Supporting Information for

Design and structure-activity relationship of a potent furin inhibitor derived from influenza hemagglutinin

Monika A. Lewandowska-Goch, ${ }^{\dagger, \perp}$ Anna Kwiatkowska,, $, \ddagger, \S, \perp$ Teresa Łepek, ${ }^{\dagger}$ Kevin Ly, ${ }^{\#}$ Pauline Navals, ${ }^{\ddagger, \|, \S}$ Hugo Gagnon, \# Yves L. Dory, ${ }^{\ddagger, \|}$ Adam Prahl ${ }^{\dagger}$ and Robert Day ${ }^{*}, \ddagger, \S$
† Department of Organic Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80308 Gdańsk, Poland
\ddagger Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke J1H 5N4, Canada
§ Département de Chirurgie/Urologie, Faculté de Médecine et Sciences de la Santé, Centre Hospitalier Universitaire de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke J1H 5N4, Canada \# PhenoSwitch Bioscience Inc., 975 rue Léon-Trépanier, Sherbrooke QC J1G 5J6, Canada
${ }^{\text {" }}$ Département de chimie, Faculté des Sciences, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke J1H 5N4, Canada

Table of Contents

Material and methods 2
Reagents 2
Peptide Synthesis 2
Enzyme kinetic studies 2
Stability studies 3
Table S1. Analytical data of the peptides used in the present study 4
Table S2. Inhibitory activity (K_{i}) of the selected compounds from the P5 series towards the selected PCs. 7
Table S3. Enzyme and substrate concentrations used in the present study 7
Figure S1. HPLC-HRMS based cleavage studies of CF1 and CF8 inhibitors upon incubation with high amounts of furin 8
Figure S2. Structure of compound CF97 9
Supplementary References: 9

Material and methods

Reagents

All amino acids derivatives, coupling reagents and solvents were obtained from Bachem, Iris Biotech, GL Biochem, Novabiochem, Merck, POCH, Fluka, Sigma-Alderich. Tenta Gel S RAM resin was purchased from Rapp Polymere (Tübingen, Germany).

Peptide Synthesis

The peptides were synthesized according to standard $\mathrm{Fmoc} / \mathrm{tBu}$ strategy and standard coupling procedures ${ }^{1}$. The synthesis was conducted using a peptide synthesizer Symphony (Protein Technologies). All analogs with Arg at the P1 position were obtained on a Tenta Gel S RAM polystyrene resin (Rapp Polymere, capacity $0.24 \mathrm{mmol} / \mathrm{g}$) using a 3 -fold excess of the protected amino acids and following coupling agents: 2-(7-aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HATU, 4 equiv), 1-hydroxy-7-azabenzotriazole (HOAt, 4 equiv) in the presence of 4 -methylmorpholine (NMM, 8 equiv) in DMF. The Fmoc groups were removed by 20% piperidine solution in DMF. The last step of the synthesis was N-terminal acetylation which was carried out in a mixture of acetic anhydride/ N, N-diisopropylamine (DIPEA)/dichloromethane (DCM), (15:15:70 $\mathrm{v} / \mathrm{v} / \mathrm{v}$) in 20 minutes. After the completion of the synthesis, the product was cleaved from the resin. It was accomplished by the cocktail of trifluoracetic acid (TFA)/water/ triisopropylosilane (TIS) (95:2.5:2.5 $\mathrm{v} / \mathrm{v} / \mathrm{v}$) in 3 h at the room temperature. The solutions of the released peptides were filtered, washed three times by the cleavage cocktail and concentrated in vacuo. The obtained compounds were precipitated in cold diethyl ether and centrifuged. The obtained precipitate was filtered, dissolved in water and lyophilized.
One cyclic analog was designed and synthesized. This peptide was obtained using 2 -chlorotrityl chloride resin in order to obtain a free carboxylic acid group at the C-terminus, which was further cyclized with the ε-amino group of the Lys side chain (protected during the synthesis with N-methyltrityl (Mtt) moiety) at the P5 position. Cleavage of the compound with the simultaneous deprotection of Mtt was conducted in mild acidic conditions using the mixture of hexafluoro-2-propanol (HFIP)/DCM ($1: 4, \mathrm{v}: \mathrm{v}$). Cyclization through the formation of amide bond was performed using benzotriazole-1-yl-oxy-tris-pyrrolidinophosphonium hexafluorophosphate (PyBOP, 3 equiv), 1-hydroxy-6-chloro-benzotriazole ($6 \mathrm{Cl}-\mathrm{HOBt}$, 3 equiv) and DIPEA (9 equiv) in anhydrous DMF. After completion of reaction (monitored by HPLC), the solvents were evaporated, and the remaining protecting groups were removed using a mixture of trifluoracetic acid (TFA)/water/ triisopropylosilane (TIS) (95:2.5:2.5 v/v/v). The obtained analog was lyophilized and purified.
The all crude peptides were purified by semipreparative reverse phase HPLC using a C_{18} column (Jupiter $\mathrm{C}_{18}, 5 \mu \mathrm{~m}, 250 \times 10,00 \mathrm{~mm}, 300 \AA$, Phenomenex) in two steps. Two solvent systems were used during the purification to obtain desired compounds. First, peptides were purified using: [A] $0,1 \%$ aq heptafluorobutyric acid (HFBA) and [B] 80% acetonitrile (ACN) in [A], which allows facile elimination of hydrophilic impurities by increasing their affinity to reverse phase HPLC columns ${ }^{2}$. After determination of the presence of desired peptides, analogs were purified using a traditional solvent system: [A] $0,1 \%$ aq TFA and [B] 80% ACN in [A]. The purity of the final peptides was confirmed by analytical HPLC and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The purity of the peptides exceeded 95%.

Enzyme kinetic studies

$K_{\text {is }}$ were determined via competitive kinetic assays with soluble recombinant human furin (hfurin) and for the selected peptides with soluble recombinant human PACE4, PC5/6 and PC7. All measurements were performed on a Gemini EM 96 -well spectrofluorometer (Molecular Devices; Sunnyvale, CA, USA) ($\lambda_{\text {em, }}, 370 \mathrm{~nm}$; $\lambda_{\text {ex }}, 460 \mathrm{~nm}$; cutoff, 435 nm) at fixed concentration of substrate (pyroGlu-Arg-Thr-Lys-Arg-methyl-coumaryl-7-amide, Bachem, Switzerland) and enzyme (for details see Table S3) at $37^{\circ} \mathrm{C}$ over a period of 1 h . Kinetics assays were analyzed using SoftMaxPro5, and K_{i} values were determined from I_{50} using Cheng and Prusoff's equation ${ }^{3}$.

Stability studies

5μ l of an aqueous peptide solution was added to 25μ l of mouse plasma (CD1 mice, from mixed-sex animals collected with heparin sodium; Innovative Research; Novi, MI, USA) to reach a final concentration of $500 \mathrm{ng} / \mathrm{mL}$. the prepared samples were incubated at the selected time points at $37^{\circ} \mathrm{C}$. Each time point was done in triplicate. The reaction was quenched by the addition of $60 \mu \mathrm{~L}$ of 2% aqueous formic acid (FA) containing an internal standard (IS), i.e. CF63. The obtained samples were diluted in 0.1% aqueous TFA and cleaned using the Strata-X polymeric reversed phase solid phase extraction (SPE) 96 -well plates ($10 \mathrm{mg} /$ well) from Phenomenex (Torrance, CA, USA). Eluted peptides were dried overnight under nitrogen stream and re-suspended in 30 uL of 0.1% aqueous FA . Acquisition was performed with a Shimadzu LCMS-8060 (Shimadzu, Kyoto, Japan) equipped with an electrospray interface with a $100 \mu \mathrm{~m}$ iD capillary and coupled to a Nexera XR HPLC (Shimadzu, Kyoto, Japan). LabSolution v5.93 software was used to control the instrument and for data processing and acquisition. Optimized Multiple Reaction Monitoring (MRM) parameters were used to monitor each peptide. Samples were injected ($5 \mu \mathrm{~L}$) and analyzed by LC-MS/MS. Separation was performed on a Luna Omega Polar from Phenomenex $100 \mathrm{~mm} \times 2.1 \mathrm{~mm}$ (3um particles) which was maintained at $50^{\circ} \mathrm{C}$. For the 5.5 min LC gradient, the mobile phase consisted of the following solvent $\mathrm{A}(0.1 \%$ aqueous FA$)$ and solvent $\mathrm{B}(0.1 \%$ FA in ACN) at a flow rate of $500 \mu \mathrm{~L} / \mathrm{min}$. Gradient started at 100:0; A:B. Data integration and quantification was performed with LabSolutions (Shimadzu) using the area under the curve. The values were normalized to IS and 0 h time point to determine $\mathrm{t} 1 / 2+$ SEM using GraphPad Prism one-phase decay curve-fit.

Table S1. Analytical data of the peptides used in the present study.
a) Analogs from the P5, P6, P7 and P8 series.

Code	Modified position	Peptide sequence	$\begin{gathered} \text { Retention } \\ \text { time }^{\mathrm{a}} \\ \mathbf{t}_{\mathrm{R}}[\mathrm{~min}] \end{gathered}$	Molecular mass	
				Calculated	Found ${ }^{\text {b }}$
CF1	-	Ac-RARRRKKRT- NH_{2}	13.089	1268.8	1269.0
CF2	Ala ${ }^{\text {P5 }}$	Ac-RARARKKRT- NH_{2}	13.031	1183.7	1183.7
CF3	Asp ${ }^{\text {P5 }}$	Ac-RARDRKKRT- NH_{2}	12.445	1227.7	1227.9
CF4	Glu ${ }^{\text {P5 }}$	Ac-RARERKKRT- NH_{2}	13.226	1241.7	1241.8
CF5	Phe ${ }^{\text {P5 }}$	Ac-RARFRKKRT- NH_{2}	16.894	1259.8	1259.9
CF6	Gly ${ }^{\text {P5 }}$	Ac-RARGRKKRT- NH_{2}	12.984	1169.7	1169.7
CF7	His ${ }^{\text {P5 }}$	Ac-RARHRKKRT- NH_{2}	13.226	1249.8	1249.9
CF8	$11 e^{\text {P5 }}$	Ac-RARIRKKRT- NH_{2}	16.767	1225.8	1225.8
CF9	Lys ${ }^{\text {P5 }}$	Ac-RARKRKKRT- NH_{2}	12.815	1240.8	1240.9
CF10	Leu ${ }^{\text {P5 }}$	Ac-RARLRKKRT- NH_{2}	16.593	1225.8	1226.0
CF11	Met ${ }^{\text {P5 }}$	Ac-RARMRKKRT- NH_{2}	15.585	1243.7	1243.8
CF12	Asn ${ }^{\text {5 }}$	Ac-RARNRKKRT- NH_{2}	12.654	1226.7	1226.9
CF13	Pro ${ }^{\text {P5 }}$	Ac-RARPRKKRT- NH_{2}	13.433	1209.8	1209.7
CF14	Gln ${ }^{\text {P5 }}$	Ac-RARQRKKRT- NH_{2}	12.701	1240.8	1240.9
CF15	Ser ${ }^{\text {P5 }}$	Ac-RARSRKKRT- NH_{2}	12.495	1199.8	1299.5
CF16	Thr ${ }^{\text {P5 }}$	Ac-RARTRKKRT- NH_{2}	13.437	1213.8	1213.5
CF17	Val ${ }^{\text {P5 }}$	Ac-RARVRKKRT- NH_{2}	14.989	1211.8	1211.7
CF18	Trp ${ }^{\text {P5 }}$	Ac-RARWRKKRT- NH_{2}	17.676	1298.8	1298.8
CF19	Tyr ${ }^{\text {P5 }}$	Ac-RARYRKKRT- NH_{2}	14.863	1275.8	1275.8
CF20	Ala ${ }^{\text {P6 }}$	Ac-RAARRKKRT- NH_{2}	12.823	1183.7	1184.0
CF21	Asp ${ }^{\text {P6 }}$	Ac-RADRRKKRT- NH_{2}	12.638	1227.7	1228.1
CF22	Glu ${ }^{\text {P6 }}$	Ac-RAERRKKRT- NH_{2}	13.832	1241.7	1242.0
CF23	Phe ${ }^{\text {P6 }}$	Ac-RAFRRKKRT- NH_{2}	18.726	1259.8	1260.1
CF24	Gly ${ }^{\text {P6 }}$	Ac-RAGRRKKRT- NH_{2}	12.372	1169.7	1169.6
CF25	His ${ }^{\text {P6 }}$	Ac-RAHRRKKRT- NH_{2}	12.560	1249.8	1249.8
CF26	$11 e^{\text {P6 }}$	Ac-RAIRRKKRT- NH_{2}	15.746	1225.8	1225.9
CF27	Lys ${ }^{\text {P6 }}$	Ac-RAKRRKKRT- NH_{2}	12.750	1240.8	1240.4
CF28	Leu ${ }^{\text {P6 }}$	Ac-RALRRKKRT- NH_{2}	17.141	1225.8	1225.2
CF29	Met ${ }^{\text {P6 }}$	Ac-RAMRRKKRT- NH_{2}	14.233	1243.7	1243.6
CF30	Asn ${ }^{\text {P6 }}$	Ac-RANRRKKRT- NH_{2}	12.449	1226.7	1226.6
CF31	Pro ${ }^{\text {P6 }}$	Ac-RAPRRKKRT- NH_{2}	13.699	1209.8	1209.4
CF32	Gln ${ }^{\text {P6 }}$	Ac-RAQRRKKRT- NH_{2}	11.587	1240.8	1241.0
CF33	Ser ${ }^{\text {P6 }}$	Ac-RASRRKKRT- NH_{2}	12.888	1199.8	1199.9
CF34	Thr ${ }^{\text {P6 }}$	Ac-RATRRKKRT- NH_{2}	12.836	1213.8	1213.9
CF35	Val ${ }^{\text {P6 }}$	Ac-RAVRRKKRT- NH_{2}	15.309	1211.8	1211.9
CF36	Trp ${ }^{\text {P6 }}$	Ac-RAWRRKKRT- NH_{2}	19.038	1298.8	1298.8
CF37	Tyr ${ }^{\text {P6 }}$	Ac-RAYRRKKRT- NH_{2}	15.310	1275.8	1275.6
CF38	Asp ${ }^{\text {P7 }}$	Ac-RDRRRKKRT- NH_{2}	12.565	1312.8	1312.8
CF39	Glu ${ }^{\text {P7 }}$	Ac-RERRRKKRT- NH_{2}	10.361	1326.8	1327.0
CF40	Phe ${ }^{\text {P7 }}$	Ac-RFRRRKKRT- NH_{2}	17.746	1344.8	1344.7
CF41	Gly ${ }^{\text {P7 }}$	Ac-RGRRRKKRT- NH_{2}	12.458	1254.8	1254.6
CF42	His ${ }^{\text {P7 }}$	Ac-RHRRRKKRT- NH_{2}	13.499	1334.8	1334.7
CF43	Ile ${ }^{\text {P7 }}$	Ac-RIRRRKKRT- NH_{2}	16.403	1310.8	1311.1
CF44	Lys ${ }^{\text {P7 }}$	Ac-RKRRRKKRT- NH_{2}	12.910	1325.9	1325.8

CF45	Leu ${ }^{\text {P7 }}$	Ac-RLRRRKKRT- NH_{2}	17.179	1310.8	1310.9
CF46	Met ${ }^{\text {P7 }}$	Ac-RMRRRKKRT- NH_{2}	15.207	1328.8	1329.0
CF47	Asn ${ }^{\text {P7 }}$	Ac-RNRRRKKRT- NH_{2}	12.241	1311.8	1311.8
CF48	Pro ${ }^{\text {P7 }}$	Ac-RPRRRKKRT- NH_{2}	13.710	1294.8	1294.9
CF49	GIn ${ }^{\text {P7 }}$	Ac-RQRRRKKRT- NH_{2}	13.320	1325.8	1326.1
CF50	Arg ${ }^{\text {P7 }}$	Ac-RRRRRKKRT- NH_{2}	15.217	1353.9	1353.9
CF51	Ser ${ }^{\text {P7 }}$	Ac-RSRRRKKRT- NH_{2}	9.939	1284.8	1285.0
CF52	Thr ${ }^{\text {P7 }}$	Ac-RTRRRKKRT- NH_{2}	10.449	1298.8	1299.1
CF53	Val ${ }^{\text {P7 }}$	Ac-RVRRRKKRT- NH_{2}	14.461	1296.8	1296.8
CF54	Trp ${ }^{\text {P7 }}$	Ac-RWRRRKKRT- NH_{2}	17.974	1383.8	1383.8
CF55	Tyr ${ }^{\text {P7 }}$	Ac-RYRRRKKRT- NH_{2}	15.610	1360.8	1361.0
CF56	Ala ${ }^{\text {P8 }}$	Ac-AARRRKKRT- NH_{2}	12.841	1183.7	1183.9
CF57	Asp ${ }^{\text {P8 }}$	Ac-DARRRKKRT- NH_{2}	12.278	1227.7	1228.1
CF58	Glu ${ }^{\text {P8 }}$	Ac-EARRRKKRT- NH_{2}	12.528	1241.7	1242.2
CF59	Phe ${ }^{\text {P8 }}$	Ac-FARRRKKRT- NH_{2}	18.975	1259.8	1260.2
CF60	Gly ${ }^{\text {P8 }}$	Ac-GARRRKKRT- NH_{2}	12.042	1169.7	1170.4
CF61	His ${ }^{\text {P8 }}$	Ac-HARRRKKRT- NH_{2}	12.441	1249.8	1250.2
CF62	$11 e^{\text {P8 }}$	Ac-IARRRKKRT- NH_{2}	17.277	1225.8	1226.3
CF63	Lys ${ }^{\text {P8 }}$	Ac-KARRRKKRT- NH_{2}	13.524	1240.8	1241.3
CF64	Leu ${ }^{\text {P8 }}$	Ac-LARRRKKRT- NH_{2}	18.004	1225.8	1226.0
CF65	Met ${ }^{\text {P8 }}$	Ac-MARRRKKRT- NH_{2}	15.702	1243.7	1244.1
CF66	Asn ${ }^{\text {P8 }}$	Ac-NARRRKKRT- NH_{2}	12.967	1226.7	1227.2
CF67	Pro ${ }^{\text {P8 }}$	Ac-PARRRKKRT- NH_{2}	14.330	1209.8	1210.4
CF68	GIn ${ }^{\text {P8 }}$	Ac-QARRRKKRT- NH_{2}	12.817	1240.8	1241.1
CF69	Ser ${ }^{\text {P8 }}$	Ac-SARRRKKRT- NH_{2}	13.165	1199.8	1200.1
CF70	Thr ${ }^{\text {P8 }}$	Ac-TARRRKKRT- NH_{2}	13.713	1213.8	1214.0
CF71	Val ${ }^{\text {P8 }}$	Ac-VARRRKKRT- NH_{2}	16.582	1211.8	1212.0
CF72	Trp ${ }^{\text {P8 }}$	Ac-WARRRKKRT- NH_{2}	20.443	1298.8	1298.8
CF73	Tyr ${ }^{\text {P8 }}$	Ac-YARRRKKRT- NH_{2}	16.239	1275.8	1275.8

b) Analogs from the P8-P5 series.

Code	Modified positions	Peptide sequence	```Retention time }\mp@subsup{}{}{\mathbf{a} tr [min]```	Molecular mass		
				Calculated	Found ${ }^{\text {b }}$	
CF74	Gly ${ }^{\text {P8 }} 1 \mathrm{le}^{\text {P5 }}$	Ac-GARIRKKRT- NH_{2}	14.870	1126.7	1126.7	
CF75	Pro ${ }^{\text {P }}$ IIe ${ }^{\text {P5 }}$	Ac-PARIRKKRT- NH_{2}	18.244	1166.7	1166.7	
CF76	GIn ${ }^{\text {P8 }} 1 \mathrm{le}^{\text {P5 }}$	Ac-QARIRKKRT- NH_{2}	15.723	1197.7	1197.6	
CF77	Ser ${ }^{\text {P8 }} \\| \mathrm{l}^{\text {P5 }}$	Ac-SARIRKKRT- NH_{2}	15.887	1156.7	1157.0	
CF78	Thr ${ }^{\text {P8 }} 11 e^{\text {P5 }}$	Ac-TARIRKKRT- NH_{2}	16.737	1170.7	1170.6	
CF79	Val ${ }^{\text {P }} 11 e^{\text {P5 }}$	Ac-VARIRKKRT- NH_{2}	19.694	1168.8	1168.7	
CF80	Glu $^{\text {P8 }} 1 \mathrm{le}^{\text {P5 }}$	Ac-EARIRKKRT- NH_{2}	16.727	1198.7	1199.2	

c) Analogs from the P5" series

Code	Modified positions	Peptide sequence	retention time ${ }^{\text {a }}$ t_{R} [min]	Molecular mass	
				Calculated	Found ${ }^{\text {b }}$
CF81	$\mathrm{Abu}^{\text {P5 }}$	Ac-RAR(Abu)RKKRT- NH_{2}	12.732	1197.4	1197.2
CF82	$\mathrm{Aib}^{\text {P5 }}$	Ac-RAR(Aib)RKKRT- NH_{2}	14.368	1197.4	1197.5
CF83	cLeu ${ }^{\text {P5 }}$	Ac-RAR(cLeu)RKKRT- NH_{2}	14.999	1223.4	1223.6
CF84	$\mathrm{Nle}^{\text {P5 }}$	Ac-RAR(NIe)RKKRT- NH_{2}	15.764	1225.5	1225.6
CF85	Tle ${ }^{\text {P5 }}$	Ac-RAR(Tle)RKKRT- NH_{2}	15.728	1225.5	1225.6

d) Analogs from P8"-P5" series.

Code	Modified positions	Peptide sequence	$\begin{array}{\|c} \hline \text { Retention } \\ \text { time }^{\mathrm{a}} \\ \mathbf{t}_{\mathrm{R}}[\mathrm{~min}] \\ \hline \end{array}$	Molecular mass		
				Calculated	Found ${ }^{\text {b }}$	
CF86	D-Ser ${ }^{\text {P8 }}$ Abu ${ }^{\text {P5 }}$	Ac-sAR(Abu)RKKRT- NH_{2}	13.999	1128.3	1128.8	
CF87	Ser ${ }^{\text {P8 }}$ Abu ${ }^{\text {P5 }}$	Ac-SAR(Abu)RKKRT- NH_{2}	15.187	1128.3	1128.7	
CF88	Gly ${ }^{\text {P8 }}$ Abu ${ }^{\text {P5 }}$	Ac-GAR(Abu)RKKRT- NH_{2}	14.949	1098.3	1098.5	
CF89	D-Pro ${ }^{\text {P }} \mathrm{Abu}^{\text {P5 }}$	Ac-pAR(Abu)RKKRT- NH_{2}	15.115	1138.3	1138.8	
CF90	Pro ${ }^{\text {P8 }}$ Abu ${ }^{\text {P5 }}$	Ac-PAR(Abu)RKKRT- NH_{2}	15.653	1138.3	1138.5	
CF91	D-Pro ${ }^{\text {P8 }}$	Ac-pARRRKKRT- NH_{2}	14.686	1209.8	1209.6	
CF92	D-Ser ${ }^{\text {P }}$	Ac-sARRRKKRT- NH_{2}	11.902	1199.7	1199.7	
CF93	$D-11 e^{\text {P5 }}$	Ac-RARiRKKRT- NH_{2}	15.861	1225.8	1225.9	
CF94	$\mathrm{Abu}^{\text {P8 }} \\| \mathrm{le}{ }^{\text {P5 }}$	Ac-(Abu)ARIRKKRT- NH_{2}	18.096	1154.4	1154.8	
CF95	$\mathrm{Aib}^{\text {P8 }} / \mathrm{le}{ }^{\text {P5 }}$	Ac-(Aib)ARIRKKRT- NH_{2}	18.934	1154.4	1154.8	

e) Cyclic analog.

Code	Modified positions	Peptide sequence	Retenti on time ${ }^{\text {a }}$ t_{R} [min]	Molecular mass	
				Calculated	Found ${ }^{\text {b }}$
CF96	(\&)Lys ${ }^{\text {P5 }} \mathrm{Thr}^{\text {P1 }}$ (${ }^{\text {(}}$)	$A c-R A R(\&) K R K K R T(\&) ~$	15.394	1223.8	1223.5

f) $\mathrm{aza} \beta^{3}-$ Arg $^{\text {P1 }}{ }^{1} \mathrm{Phe}^{\mathrm{P1}^{\prime}}$ analog

Code	Modified positions	peptide sequence	molecular mass	
			calculated	Found ${ }^{\text {b }}$
CF97	$\left(a z a \beta^{3} R\right)^{P 1} F^{\text {P1 }}{ }^{\prime}$	Ac-RARRRKK $\left(\mathrm{aza} \beta^{3} \mathrm{R}\right) \mathrm{F}-\mathrm{NH}_{2}$	1330.5	1330.0

All analytical HPLC were performed using Shimadzu LC-10A system (column: Jupiter C $18,5 \mu \mathrm{~m}, 250 \times 4.6 \mathrm{~mm}, 300$ Å, Phenomenex) with a linear gradient of ACN in $\mathrm{H}_{2} \mathrm{O}$ containing 0.1% TFA, $1-30 \%$ ACN in 30 min or $2-45 \%$ ACN in 25 min , at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$.

Table S2. Inhibitory activity (K_{i}) of the selected compounds from the P5 series towards the selected PCs.

Code	Residue at the P5 position	$\mathbf{K}_{\mathbf{i}}(\mathbf{n M}) \pm$ SD			
		PACE4	PC5/6	PC7	
CF1	Arg	15 ± 3	13 ± 1	8 ± 3	580 ± 170
CF5	Phe	21 ± 4	34 ± 7	24 ± 3	1330 ± 10
CF8	lle	6 ± 1	10 ± 5	4.4 ± 1.1	415 ± 40
CF12	Asn	18 ± 5	24 ± 7	17.5 ± 0.1	1600 ± 360

The data in the table are the means \pm SD of at least two independent experiments.

Table S3. Enzyme and substrate concentrations used in the present study.

Enzyme	$\mathbf{E}_{\mathbf{0}}{ }^{\mathbf{a}}$ $[\mathbf{n M}]$	Substrate $[\mu \mathrm{M}]$	$\mathbf{K}_{\mathbf{m}}{ }^{\mathbf{b}}$ $[\mu \mathrm{M}]$
hFurin	0.55	100	5.04
hPACE4	17.8	100	7.90
hPC5/6	13.7	100	7.16
hPC7	20.7	100	13.45

a The used enzyme concentrations in the assay correspond to 2 units for each enzyme at the indicated substrate concentration; the enzyme concentrations in the assay (E_{0}) were obtained from active-site titration using the inhibitor Dec-Arg-Val-Lys-Arg-CMK. b The K_{m} values for each enzyme were determined in an independent experiment with various substrate concentrations.

Figure S1. HPLC-HRMS based cleavage studies of CF1 and CF8 inhibitors upon incubation with high amounts of furin.
Despite the presence of the potential furin cleavage sites (e.g., after the P5 and P1 positions) in the structure of the developed inhibitors, only less than < 5-7\% of the found signals can be assigned to the products generated after P1-P1' cleavage. Both compounds (the intact peptide and its cleaved product) elute under the same peak (the elution gradient was $2-25 \%$ B ($0.10 \%[v / v]$ TFA in ACN) in A (0.10\% [v/v] TFA in $\mathrm{H}_{2} \mathrm{O}$) for 30 min). These results indicate that CF1 and its analogs act as inhibitors not as weak substrates in the kinetic assay. Experimental details: Cleavage reactions were carried out in HEPS buffer (pH 7.5) in a final volume of $100 \mu \mathrm{l}$, containing 16 U of recombinant hfurin ($0.4 \mu \mathrm{l}$), selected inhibitors ($10 \mu \mathrm{l}$ of 1 mM stock solution) and $30 \mu \mathrm{l}$ of BSA solution (6 mg of BSA in 1 mL of buffer). The reactions were incubated at $37^{\circ} \mathrm{C}$ for 1 h and stopped by the addition of $30 \mu \mathrm{l}$ of 2% formic acid in $\mathrm{H}_{2} \mathrm{O}$. Samples were cleaned up using centrifuge tube filters and analyzed by HPLC. Peaks collected from the HPLC analysis were lyophilized and analyzed by HRMS.

Figure S2. Structure of compound CF97. The azaß3-Arg is indicated in red.

Supplementary References:

1. Merrifield, R. B. Solid Phase Peptide Synthesis. I. The synthesis of a Tetrapeptide. J. Am. Chem. Soc. 1963, 85, 2149-2154.
2. Shibue, M.; Mant, C. T. and Hodges, R. S. Effect of anionic ion-pairing reagent hydrophobicity on selectivity of peptide separations by reversed-phase liquid chromatography. J. Chromatogr. A 2005, 1080, 68-75.
3. Cheng, Y.; Prusoff, W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22, 3099-3108.
