Supporting Information

Binder-Free, Thin-film Ceramic Coated Separators for Improved Safety of Lithium-Ion Batteries

Ashish Gogia^{a, b, *}, Yuxing Wang^{a, *}, Amarendra K. Rai^c, Rabi Bhattacharya^c, Guru Subramanyam^b, Jitendra Kumar^{a, b, *}

^a University of Dayton Research Institute, 1700 South Patterson Blvd, Dayton, OH 45409-7531, USA
^b Center of Excellence for Thin-film Research and Surface Engineering, University

of Dayton, 300 College Park, Dayton, OH 45469-0232, USA

° UES, Inc., 4401 Dayton-Xenia Road, Dayton, OH 45432-1894, USA

*Corresponding Authors:

Jitendra Kumar - *University of Dayton Research Institute, Dayton, Ohio 45469-7531, United States*; E-mail: jitendra.kumar@udri.udayton.edu; Phone: 937-229-5314; Fax: 937-229-3873

Yuxing Wang - University of Dayton Research Institute; Dayton, Ohio 45469-7531, United States; Email: Yuxing.wang@ud-research.org

Ashish Gogia - University of Dayton Research Institute; Dayton, Ohio 45469-7531, United States; Email: gogiaal@udayton.edu

Supporting Information

Separator used	Weight (g/m ²)	Thickness (µm)	Volume (cm ³)
PE	9.96	12	0.002712
EB-PVD coated Al ₂ O ₃ -PE	11.73	12.2	0.002716
commercial Al ₂ O ₃ -PE	15.27	20	0.004520
Al ₂ O ₃ -PI	19.25	22	0.004972

Table S1. Weights and volume of the separators used in this study

Figure S1. Weights of a) PE, b) EB-PVD coated Al_2O_3 -PE (Al_2O_3 , 100 nm), c) commercial Al_2O_3 -PE (Al_2O_3 , 1-2 μ m), and d) Al_2O_3 -PI separator, respectively

Figure S2. Energy Dispersive Spectroscopy (EDS) elemental analysis of EB-PVD coated Al_2O_3 -PE (Al_2O_3 , 100 nm) separator a) with carbon (C) and, b) without C. Elemental C comes from the

polymer part of the separator. Aluminium and oxygen comes from the ceramic coating on the separator.

Figure S3. Thermal shrinkage measurement data comparing pristine PE, EB-PVD coated Al_2O_3 -PE (Al_2O_3 , 100 nm), commercial Al_2O_3 -PE (Al_2O_3 , 1-2 μ m), and Al_2O_3 -PI separator before and after annealing at 150 °C and 200 °C.

Figure S4. Postmortem optical images of a) PE, b) EB-PVD coated Al_2O_3 -PE (Al_2O_3 , 100 nm), c) commercial Al_2O_3 -PE (Al_2O_3 , 1-2 μ m), d) Al_2O_3 -PI separators after in-situ impedance measurement till 190 °C.

Figure S5. a) SEM morphology and optical images of Al₂O₃-PI separators a) Non-annealed, b) After annealing in argon for 1 h at 350 °C.

Figure S6. Morphology of the junction area (a) and tape side (b) after peeling test of the Al_2O_3 -PI separator.

Figure S7. Electrochemical performance of NMC111/graphite full cells at C/20 (0.05C - Formation cycles) and C/2 (0.5C - long term cycles) using PE, EB-PVD coated Al₂O₃-PE (Al₂O₃,

100 nm), commercial Al₂O₃-PE (Al₂O₃, 1-2 μ m), and Al₂O₃ coated PI separators measured at room temperature (22 °C).

Figure S8. Separator degradation evaluation after cycling. SEM images of EB-PVD coated Al_2O_3 -PE (Al_2O_3 , 100 nm) separator cycled in NMC111/Graphite cells at magnifications a)1.00k, and b) 2.00k.

Figure S9. SEM images of EB-PVD coated Al_2O_3 -PE (Al_2O_3 , 100 nm) separator at a higher magnification. It has a dense ceramic coating. In addition to the cracks on the ceramic coating, a lot of pores are present in the polymer membrane that provides channels for Li⁺ transport and electrolyte continuity.