Supporting Information

Effect of Pt and Ionomer Distribution on Polymer Electrolyte Fuel Cell Performance and Durability

Aki Kobayashi^{a,b}, Takahiro Fujii^a, Chie Harada^a, Eiichi Yasumoto^a, Kenyu Takeda^a, Katsuyoshi Kakinuma^c, Makoto Uchida^{c*}

^a Appliances Company, Panasonic Corporation, Yagumo-naka-machi 3-1-1, Moriguchi 570-8501, Japan

^b Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu

400-8511, Japan

° Fuel Cell Nanomaterials Center, University of Yamanashi, Kofu 400-0021, Japan

* Corresponding author

E-mail address: uchidam@yamanashi.ac.jp (M. Uchida).

Figure S1. (a) Pore size distribution of CB supports with enlarged scale of the y-axis. (b) Pore size distribution of catalysts with enlarged scale of the y-axis.

Figure S2. Change of the nanopore cumulative volume of the CB supports after Pt loading calculated by the QSDFT analysis of (a) V1 and Pt/V1, (b) K4 and Pt/K4, (c) K8 and PtK8 and (d) K13 and Pt/K13. Change of the pore size distribution of the CB supports after Pt loading calculated by the QSDFT analysis of (e) V1 and Pt/V1, (f) K4 and Pt/K4, (g) K8 and PtK8 and (h) K13 and Pt/K13.

Figure S3. Isotherms with different I/C for each cathode catalyst measured by the N_2 gas adsorption measurement.