{2} \mathrm{O}=9: 1$ to $\mathrm{Hex}: E t \mathrm{OAc}=9: 1$) obtaining recovered $\mathrm{BE}(0.72 \mathrm{~g}$, yield $=24 \%$), BEM (1.60 g, yield $=49.5 \%$) and BED (0.59 g , yield $=17 \%$). APCI-HRMS: $\left[\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}\right]^{+}$calculated $=221.1900$; measured $=$ 221.1897.

The same procedure was scaled up to 7.00 g of BE (34.25 mmol), yielding 3.54 g of $\mathbf{B E M}$ (yield $=47 \%$) (entry 5 , Table S1).

Spectroscopic data of 11,12-BEM.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right): \delta 5.80\left(d d, 1 \mathrm{H}, J=17.8 \mathrm{~Hz}, J=10.5 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{2}\right) ; 4.91\left(m, 1 \mathrm{H},-\mathrm{CH}=\mathrm{CH}_{2}\right) ; 4.87(m$, $\left.1 \mathrm{H},-\mathrm{CH}=\mathrm{CH}_{2}\right) ; 4.83\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{C}=\mathrm{CH}_{2}\right) ; 4.59\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{C}=\mathrm{CH}_{2}\right) ; 2.64-2.66\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{COCH}_{2}\right) ; 2.55(d, 1 \mathrm{H}, \mathrm{J}=4.9$, COCH_{2}); $1.95\left(m, 1 \mathrm{H}\right.$, cyclo -CH); $1.70\left(m, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$; 1.66-1.35 (overlapped $m, 6 \mathrm{H}$, cyclo $\left.-\mathrm{CH}_{2}-\right) ; 1.30(m, 1 \mathrm{H}$, cyclo $-\mathrm{CH}) ; 1.29\left(\mathrm{~m}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ; 0.99\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right):$ ठ 150.13; 147.59; 147.57; 112.36; 110.16; 110.14; 59.59; 53.61; 53.48; 52.47; 52.47; 52.32; 44.68; 44.60; 40.00; 39.97; 39.53; 39.44; 29.97; 29.51; 24.95; 24.90; 23.99; 23.53; 18.61; 18.45; 16.71; 16.88 .

Spectroscopic data of 3,4-BEM.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}\right)$: $\delta 5.97\left(d d, J=17.5 \mathrm{~Hz}, J=10.8 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{2}\right.$) and $5.79(d d, J=17.5 \mathrm{~Hz}, J=10.8$ $\left.\mathrm{Hz},-\mathrm{CH}=\mathrm{CH}_{2}\right) 1 \mathrm{H} ; 5.01-4.93\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}=\mathrm{CH}_{2}\right) ; 4.73-4.70$ (overlapped $m, 2 \mathrm{H},-\mathrm{C}=\mathrm{CH}_{2}$); 2.68-2.66 ($m,-\mathrm{COCH}_{2}$) and $2.59\left(d d,-\mathrm{COCH}_{2}\right)$ and $2.57\left(d, J=4.39 \mathrm{~Hz}, \mathrm{COCH}_{2}\right)$ and $2.41\left(d, J=4.95 \mathrm{~Hz}, \mathrm{COCH}_{2}\right) 2 \mathrm{H} ; 1.91-1.82(m, 1 \mathrm{H},-\mathrm{CH})$; 1.76-1.73 ($\mathrm{m}, 3 \mathrm{H},-\mathrm{CH}_{3}$); 1.66-1.35 (overlapped $m, 6 \mathrm{H}$, cyclo - $\mathrm{CH}_{2}-$); $1.30\left(\mathrm{~m}, 1 \mathrm{H}\right.$, cyclo -CH); $1.22\left(m, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$; 1.13-1.09 ($\mathrm{m}, 3 \mathrm{H},-\mathrm{CH}_{3}$)
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, rt): $\delta 150.60 ; 150.20 ; 149.47 ; 110.72,109.78 ; 58.78,58.15 ; 56.34 ; 53.45 ; 53.37 ; 51.52$; $45.44 ; 45.25 ; 41.77 ; 41.25 ; 39.42 ; 31.74 ; 29.35 ; 27.08 ; 26.80 ; 22.80 ; 22.63 ; 21.27 ; 21.12 ; 19.95 ; 17.58 ; 17.32$.

Figure S1 APCI-HRMS spectra of of a 3,4-BEM/11,12-BEM mixture.

Synthesis of β-elemene dioxide (BED)

BE ($2.00 \mathrm{~g}, 9.79 \mathrm{mmol}$) was weighed into a vial and transferred to a 250 mL round-bottomed flask. After dissolving it into dichloromethane ($98 \mathrm{~mL},[\mathrm{BE}]=0.1 \mathrm{M}$), the solution was cooled to $0^{\circ} \mathrm{C}$ with an ice bath. $m \mathrm{CPBA}(77 \% \mathrm{w} / \mathrm{w}$, $4.83 \mathrm{~g}, 14.68 \mathrm{mmol}$) was added portion-wise during 22 minutes, and the suspension was stirred at $0^{\circ} \mathrm{C} .4 \mathrm{~h}$ After the first addition, the suspension was filtered, washed with cold hexane and the filtrate dried by rotary evaporation. The resulting mixture was suspended into cold hexane and filtered again. The filtrate was dried obtaining a clear liquid. The mixture was dissolved into hexane (50 mL) and washed with a saturated aqueous solution of NaHCO_{3} ($50 \mathrm{~mL}, 4$ times). The organic phase was dried over sodium sulfate and dried giving BED as a clear liquid (2.25 g , yield 97%). ESI-HRMS: $\left[\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{Na}\right]^{+}$calculated $=259.1669$; measured $=259.1658$.

In some cases, a mixture of BEM and BED was obtained (up to $85: 15$), probably due to a lower quality of mCPBA. In these cases, the product was re-purified by column chromatography (Hex:EtOAc = 8:2).
Spectroscopic data of BED.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rt): $\delta 5.96\left(d d, J=6.4, J=10.8 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{2}\right.$), $5.91(d d, J=6.4 \mathrm{~Hz}, J=10.8 \mathrm{~Hz},-$ $\mathrm{CH}=\mathrm{CH}_{2}$); $5.76\left(d d, J=10.6, J=17.4 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{2}\right) ; 5.75\left(d d, J=10.8, J=17.5 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{2}\right) ; 5.01-5.00(\mathrm{~m}$, $\left.\mathrm{CH}=\mathrm{CH}_{2}\right) ; 4.98-4.94\left(m,-\mathrm{CH}=\mathrm{CH}_{2}\right) ; 4.93-4.92\left(m,-\mathrm{CH}=\mathrm{CH}_{2}\right) ; 2.70-2.53$ (overlapped $\left.m,-\mathrm{COCH}_{2}\right) ; 2.42(d d, \mathrm{~J}=4.7$ $\mathrm{Hz}, J=6.1 \mathrm{~Hz},-\mathrm{COCH}_{2}$); 1.84-1.66 (overlapped m, cyclo $-\mathrm{CH}_{2}$); 1.64-1.54 (overlapped m, cyclo -CH2); 1.52-1.23 (overlapped m, cyclo $-\mathrm{CH}_{2}$ and -CH); $1.31\left(d, J=0.6,-\mathrm{CH}_{3}\right) ; 1.30\left(d, J=0.6,-\mathrm{CH}_{3}\right) ; 1.28\left(m,-\mathrm{CH} H_{3}\right) ; 1.27(d, J=0.6$, $\left.-\mathrm{CH}_{3}\right) ; 1.21\left(d, J=0.6,-\mathrm{CH}_{3}\right) ; 1.11\left(s,-\mathrm{CH}_{3}\right) ; 1.10\left(\mathrm{~s},-\mathrm{CH}_{3}\right) ; 1.08\left(s,-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR (400 MHz, CDCl_{3}, rt): $\delta 150.37 ; 150.18 ; 148.19 ; 149.08 ; 110.90 ; 110.83 ; 109.99 ; 109.93 ; 59.48 ; 59.43$; $59.36 ; 58.71 ; 58.57 ; 58.02 ; 56.37 ; 56.18 ; 53.70 ; 53.51 ; 53.48 ; 53.14 ; 53.04 ; 52.86 ; 52.82 ; 51.11 ; 50.87 ; 44.21 ; 44.16$; $44.12 ; 43.31 ; 41.20 ; 41.16 ; 40.72 ; 40.58 ; 39.99 ; 39.41 ; 39.37 ; 26.54 ; 26.09 ; 26.04 ; 26.02 ; 24.02 ; 23.61 ; 23.48 ; 23.18$; 22.98; 22.38; 20.02; 19.85; 19.32; 18.49; 18.46; 18.38; 17.50; 17.48; 17.32; 17.13.

Figure S2 ESI-HRMS spectra of BED.

Synthesis of β-elemene trioxide (BET)

BE ($1.00 \mathrm{~g}, 4.89 \mathrm{mmol}$) was weighed into a vial and transferred to a 100 mL round-bottomed flask. After dissolving it into dichloromethane ($49 \mathrm{~mL},[\mathrm{BE}]=0.1 \mathrm{M}$), the solution was cooled to $0^{\circ} \mathrm{C}$ with an ice bath. $\mathrm{mCPBA}(77 \% \mathrm{w} / \mathrm{w}$, $3.51 \mathrm{~g}, 15.66 \mathrm{mmol}$) was added portion-wise during 30 minutes, and the suspension was stirred at $0^{\circ} \mathrm{C}$ in an ice bath and left warming up to room temperature. After 24 h , the suspension was filtered, washed with cold hexane and the filtrate dried by rotary evaporation. The resulting mixture was suspended into dichloromethane and filtered again two times. The filtrate was dried obtaining a clear liquid, which partially solidified at $0{ }^{\circ} \mathrm{C}$. The mixture was dissolved into dichloromethane (50 mL) and washed with a saturated aqueous solution of $\mathrm{NaHCO}_{3}(50 \mathrm{~mL}, 4$ times). The organic phase was dried over sodium sulfate and dried giving a clear liquid (1.0 g). The mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR to determine the conversion (100%). The product was purified by column chromatography (from Hex:EtOAc = $8: 2$ to Hex:EtOAc $=6: 4$) obtaining BET (0.40 g , yield $=32.5 \%$). ESI-HRMS: $\left[\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Na}\right]^{+}$calculated $=275.1618$; measured $=275.1617$.

Spectroscopic data of BET.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rt): δ 2.9-2.46 (overlapped $m, 7 \mathrm{H},-\mathrm{CHOCH}_{2}$ and $-\mathrm{COCH}_{2}$); 1.85 (m, 1 H , cyclo - CH_{2}); 1.64 (overlapped $m, 2 \mathrm{H}$, cyclo - CH_{2}); 1.48-1.20 (overlapped $m, 3 \mathrm{H}$, cyclo $-\mathrm{CH}_{2}$); 1.42 (m, 1 H , cyclo - CH); 1.31 ($d, J=0.7$ $\left.\mathrm{Hz},-\mathrm{CH}_{3}\right) ; 1.29\left(\mathrm{~s},-\mathrm{CH}_{3}\right) ; 1.28\left(\mathrm{~s},-\mathrm{CH}_{3}\right) ; 1.27\left(\mathrm{~s},-\mathrm{CH}_{3}\right) ; 1.27(\mathrm{~m}, 1 \mathrm{H}$, cyclo -CH); 1.26 ($\mathrm{m}, 1 \mathrm{H}$, cyclo -CH); $1.23(\mathrm{~d}, \mathrm{~J}$ $\left.=0.6 \mathrm{~Hz},-\mathrm{CH}_{3}\right) ; 1.22\left(\mathrm{~s},-\mathrm{CH}_{3}\right) ; 1.15\left(\mathrm{~s},-\mathrm{CH}_{3}\right) ; 1.12\left(\mathrm{~s},-\mathrm{CH}_{3}\right) ; 1.11\left(\mathrm{~s},-\mathrm{CH}_{3}\right) ; 1.10\left(\mathrm{~s},-\mathrm{CH}_{3}\right) ; 1.08\left(\mathrm{~s},-\mathrm{CH}_{3}\right) ; 1.07(\mathrm{~s},-$ $\left.\mathrm{CH}_{3}\right) ; 1.06\left(\mathrm{~s},-\mathrm{CH}_{3}\right) ; 1.05\left(\mathrm{~s},-\mathrm{CH}_{3}\right) ; 0.93\left(\mathrm{~s},-\mathrm{CH}_{3}\right) ; 0.91\left(\mathrm{~s},-\mathrm{CH}_{3}\right) ; 0.88\left(\mathrm{~s},-\mathrm{CH}_{3}\right) ; 0.87\left(\mathrm{~s},-\mathrm{CH}_{3}\right) ; 0.85\left(\mathrm{~s},-\mathrm{CH}_{3}\right) ; 0.78$ ($s,-\mathrm{CH}_{3}$); $0.77\left(\mathrm{~s},-\mathrm{CH}_{3}\right)$.
${ }^{13} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}$): ठ 60.06, 60.05, 59.82; 59.40; 59.35; 59.31; 59.24; 58.08; 58.05; 57.40; 56.49; 56.38; $55.51 ; 55.31 ; 54.52 ; 54.14 ; 53.88 ; 53.77 ; 53.63 ; 53.34 ; 52.89 ; 52.67 ; 52.29 ; 52.19 ; 50.48 ; 50.14 ; 44.37 ; 44.09 ; 43.67$; $43.11 ; 43.05 ; 42.30 ; 37.39 ; 37.34 ; 37.17 ; 36.62 ; 36.53 ; 36.41 ; 36.34 ; 36.15 ; 35.08 ; 34.90 ; 26.87 ; 26.74 ; 26.44 ; 26.35$; $25.91 ; 22.96 ; 22.87 ; 22.77 ; 22.63 ; 22.56 ; 20.47 ; 20.28 ; 19.48 ; 19.41 ; 19.25 ; 18.60 ; 18.52 ; 18.25 ; 13.15 ; 13.10$.

Figure S3 ESI-HRMS spectra of BET.

Reaction Conditions Screening for the ROCOP of BEM/PA

Table S2 ROCOP of BEM with PA

Entry	Cat. (mol\%)	[PA]/[Cat]	Solvent	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Time (h)	$\begin{gathered} \text { Conv. }{ }^{\text {a }} \\ \% \end{gathered}$	Polyester ${ }^{\text {b }}$ (\%)	$\begin{gathered} M_{\mathrm{n}}{ }^{2} \\ (\mathrm{kDa}) \end{gathered}$	\oplus^{c}
1	1 (1)	100	THF	60	36.5	26	n.d.	n.d.	n.d.
2	2 (1)	100	THF	60	36.5	13	n.d.	n.d.	n.d.
3	1 (1)	100	Tol	100	24	71(71)	>99	4.72(5.11)	1.18(1.21)
4	2 (1)	100	Tol	100	24	46(44)	>99	2.22(2.52)	1.16(1.15)
$5^{\text {d }}$	1 (1)	100	neat	60	36.5	81	>99	4.85	1.14
$6^{\text {d }}$	2 (1)	100	neat	60	36.5	17	n.d.	n.d.	n.d.
$7^{\text {d }}$	1 (1)	100	neat	80	24	92	>99	5.41	1.20
$8{ }^{\text {d }}$	2 (1)	100	neat	80	24	24	>99	n.d.	n.d.
9	1 (0.5)	200	Tol	100	40.5	55	>99	7.05	1.21
10	1 (0.33)	300	Tol	100	40.5	52	>99	6.52	1.22
11	2 (0.5)	200	Tol	100	40.5	44	>99	3.93	1.16
12	2 (0.33)	300	Tol	100	40.5	39	>99	4.53	1.14
$13^{\text {d }}$	1 (0.5)	200	neat	100	24	99	>99	6.01	1.28
$14^{\text {d }}$	1 (0.33)	300	neat	100	2	21	n.d.	n.d.	n.d.
$15^{\text {d }}$	1 (0.33)	300	neat	100	6	50	n.d.	n.d.	n.d.

Reaction conditions: Phthalic anhydride $=100 \mathrm{mg}\left(6.75 \cdot 10^{-4} \mathrm{~mol}\right) ; \beta$-elemene monoxides $=149 \mathrm{mg}\left(6.75 \cdot 10^{-4} \mathrm{~mol}\right)$; solvent $=200 \mu \mathrm{~L} ;$ PPNCI/Catalyst $=1 / 1$. a) Determined by ${ }^{1} \mathrm{H}$ NMR on the basis of aromatic proton signals of phthalic anhydride and polyester. b) Determined by ${ }^{1} \mathrm{H}$ NMR of isolated product. c) Determined by GPC in THF calibrated with polystyrene standards. d) β-elemene monoxides $=298 \mathrm{mg}\left(1.35 \cdot 10^{-3} \mathrm{~mol}\right)$.

General Procedure for the ROCOP of BEM/PA in Toluene (entry 1, Table 1)

In a glove-box, PPNCI ($3.9 \mathrm{mg}, 6.75 \mu \mathrm{~mol}$), complex $1(3.7 \mathrm{mg}, 6.75 \mu \mathrm{~mol})$, PA ($100 \mathrm{mg}, 0.68 \mathrm{mmol}$), BEM (149 mg , $0.68 \mathrm{mmol})$, and toluene ($200 \mu \mathrm{~L}$) were added in this order into a 4 mL glass vial equipped with a magnetic stirring bar. The vial was closed with a Teflon lined cap and sealed with electric insulator tape. Out of the glove-box, the vial was placed in an aluminum heating mantel preheated to $100^{\circ} \mathrm{C}$, and the mixture kept stirring for 17 h . To stop the reaction, the vial was cooled down to room temperature in cold water, opened to air and the mixture dissolved into a minimum amount of dichloromethane. An aliquot was collected to determine the conversion by ${ }^{1} \mathrm{H}$ NMR analysis. The reaction mixture was poured into acidified methanol under stirring and the polymer product was collected by filtration. The polymer was purified by dissolution into dichloromethane and precipitated from methanol. Conversion $=75 \%$. Yield $=67 \%$. $M_{n}=6.96, ~ Ð=1.19$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}$): $\delta 7.68$ (bs, 1H, Ar-CH); 7.60 (bs, 1H, Ar-CH); 7.47-739 (overlapped m, 2H, Ar-CH); 5.77 (overlapped $m, 1 \mathrm{H},-\mathrm{CH}=\mathrm{CH}_{2}$); $4.89\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CH}=\mathrm{CH}_{2}\right.$); 4.88-4.62 (overlapped $m, 2 \mathrm{H}$, polyester -[O-CH2-CR2]-); $4.86\left(s, 1 \mathrm{H},-\mathrm{CH}=\mathrm{CH}_{2}\right) ; 4.80\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{C}=\mathrm{CH}_{2}\right) ; 4.56\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{C}=\mathrm{CH}_{2}\right) ; 2.33$ (broad $s, 1 \mathrm{H}$, cyclo-CH), 1.99 (d, 1H, cyclo$\mathrm{CH}) 1.68\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ; 1.66\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right) ; 1.65-1.42$ (overlapped, 6 H , cyclo $-\mathrm{CH}_{2}$) $0.97\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$
${ }^{13} \mathrm{C}$ NMR (400 MHz, CDCl_{3}, rt): $\delta 167.02 ; 166.83 ; 166.60 ; 166.40 ; 150.16 ; 149.91 ; 147.64 ; 147.46 ; 134.12 ; 134.00$; 133.76; 133.69; 132.01; 131.33; 131.14; 131.06; 130.68; 129.54; 129.25; 128.97; 112.41; 112.35; 110.25; 110.09; 87.00; 86.65; 86.61; 86.52; 86.40; 86.27; 73.65; 73.59; 73.50; 71.23; 67.02; 66.82; 52.75; 52.44; 52.38; 50.99; 45.80; $43.60 ; 39.82 ; 39.68 ; 39.62 ; 31.04 ; 28.60 ; 28.34 ; 27.91 ; 27.57 ; 25.12 ; 24.95 ; 24.87 ; 22.82 ; 22.45 ; 22.13 ; 21.82 ; 21.62$; 21.53; 21.32; 21.18; 19.03; 18.79; 18.72; 16.72; 16.67.

Figure S4 ${ }^{1} \mathrm{H}$ NMR spectra of an aliquot of the reaction mixture for the formation of poly(BEM-alt-PA) to determine the conversion (entry 1, Table 1) $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

General Procedure for the ROCOP of BEM/PA without Solvent (entry 5, Table 1)

In a glove-box, $\operatorname{PPNCI}(1.3 \mathrm{mg}, 2.25 \mu \mathrm{~mol})$, complex $1(1.2 \mathrm{mg}, 2.25 \mu \mathrm{~mol})$, PA ($100 \mathrm{mg}, 0.68 \mathrm{mmol}$) and BEM (298 $\mathrm{mg}, 1.35 \mathrm{mmol}$) were added in this order into a 4 mL glass vial equipped with a magnetic stirring bar. The vial was closed with a Teflon lined cap and sealed with electric insulator tape. Out of the glove-box, the vial was placed into an aluminum heating mantel, preheated to the desired temperature, and the mixture kept stirring for the desired reaction time. To stop the reaction, the vial was cooled down to room temperature in cold water, opened to air and the mixture dissolved into a minimum amount of dichloromethane. An aliquot was collected to determine the conversion by ${ }^{1} \mathrm{H}$ NMR analysis. The reaction mixture was poured into acidified methanol under stirring and the polymer was collected by filtration. The polymer was purified by dissolution into dichloromethane and precipitated from methanol. Conversion $=98 \%$. Yield $=95 \% . M_{n}=6.39, ~ Ð=1.25$.

Figure $\mathbf{S 5}{ }^{1} \mathrm{H}$ NMR spectra of an aliquot of the reaction mixture for the formation of poly(BEM-alt-PA) to determine the conversion (entry 5, Table 1) $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

Gram-scale ROCOP of BEM/PA in Toluene (entry 6, Table 1)

In a glove-box, $\operatorname{PPNCI}\left(38.8 \mathrm{mg}, 6.75 \cdot 10^{-5} \mathrm{~mol}\right)$, complex $1\left(36.8 \mathrm{mg}, 6.75 \cdot 10^{-5} \mathrm{~mol}\right), \mathbf{P A}(1.00 \mathrm{~g}, 6.75 \mathrm{mmol})$, BEM $(1.49 \mathrm{~g}, 6.75 \mathrm{mmol})$, and toluene $(2.0 \mathrm{~mL})$ were added in this order into a 10 mL Schlenk tube equipped with a magnetic stirring bar. Out of the glove-box, the tube was placed in an oil bath, preheated to $100^{\circ} \mathrm{C}$, and kept stirring for 24 h . To stop the reaction, the tube was cooled down to room temperature in cold water, opened to air and the mixture dissolved into the minimum amount of dichloromethane. An aliquot was collected to determine the conversion by ${ }^{1} \mathrm{H}$ NMR analysis. The reaction mixture was poured into acidified methanol under stirring and the polymer was collected by filtration. The polymer was purified by dissolution into dichloromethane and precipitated from methanol. Conversion $=55 \%$. Yield $=52 \% . M_{n}=6.88, ~ Ð=1.21$.

Gram-scale ROCOP of BEM/PA without solvent (entry 7, Table 1)

In a glove-box, $\operatorname{PPNCI}\left(12.3 \mathrm{mg}, 2.14 \cdot 10^{-5} \mathrm{~mol}\right)$, complex $1\left(11.6 \mathrm{mg}, 2.14 \cdot 10^{-5} \mathrm{~mol}\right), \operatorname{PA}(0.95 \mathrm{~g}, 6.41 \mathrm{mmol})$, and BEM ($2.83 \mathrm{~g}, 12.8 \mathrm{mmol}$) were added in this order into a 10 mL Schlenk tube equipped with a magnetic stirring bar. Out of the glove-box, the tube was placed in an oil bath, preheated to $100^{\circ} \mathrm{C}$ and kept stirring for 24 h . To stop the reaction, the tube was cooled down to room temperature in cold water, opened to air and the mixture dissolved into a minimum amount of dichloromethane. An aliquot was collected for to determine the conversion by ${ }^{1} \mathrm{H}$ NMR analysis. The reaction mixture was poured into acidified methanol under stirring and the polymer was collected by filtration. The polymer was purified by dissolution in dichloromethane and precipitated from methanol. Conversion $=>99 \%$. Yield $=94 \% . M_{n}=4.36, ~ Đ=1.21$.

General Procedure for the ROCOP of BED/PA in Toluene (entry 8, Table 1)

In a glove-box, PPNCI ($3.9 \mathrm{mg}, 6.75 \mu \mathrm{~mol}$), complex $1(3.7 \mathrm{mg}, 6.75 \mu \mathrm{~mol})$, PA ($100 \mathrm{mg}, 0.68 \mathrm{mmol}$), BED (160 mg , $0.68 \mathrm{mmol})$, and toluene ($200 \mu \mathrm{~L}$) were added in this order into a 4 mL glass vial equipped with a magnetic stirring bar. The vial was closed with a Teflon lined cap and sealed with electric insulator tape. Out of the glove-box, the vial was placed in an aluminum heating mantel, preheated to $60^{\circ} \mathrm{C}$, and kept stirring for 48 h . To stop the reaction, the vial was cooled down to room temperature in cold water, opened to air and the mixture dissolved into a minimum amount of dichloromethane. An aliquot was collected to determine the conversion by ${ }^{1} \mathrm{H}$ NMR analysis. The reaction mixture was poured into acidified methanol under stirring and the polymer was collected by filtration. Conversion = 57%. Yield $=52 \% . M_{n}=6.8, ~ Ð=1.77$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rt): $\delta 7.70$ (bs, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$); 7.45 (overlapped m, 3H, Ar-CH); 6.01 and 5.71 (bs, 1H, $\mathrm{CH}=\mathrm{CH}_{2}$); 5.14-4.76 (overlapped $m, 2 \mathrm{H},-\mathrm{CH}=\mathrm{CH}_{2}$ and 2 H , polyester -[$\left.\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CR}_{2}\right]-$); 3.96 (broad s, branch polyester $-\left[\mathrm{O}-\mathrm{CH}_{2}-\mathrm{CR}_{2}\right]$-); 2.30 (broad $s, 2 \mathrm{H},-\mathrm{COCH} 2$), 2.01 (d, 1H, cyclo-CH); 1.67 (overlapped $m, 1 \mathrm{H}$, cyclo - CH_{2}); 1.66 (overlapped $m, 1 \mathrm{H}$, cyclo $-\mathrm{CH}_{2}$); 1.64 (overlapped $s, 3 \mathrm{H},-\mathrm{CH}_{3}$); 1.48-144 (overlapped m, 2 H , cyclo $-\mathrm{CH}_{2}$); 1.18 (overlapped $s, 3 \mathrm{H},-\mathrm{CH}_{3}$); 1.03 (overlapped $m, 1 \mathrm{H}$, cyclo- CH); 0.97 (overlapped $s, 3 \mathrm{H},-\mathrm{CH}_{3}$).

Figure $\mathbf{S 6}{ }^{1} \mathrm{H}$ NMR spectra of an aliquot of the reaction mixture for the formation of poly(BED-alt-PA) to determine the conversion (entry 8, Table 1) $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

General Procedure for the ROCOP of BED/PA without Solvent (entry 11, Table 1)

In a glove-box, PPNCI ($3.9 \mathrm{mg}, 6.75 \mu \mathrm{~mol}$), complex $1(3.7 \mathrm{mg}, 6.75 \mu \mathrm{~mol})$, PA ($100 \mathrm{mg}, 0.68 \mathrm{mmol}$), and BED (319 $\mathrm{mg}, 1.35 \mathrm{mmol}$) were added in this order into a 4 mL glass vial equipped with a magnetic stirring bar. The vial was closed with a Teflon lined cap and sealed with electric insulator tape. Out of the glove-box, the vial was placed in an aluminum heating mantel, preheated to $80^{\circ} \mathrm{C}$, and kept stirring for 24 h . To stop the reaction, the vial was cooled down to room temperature in cold water, opened to air and the mixture dissolved into a minimum amount of dichloromethane. An aliquot was collected to determine the conversion by ${ }^{1} \mathrm{H}$ NMR analysis. The reaction mixture was poured into acidified methanol under stirring and the polymer was collected by filtration. Conversion $=91 \%$. Yield $=89 \% . M_{\mathrm{n}}=4.1, ~ Ð=2.48$.

Figure $\mathbf{S 7}{ }^{1} \mathrm{H}$ NMR spectra of an aliquot of the reaction mixture for the formation of poly(BED-alt-PA) to determine the conversion (entry 11, Table 1) $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

Epoxidation of Poly(BEM-alt-PA) to Poly(BED-alt-PA)

In a 50 mL flask, poly(BEM-alt-PA) ($400 \mathrm{mg}, 1.09 \mathrm{mmol}$ repeating unit, $M_{\mathrm{n}}=4.36 \mathrm{kDa}, ~ Đ=1.21$) was dissolved into dichloromethane (22 mL , [repeating unit] $=0.05 \mathrm{M}$) and positioned in an ice bath. $\mathrm{mCPBA}(77 \% \mathrm{w} / \mathrm{w}, 292 \mathrm{mg}, 1.30$ mmol, 1.2 eq) was added portion-wise during 5 minutes. The flask was left in the ice bath and warmed up to room temperature under stirring. After 15 h , the solution was washed 3 times with saturated $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and 2 times with water, then the solution was dried using $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solid was dissolved into a minimum amount of dichloromethane and poured into methanol under stirring. The polymer was collected by filtration and dried in vacuum. Isolated yield $=0.40 \mathrm{~g}$ (96%); $M_{\mathrm{n}}=4.10 \mathrm{kDa}, ~ Đ=1.22$. Functionalization degree $=94 \%$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \mathrm{rt}$): $\delta 7.69$ (bs, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$); $\delta 7.61$ (bs, $1 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$); 7.44 (overlapped $m, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}$); 5.92 and 5.73 (dd, $J=10.4 \mathrm{~Hz}, J=16.9 \mathrm{~Hz}$, and overlapped $m, 1 \mathrm{H},-\mathrm{CH}=\mathrm{CH}_{2}$); 4.98-4.88 (overlapped $m, 2 \mathrm{H},-\mathrm{CH}=\mathrm{CH}_{2}$); 4.76 (overlapped bs, 2H, polyester -[O-CH2-CR2]-); 2.57 (m, 2H, -COCH2); 2.29 (broad s, 1H, cyclo-CH); 1.90 (overlapped $m, 1 \mathrm{H}$, cyclo- CH_{2}); 1.70 (overlapped $s, 3 \mathrm{H},-\mathrm{CH}_{3}$); 1.65-1.37 (overlapped $m, 5 \mathrm{H}$, cyclo - CH_{2}); 1.36 (overlapped $m, 1 \mathrm{H}$, cyclo -CH); 1.25-0.94 (overlapped $s, 6 \mathrm{H},-\mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR (400 MHz, CDCl_{3}, rt): $\delta 167.02 ; 166.60 ; 150.06 ; 149.97 ; 149.25 ; 149.00 ; 147.49 ; 133.99 ; 131.46 ; 130.71$; 128.93; 112.41; 110.93; 110.26; 110.00; 86.47; 86.35; 73.50; 71.26; 66.96; 66.60; 59.84; 58.65; 58.13; 58.09; 57.97; $53.55 ; 53.27 ; 53.02 ; 52.43 ; 51.36 ; 43.62 ; 43.33 ; 41.41 ; 40.82 ; 39.87 ; 39.65 ; 39.28 ; 25.12 ; 24.86 ; 24.56 ; 24.29 ; 22.62$; 22.18; 21.86; 20.11; 19.04; 18.86; 18.68; 17.52; 17.33; 16.69.

Epoxidation of Poly(BEM-alt-PA) to Poly(BET-alt-PA)

In a 50 mL flask, poly(BEM-alt-PA) ($400 \mathrm{mg}, 1.09 \mathrm{mmol}$ repeating unit, $M_{\mathrm{n}}=4.36 \mathrm{kDa}, ~ Đ=1.21$) was dissolved into dichloromethane (22 mL , [repeating unit] = 0.05 M) and positioned in an ice bath. $\mathrm{mCPBA}(77 \% \mathrm{w} / \mathrm{w}, 608 \mathrm{mg}, 2.71$ $\mathrm{mmol}, 2.5 \mathrm{eq}$) was added portion-wise during 5 minutes. The flask was left in the ice bath and warmed up to room temperature under stirring. After 26 h , the solution was washed 3 times with saturated $\mathrm{NaHCO}_{3}(\mathrm{aq})$ and 2 times with water following drying on $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solid was dissolved into a minimum amount of dichloromethane and poured into methanol under stirring. The polymer was collected by filtration and dried in vacuum. Isolated yield $=0.41 \mathrm{~g}$ (94%); $M_{n}=4.02 \mathrm{kDa}, ~ Đ=1.26$. Functionalization degree $=90 \%$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, rt): $\delta 7.69$ (bs, 1H, Ar-CH); $\delta 7.61$ (bs, 1H, Ar-CH); 7.45 (overlapped m, 2H, Ar-CH); 4.76 (bs, 2H, polyester -[O-CH2-CR2]-); 3.58 (overlapped $m, 1 \mathrm{H},-\mathrm{CHOCH}_{2}$); 2.90-2.43 (overlapped $m, 4 \mathrm{H},-\mathrm{CHOCH}_{2}$ and $-\mathrm{COCH}_{2}$); 2.23 (bs, 1H, cyclo -CH); 1.86 (overlapped $m, 1 \mathrm{H}$, cyclo -CH); 1.85 (overlapped $m, 1 \mathrm{H}$, cyclo - CH_{2}); 1.69 (overlapped $s, 3 \mathrm{H},-\mathrm{CH}_{3}$); 1.69-133 (overlapped $m, 5 \mathrm{H}$, cyclo $-\mathrm{CH}_{2}$); 1.25-0.75 (overlapped $s, 6 \mathrm{H},-\mathrm{CH}_{3}$).
${ }^{13} \mathrm{C}$ NMR : $\delta 166.61 ; 133.63 ; 133.30 ; 132.01 ; 131.56 ; 130.79 ; 128.97 ; 128.10 ; 86.29 ; 66.95 ; 59.95 ; 59.76 ; 58.03$; 57.39; 56.27; 55.26; 53.82; 53.55; 50.38; 44.38; 43.17; 42.33; 39.27; 37.46; 37.04; 36.58; 36.26; 36.07; 35.29; 24.74; 24.43; 22.13; 21.95; 21.63; 21.27; 20.32; 20.11; 19.58; 18.92; 18.63; 17.52; 15.68; 15.18; 13.21.

NMR Characterization of BE

NMR characterization of β-elemene is reported to facilitate comparison with the β-elemene oxide products.

Figure $\mathbf{S 8}{ }^{1} \mathrm{H}$ NMR of $\mathbf{B E}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

BE

Figure $\mathbf{S 9}{ }^{13} \mathrm{C}$ NMR of $\mathbf{B E}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

Figure $\mathbf{S 1 0}{ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H} \operatorname{COSY}$ NMR of $\mathbf{B E}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

Figure $\mathbf{S 1 1}{ }^{1 \mathrm{H}} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of $\mathbf{B E}$ from 6.0 to $4.3 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

Figure $\mathbf{S 1 2}{ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of BE from 2.4 to $0.7 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

Figure $\mathbf{S 1 3}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR of $\mathbf{B E}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

NMR Characterization of BEM

Figure $\mathbf{S 1 4}{ }^{1} \mathrm{H}$ NMR of $\mathbf{B E M}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.
-

Figure $\mathbf{S 1 5}{ }^{13} \mathrm{C}$ NMR of $\mathbf{B E M}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

Figure $\mathbf{S 1 6}{ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of BEM ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$).

Figure $\mathbf{S 1 7}{ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of BEM from 6.5 to $4.2 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

Figure S18 ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of BEM from 3.0 to $0.7 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

Figure $\mathbf{S 1 9}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR of BEM ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$).

NMR Characterization of 11,12-BEM

 ถூ

Figure $\mathbf{S 2 0}{ }^{1} \mathrm{H}$ NMR of $11,12-\mathrm{BEM}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

Figure S21 ${ }^{13} \mathrm{C}$ NMR of $11,12-\mathrm{BEM}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

Figure S22 ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of $11,12-\mathrm{BEM}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

Figure S23 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR of $11,12-\mathrm{BEM}$ from 6.0 to $4.3 \mathrm{ppm}\left(400 \mathrm{MHz}\right.$, rt, CDCl_{3}).

Figure $\mathbf{S 2 4}{ }^{1} \mathrm{H}-1 \mathrm{H}$ COSY NMR of $11,12-\mathrm{BEM}$ from 3.0 to $0.7 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

Figure S25 ${ }^{1} \mathrm{H}-{ }^{-13} \mathrm{C}$ HSQC NMR of $11,12-\mathrm{BEM}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

NMR Characterization of BED

がトゥトゥ

3，4－11，12－BED
$\stackrel{9,6,8}{\upharpoonright}$

Figure $\mathbf{S 2 6}{ }^{1} \mathrm{H}$ NMR of BED（ $400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$ ）．

Figure $\mathbf{S 2 7}{ }^{13} \mathrm{C}$ NMR of $\mathbf{B E D}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$ ．

Figure S28 ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of BED ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$).

Figure $\mathbf{S 2 9}{ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of BED from 6.3 to $4.5 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

Figure $\mathbf{S O O}^{1}{ }^{1} \mathrm{H}-1 \mathrm{H}$ COSY NMR of BED from 3.0 to $0.7 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

Figure $\mathbf{S 3 1}{ }^{1 \mathrm{H}} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR of BED $\left(400 \mathrm{MHz}\right.$, rt, $\left.\mathrm{CDCl}_{3}\right)$.

NMR Characterization of BET

Figure $\mathbf{S 3 2}{ }^{1} \mathrm{H}$ NMR of $\mathbf{B E T}\left(400 \mathrm{MHz}\right.$, rt, $\left.\mathrm{CDCl}_{3}\right)$.

Figure $\mathbf{S 3 3}{ }^{13} \mathrm{C}$ NMR of BET (400 MHz, rt, $\left.\mathrm{CDCl}_{3}\right)$.

Figure $\mathbf{S 3 4}{ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of BET ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$).

Figure $\mathbf{S 3 5}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR of BET (400 MHz , rt, CDCl_{3}).

NMR Characterization of Poly(BEM-alt-PA)

|ic
$\stackrel{\infty}{\infty} \stackrel{\infty}{ค} \stackrel{n}{\sim}$
nin in

$\stackrel{\text { No }}{\circ}$

Figure $\mathbf{S 3 6}{ }^{1} \mathrm{H}$ NMR of poly(BEM-alt-PA) (400 MHz, rt, CDCl_{3}).

Figure $\mathbf{S 3 7}{ }^{13} \mathrm{C}$ NMR of poly(BEM-alt-PA) ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$).

Figure $\mathbf{S 3 8}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR of poly(BEM-alt-PA) ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$).

Figure S39 ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of poly(BEM-alt-PA) from 6.0 to $4.0 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

Figure S40 ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of poly(BEM-alt-PA) from 2.6 to $0.7 \mathrm{ppm}\left(400 \mathrm{MHz}\right.$, rt, $\left.\mathrm{CDCl}_{3}\right)$.

Figure S41 ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR of poly(BEM-alt-PA) ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$).

NMR Characterization of Crosslinked Poly(BED-alt-PA)

Figure S42 ${ }^{1} \mathrm{H}$ NMR of crosslinked poly(BED-alt-PA) (400 MHz, rt, CDCl_{3}).

Figure S43 ${ }^{13} \mathrm{C}$ NMR of crosslinked poly(BED-alt-PA) ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$).

Figure S44 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR of crosslinked poly(BED-alt-PA) ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$).

Figure S45 ${ }^{1 \mathrm{H}}-{ }^{-1} \mathrm{H}$ COSY NMR of crosslinked poly(BED-alt-PA) from 6.5 to $4.2 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

Figure S46 ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of crosslinked poly(BED-alt-PA) from 3.0 to $0.6 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

Figure $\mathbf{S 4 7}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR of crosslinked poly(BED-alt-PA) $\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

NMR Characterization of Poly(BED-alt-PA)

Figure S48 ${ }^{1} \mathrm{H}$ NMR of poly(BED-alt-PA) ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$).

Figure S49 ${ }^{13} \mathrm{C}$ NMR of poly(BED-alt-PA) ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$).

Figure S50 ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of poly(BED-alt-PA) (400 MHz, rt, $\left.\mathrm{CDCl}_{3}\right)$.

Figure $\mathbf{S 5 1}{ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of poly(BED-alt-PA) from 6.0 to $4.0 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

Figure S52 ${ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of poly(BED-alt-PA) from 3.1 to $0.6 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

Figure $\mathbf{S 5 3}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC NMR of poly(BED-alt-PA) ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$).

NMR Characterization of Poly(BET-alt-PA)

Figure $\mathbf{S 5 4}{ }^{1} \mathrm{H}$ NMR of poly(BET-alt-PA) ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$).

Figure $\mathbf{S 5 5 ~}^{13} \mathrm{C}$ NMR of poly(BET-alt-PA) ($400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}$).

Figure $\mathbf{S 5 6}^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR of poly(BET-alt-PA) (400 MHz, rt, $\left.\mathrm{CDCl}_{3}\right)$.

Figure $\mathbf{S 5 7}{ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of poly(BET-alt-PA) from 6.0 to $4.3 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

Figure $\mathbf{S} 58{ }^{1} \mathrm{H}-{ }^{-1} \mathrm{H}$ COSY NMR of poly(BET-alt-PA) from 3.0 to $0.6 \mathrm{ppm}\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

Figure $\mathbf{S 5 9}{ }^{1 \mathrm{H}}-{ }^{13} \mathrm{C}$ HSQC NMR of poly(BET-alt-PA) $\left(400 \mathrm{MHz}, \mathrm{rt}, \mathrm{CDCl}_{3}\right)$.

Gas chromatography-mass spectrometry analyses of BEM

Tine $->$
peak R.T. first max last PK peak corr. corr. \% of \# min scan scan scan TY height area $\%$ max. total

1	101.495	171501728717447	M	28117	12877348	92.14%
2	28.208%					

Sum of corrected areas: 45651945

Figure S60 GC-MS analysis of a 3,4-BEM/11,12-BEM mixture ($49: 51$ ratio by NMR).
(all peaks show the same mass at $m / z=221.2$.)

Time \rightarrow
peak R.T. first max last PK peak corr. corr. \% of
\# min scan scan scan TY height area \% max. total

$$
\begin{array}{lllllllll}
1 & 101.320 & 17095 & 17256 & 17430 & M & 30754 & 13648528 & 22.26 \% \\
2 & 102.858 & 17430 & 17525 & 17620 & \text { M } & 11155 & 4757614 & 7.76 \% \\
3 & 104.496 & 17620 & 17811 & 17951 & \text { M } & 110269 & 58369270 & 95.19 \% \\
4 & 106.172 & 17951 & 18104 & 18452 & \text { M } & 115306 & 61317358 & 100.00 \% \\
4 & 44.403 \%
\end{array}
$$

Sum of corrected areas: 138092770

Figure S61 GC-MS analysis of a 3,4-BEM/11,12-BEM mixture (20:80 ratio by NMR).
(all peaks show the same mass at $m / z=221.2$.)

Gel Permeation Chromatography of BE-Based Polyesters

Figure S62 GPC trace of poly(BEM-alt-PA) sample related to entry 1 table 1.

Figure S63 GPC trace of poly(BEM-alt-PA) sample related to entry 2 table 1.

Figure S64 GPC trace of poly(BEM-alt-PA) sample related to entry 6 Table 1.

Figure S65 GPC trace of poly(BEM-alt-PA) sample related to entry 7 Table 1.

Figure S66 GPC trace of THF-soluble fraction of crosslinked poly(BED-alt-PA) sample related to entry 8 Table 1.

Figure S67 GPC trace of THF-soluble fraction of crosslinked poly(BED-alt-PA) sample related to entry 11 Table 1.

Figure S68 GPC trace of poly(BED-alt-PA).

Figure S69 GPC trace of poly(BET-alt-PA).

Figure S70 MALDI-TOF spectrum of poly(BEM-alt-PA) sample related to entry 7 table 1.

Figure S71 MALDI-TOF spectrum of poly(BEM-alt-PA) sample related to entry 2 Table 1.

Differential Scanning Calorimetry of BE-Based Polyesters

Figure S72 DSC thermogram of poly(BEM-alt-PA) sample related to entry 6 Table 1.

Figure S73 DSC thermogram of poly(BEM-alt-PA) sample related to entry 7 Table 1.

Figure S74 DSC thermogram of crosslinked poly(BED-alt-PA) sample related to entry 8 Table 1.

Figure S75 DSC thermogram of crosslinked poly(BED-alt-PA) sample related to entry 11 Table 1.

Figure S76 DSC thermogram of poly(BED-alt-PA).

Figure S77 Comparison of first and second cycle of DSC thermogram of poly(BED-alt-PA).

Figure S78 DSC thermogram of poly(BET-alt-PA).

Thermogravimetric Analyses of BE-Based Polyesters

Figure S79 TGA thermogram of poly(BEM-alt-PA) sample related to entry 6 Table 1.

Figure S80 TGA thermogram of poly(BED-alt-PA) sample related to entry 7 Table 1.

Figure S81 TGA thermogram of crosslinked poly(BED-alt-PA) sample related to entry 8 Table 1.

Figure S82 TGA thermogram of crosslinked poly(BED-alt-PA) sample related to entry 11 Table 1.

Figure S83 TGA thermogram of poly(BED-alt-PA).

Figure S84 TGA thermogram of poly(BET-alt-PA).

References

1. https://www.isobionics.com/index.html
2. Whiteoak, C. J.; Martin, E.; Martínez Belmonte, M.; Benet-Buchholz, J.; Kleij, A. W. An Efficient Iron Catalyst for the Synthesis of Five- and Six-membered Organic Carbonates under Mild Conditions. Adv. Synth. Catal. 2012, 354, 469-476.
3. Whiteoak, C. J.; Kielland, N.; Laserna, V.; Castro-Gómez, F.; Martín, E.; Escudero-Galán, E. C.; Bo, C.; Kleij, A. W. Highly Active Aluminium Catalysts for the Formation of Organic Carbonates from CO_{2} and Oxiranes. Chem. Eur. J. 2014, 20, 2264-2275.
