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Data Pre-processing Details

The chemical reaction data used in this research is derived from the USPTO dataset, which

is currently the largest chemical reaction dataset available for free. The raw dataset con-

sists of reactions that were text mined from U.S. patent documents between 1976 and 2016

from fields like chemistry, physics, or human necessities. The two parts of the dataset are

patent grants (1976 - 2016) and patent applications (2001 - 2016) which contain 1,808,937

and 1,939,253 entries, respectively. A pharmacy-related subset of these reactions has been

extracted, cleaned and classified into 10 different reaction classes, resulting in a dataset of

around 50,000 reactions, often referred to as USPTO-50k. The overview of the distribution

of the reaction classes is depicted in Figure S1. The data has been further processed by split-
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Figure S1: Distribution of the reaction classes in the refined USPTO-50k dataset.

ting reactions with multiple products into multiple reactions and removing smaller molecules

from the product side (i.e., removing byproduct salts). This version of the dataset (which can

be found at https://github.com/connorcoley/retrosim/tree/master/retrosim/data/

data_processed.csv) is used as a starting point in this research.

As the first step to create a suitable dataset for the prediction model, all of the reactant

and product molecules are parsed from the reaction SMILES strings in the dataset. These

molecules are stripped of their mapping and converted to the canonical SMILES form by

using RDKit. Duplicate compounds are filtered out and pools of unique reactants (52,838

entries) and unique products (49,594 entries) are created. Based on these compound pools,

the dataset is expanded with the unique ID mapping of the reaction in the form of:

{uq_reac_id_0, . . . , uq_reac_id_n} → {uq_prod_id_0, . . . , uq_prod_id_n}

In the next step, a total of 50,016 raw chemical reaction entries is split into training, val-

idation and test sets in 5 different ways according to the 5-fold cross-validation approach.

These splits are performed per class so that every reaction type is equally represented in

each fold. The value for n was set to 5 because some classes (e.g., ’Reduction’ or ’Functional

Group Addition’) have a low number of entries and a high number of folds would cause

an insufficient representation of these reaction classes in each fold. The dataset splits were

done following the 70:10:20 ratio for the training, validation and test set, respectively. Next,
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for all of the generated splits, the substructures from the product molecules are extracted

and labelled as potential disconnection or non-disconnection sites, as described in the main

manuscript. These substructures are then converted to fingerprints according to a specified

configuration which dictates the type, radius, number of bits and neighbourhood extension.

Entries processed this way result in significantly more negative than positive substructure

samples. The number of samples that is kept is equal to the number of samples of the most

represented reactive substructure class. It is noticeable from Table S1 and Table S2 that the

total number of extracted substructures is slightly higher than the total number of reactions.

This is due to the occurrence of reaction cores which consist out of two or more separated

atom groups which are considered as separate reaction cores. After the process is finished,

the positive and negative samples are combined and labelled with classes [0, 10] for multi-

class classification purposes. The label 0 represents a non-disconnection site and labels from

1 to 10 represent potential disconnection sites expanded with additional information about

the established classes. This concludes the dataset pre-processing procedure.

Table S1: The overall number of reaction entries, number of extracted substructures and the
final dataset split sizes per each fold.

Fold Dataset
Number of
Reactions

Number of
Substructures

Final Size
(w/o Augm.)

Final Size
(w/ Augm.)

Training 35,006 35,018 45,651 116,963
Validation 5,002 5,002 6,490 6,4901
Testing 10,008 10,011 13,042 13,042
Training 35,009 35,020 45,652 116,952
Validation 5,002 5,003 6,492 6,4922
Testing 10,005 10,008 13,039 13,039
Training 35,012 35,020 45,600 116,380
Validation 5,002 5,008 6,550 6,5503
Testing 10,002 10,003 13,033 13,033
Training 35,012 35,023 45,610 116,457
Validation 5,002 5,003 6,538 6,5384
Testing 10,002 10,005 13,035 13,035
Training 35,015 35,025 45,624 116,589
Validation 5,002 5,002 6,525 6,5255
Testing 9,999 10,004 13,034 13,034
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Table S2: The average number of reactions and the average difference of extracted substruc-
tures compared to the number of reactions for each dataset split per reaction class.

Reaction Class Training Dataset Validation Dataset Test Dataset

Avg.
Rxns.

Avg.
Substrs.

Avg.
Rxns.

Avg.
Substrs.

Avg.
Rxns.

Avg.
Substrs.

No Disconnection 10,606 1,515 3,030

Het. Alk. and Ary. 10,606 +0.2 1,515 +0.4 3,030 +0.4

Acyl. and Rel. Pr. 8,320 +0.8 1,196 +0.0 2,379 +0.2

C-C Bond Form. 3,957 +4.2 573 +0.2 1,132 +1.4

Heterocy. Form. 633 +0.4 95 +0.4 182 +0.2

Protections 474 +0.2 64 +0.2 134 +0.4

Deprotections 5,769 +0.6 821 +0.2 1,647 +0.6

Reductions 3,233 +1.2 458 +0.6 923 +1.2

Oxidations 571 +0.4 77 +0.4 162 +0.2

FGI 1,289 +3.2 179 +0.0 367 +0.3

FGA 159 +0.2 25 +0.2 46 +0.0

The total number of negative ECFP samples before the filtration process is 109,537,

31,113, and 49,978 for training, validation and testing, respectively. The total number of

negative HSFP samples is 302,220, 38,042, and 106,739 for training, validation and testing,

respectively. The filtering is necessary because some of the generated negative samples are

misleading and might cause the model to be heavily biased towards negative labels.

Model Construction Details

The parameter optimization process for the neural network is split into two stages. In the first

stage, the molecular descriptor parameters are analyzed and the two best performing sub-

structure fingerprint configurations are selected. In the second stage, the hyperparameters

of the model are optimized to achieve the best possible performance and avoid overfitting.
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Pre-selection of Input Data Configurations

To judge how different molecular descriptor configurations affect the performance of the

model, a simple prediction model was constructed. This architecture is shown in Figure S2.

It consists of only one fully connected layer. The input and hidden layer had the number

of neurons set to the bit size of the current fingerprint, used the ReLU activation function

and had dropout set to 0.2. The output layer size was 11 for each of the established classes

and Softmax activation function was used. The monitored loss was categorical cross-entropy

and it was minimized using the ADAM optimizer, with the application of early stopping on

validation loss after 10 epochs with no improvement. The effect on model performance was

evaluated through the variation of the following configuration parameters:

• Fingerprint Type: {SubstructureECFP,HSFP}

• Fingerprint Radius: {1, 2, 3}

• Fingerprint Bits: {1024, 2048, 4096}

• Neighbourhood Extension for HSFP: {1, 2}

• Data Augmentation: {None, SMOTE}

The performance of models like this is usually judged based on the average test loss or

test accuracy, but in this case, the discriminative power of the model is more important. How

much of the relevant data (disconnection sites) is the model able to recognize and correctly

label can be assessed from the Precision-Recall curve by calculating the average precision

score for each class according to the formula:

AP =
∑
n

(Rn −Rn−1)Pn (1)

where Pn and Rn are the precision and recall scores at the n-th threshold. Given that this

is a heavily imbalanced multi-class classification problem, the average precision score of the
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Figure S2: Architecture of the initial model used for evaluating the effects of molecular
descriptor configuration parameters on overall model performance.

whole model is determined by calculating the micro-average value for all classes first and

then calculating the average precision score. The class imbalance problem is handled by

applying the SMOTE approach, which works well with numerical vectors and helps avoid

losing valuable reaction data to construct an unbiased prediction model. Taking all these

factors into account, the pre-selection of models based on input data configurations was

done in two phases. The focus of the first phase is the fingerprint bit size and the focus

of the second phase is the amount of information contained in the fingerprint. During the

evaluation, the focus parameter is modified while the other parameters remain fixed. In this

way, the effect of the parameter in focus on the overall performance of the model can be

properly monitored. The best models for each of the configurations that were chosen for

further investigation through network hyperparameter tuning were:

1. Substructure ECFP: {radius = 2, bit_size = 1024}

2. HSFP: {radius = 2, bit_size = 1024, neighbourhood_extension = 2}
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Hyperparameter Tuning

The hyperparameter tuning was done through through a guided grid search approach because

of the small amount of data available. Namely, model architectures in terms of number

of layers and layer types have been predetermined based on standard model construction

practices in this field. The following six fixed network architectures were considered:

1. Fixed Model 1: {Input} → {FullyConnectedLayer} → {Output}

2. Fixed Model 2: {Input} → {FCL}x2→ {Output}

3. Fixed Model 3: {Input} → {FCL}x3→ {Output}

4. Fixed Model 4: {Input} → {FCL} → {HighwayLayer} → {Output}

5. Fixed Model 5: {Input} → {FCL} → {HL}x3→ {Output}

6. Fixed Model 6: {Input} → {FCL} → {HL}x5→ {Output}

To test the whether the model is throttled by capacity issues the number of layers is

gradually increased. After the basic architectures have been fixed, the variable parameters

values were defined. Each configuration that was constructed during this grid search was

considered as an independent model and the evaluation was done through cross-validation

of the inputs and the parameters. The following hyperparameter values were used:

• Hidden Layer Size: {2/3 ∗ input_size, input_size, 3/2 ∗ input_size}

• Dropout Values: {0.2,0.33, 0.5}

• Activation Function: {eLU,ReLU}

• Learning Rate: {0.0005, 0.001, 0.00146}

• Batch Size: {16, 32, 64,128, 256}

The best performing model was the first fixed model with only one fully connected layer

which is expected given the small amount of data that is available.
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Reactant Retrieval and Scoring Details

The reaction core is marked and the synthons are extracted from every reaction in the

USPTO-50k dataset. The synthons are sorted based on their total number of atoms in

descending order and the candidates with the highest similarity values are retrieved. The

resulting Top-N accuracy is shown in Table S3.

Table S3: Top-50 accuracy chart of correctly retrieved reactant compounds based on the size
the synthon substructures in terms of the number of atoms.

Position Top-1 Top-3 Top-5 Top-10 Top-20 Top-30 Top-50 Entries

1 79.9% 89.2% 91.2% 92.9% 93.8% 94.0% 94.2% 50,016
2 35.7% 55.6% 64.6% 73.9% 78.9% 80.6% 81.8% 32,977

Around 79.9% of the correct compounds for the largest synthon in the first position are

fetched as the Top-1 candidate. In the case of the smaller synthons, only 35.7% of the

correct compounds are fetched as the Top-1 candidate. This number rises to 73.9% if the

Top-10 candidates are considered. To get a better insight on how the size of the synthon

substructures affects the accuracy of the reactant retrieval process, the synthons are further

sorted into five categories based on the total number of atoms: [0, 5], (5, 10], (10, 25], (25,

50], and >50. The upper bound is set to 50 because the highest number of atoms in a single

molecule in the USPTO-50k dataset is 97 and such molecules are not frequent. The Top-N

accuracies for these categories are shown in Table S4.

Table S4: Top-50 accuracy chart of correctly retrieved reactant compounds based on the size
the synthon substructures in terms of the number of atoms.

Atom
Count Top-1 Top-3 Top-5 Top-10 Top-20 Top-30 Top-50 Entries

[0, 5] 13.1% 30.4% 43.7% 55.9% 60.7% 62.8% 64.8% 2,914
(5, 10] 32.2% 55.4% 64.6% 75.6% 81.7% 83.7% 85.3% 21,502
(10, 25] 78.2% 88.7% 90.8% 92.2% 93.0% 93.2% 93.3% 41,179
(25, 50] 95.9% 99.6% 99.7% 99.8% 99.8% 99.8% 99.8% 11,857
>50 96.1% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 180
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