# **Supporting Information for**

# Nickel-Catalyzed $\beta$ -Regioselective Amination/Cyclization of Ynamide-Nitriles with

Amines: Synthesis of Functionalized 3-Aminoindoles and 4-Aminoisoquinolines

Xiaoping Hu, Xin Xie, Yi Gan, Gaonan Wang and Yuanhong Liu\*

State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of

# China

Fax: (+86) 021-64166128, E-mail: <u>vhliu@sioc.ac.cn</u>

| Contents:                                                   | Page        |
|-------------------------------------------------------------|-------------|
| General methods                                             | <b>S</b> 1  |
| Synthesis and characterization of substrates 1 and 5        | S2          |
| Optimization studies for the formation of <b>3a</b>         | <b>S</b> 8  |
| Synthesis and characterization of products 3 and 4          | S12         |
| Mechanistic studies                                         | <b>S</b> 31 |
| 1 mmol scale experiment of <b>1f</b>                        | S35         |
| References                                                  | S35         |
| X-ray crystal structure of compounds 3g, 4, S-5, 5, 6 and 7 | S35         |
| NMR spectra of all compounds                                | S46         |

**General Methods.** Unless noted, all reactions were carried out using standard Schlenk technique under an argon atmosphere or a dry box technique under a nitrogen atmosphere. Tetrahydrofuran and 1, 4-dioxane were distilled from sodium and benzophenone. Toluene was distilled from sodium. Acetonitrile was dried using Innovative Technology Solvent Purifier. Dimethyl formamide was purchased from J & K. Zinc powder (99.8% metals basis, -100 mesh) was purchased from Alfa Aesar Organics. Zinc powder (98%, -325 mesh) was purchased from

Adamas. Before using, zinc powder was stirred with 1 M HCl, filtered and washed thoroughly with water, acetone and diethyl ether and dried under vacuum. NiCl<sub>2</sub>(DME) was purchased from Sigma Aldrich. Ni(COD)<sub>2</sub> and NiI<sub>2</sub> were purchased from Strem Chemicals Inc. NiCl<sub>2</sub>(dppp) was purchased from TCI. 4-Fluoroaniline was purified by distillation before use. Unless noted, all commercial reagents were used without further purification. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded at room temperature in CDCl3 or d<sub>6</sub>-DMSO (containing 0.03% TMS) on Varian or Agilent XL-400 MHz spectrometer. <sup>1</sup>H NMR spectra was recorded with tetramethylsilane ( $\delta =$ 0.00 ppm) or solvent residual peak (CDCl<sub>3</sub>: 7.26 ppm; d<sub>6</sub>-DMSO: 2.50 ppm) as internal reference; <sup>13</sup>C NMR spectra was recorded with CDCl<sub>3</sub> (77.00 ppm) or  $d_6$ -DMSO (39.52 ppm) as internal reference. <sup>19</sup>F NMR spectra was recorded with CFCl<sub>3</sub> (0.00 ppm) as outside reference. High-resolution mass spectra were obtained by using AccuTOF 4G LC-plus and Waters Premier GC-TOF MS. The IR spectra were measured on a ThermoFisher Nicolet FT-IR spectrometer. Single crystal X-ray diffraction data were collected at Single crystal X-ray diffraction data were collected at 293(2) K for 3g, 5, 6, 7 and at 193(2) K for 4, S-5 on a Bruker SMART diffractometer or a Bruker APEX-II diffractometer. The X-ray crystal structure of 4 has been reported previously.1

Ynamides **1a-1b**, **1e-1m** were synthesized according to the published methods,<sup>2</sup> if needed, which were recrystallized before using. For the characterization of the new compounds, see following:

#### **Synthesis**

#### of

### N-(2-Cyanophenyl)-4-fluoro-N-((4-

methoxyphenyl)ethynyl)benzenesulfonamide (1c).



To solution of 2-aminobenzonitrile (4.96 g, 42 mmol) in pyridine (30 mL) was cooled to 0 °C and 4-fluorobenzenesulfonyl chloride (7.78 g, 40 mmol) was added under argon. The

reaction mixture was warmed up to room temperature and stirred for 12 h until the reaction was completed as monitored by TLC. The reaction mixture was quenched by water and extracted with ethyl acetate, washed with water and brine, and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The mixture was filtered and the solvent was evaporated under the reduced pressure, then the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5/1) to afford the crude and recrystallization (petroleum ether/ethyl acetate = 5/1) to afford **SS-1c** in 63% yield (6.99 g) as white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.87-7.84 (m, 2H), 7.70 (d, *J* = 8.0 Hz, 1H), 7.59 (t, *J* = 7.6 Hz, 1H), 7.53-7.51 (m, 2H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.15 (t, *J* = 8.4 Hz, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  165.5 (d, <sup>1</sup>*J*<sub>C-F</sub> = 255.1 Hz), 138.8, 134.4 (d, <sup>4</sup>*J*<sub>C-F</sub> = 3.2 Hz), 134.2, 132.9, 130.1 (d, <sup>3</sup>*J*<sub>C-F</sub> = 10.0 Hz), 125.7, 122.8, 116.5 (d, <sup>2</sup>*J*<sub>C-F</sub> = 22.6 Hz), 115.6, 105.1. <sup>13</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  -103.2--102.3 (m). IR (neat): 3196, 2237, 1590, 1493, 1457, 1414, 1342, 1291, 1240, 1231, 1166, 1151, 1098, 1088, 1011, 912, 837, 821, 772, 746, 708, 692 cm<sup>-1</sup>. HRMS (EI-TOF) m/z: [M]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>9</sub>O<sub>2</sub>N<sub>2</sub>FS 300.0363, found 300.0360.

To a solution of **SS-1c** (2.76 g, 10 mmol) in *N*,*N*-dimethylformamide (25 mL) was added Cs<sub>2</sub>CO<sub>3</sub> (4.24 g, 13 mmol). The solution was stirred at room temperature for 30 min, then phenyl((trimethylsilyl)ethynyl)iodonium triflate (5.85 g, 13 mmol) in dichloromethane (10 mL) was added to the mixture and stirred 5 h until the reaction was completed as monitored by TLC. The reaction mixture was quenched by water. The resulting mixture was extracted with EA, washed with brine and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The mixture was filtered and the solvent was evaporated under the reduced pressure, then the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5/1) to afford the desired product **S-1c** in 58% yield (1.74 g) as a white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.92-7.88 (m, 2H), 7.71 (dd, *J* = 7.6 Hz, 1.2 Hz, 1H), 7.66 (td, *J* = 8.0 Hz, 1.6 Hz, 1H), 7.53 (td, *J* = 7.6 Hz, 1.2 Hz, 1H), 7.45 (d, *J* = 8.0 Hz, 114), 7.28-7.24 (m, 2H), 2.93 (s, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  166.4 (d, <sup>1</sup>*J*<sub>C-F</sub> = 257.1 Hz), 139.4, 134.2, 133.8, 131.7, 131.6, 131.5, 129.8 (d, <sup>3</sup>*J*<sub>C-F</sub> = 8.9 Hz), 116.8 (d, <sup>2</sup>*J*<sub>C-F</sub> = 23.0 Hz), 114.9, 112.8, 74.6, 60.3. <sup>13</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  -101.2--101.3 (m). IR (neat): 3310, 3100, 2236, 2136, 1588, 1490, 1483, 1447, 1380, 1293, 1230, 1182, 1155, 1118, 1083, 920, 885, 843, 816, 771, 737, 708, 678, 665, 656 cm<sup>-1</sup>. HRMS

(EI-TOF) m/z: [M]<sup>+</sup> Calcd for C<sub>13</sub>H<sub>9</sub>O<sub>2</sub>N<sub>2</sub>FS 276.0363, found 276.0362.

To solution of S-1c (901.0mg, 3 mmol) in THF (15 mL) was cooled to -40 °C and LiHMDS (3.5 mL, 4.5 mmol, 1.3 M in THF) was added dropwise under argon. After stirring at the same temperature for 40 min, ZnBr<sub>2</sub> (743.1 mg, 3.3 mol) in THF (3 mL) was added and stirred for another 20 min at -40 °C. Then the mixture of Pd<sub>2</sub>(dba)<sub>3</sub> (137.4 mg, 0.15 mmol), PPh<sub>3</sub> (157.4 mg, 0.6 mmol) and 4-methoxyiodobenzene (1.05 g, 4.5 mmol) in THF (2 mL) was added dropwise. The reaction mixture was warmed up to 30 °C and stirred for 24 h until the reaction was completed as monitored by TLC, then quenched by brine and extracted with ethyl acetate. The combined organic layers were washed with water and brine, and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The mixture was filtered and the solvent was evaporated under the reduced pressure, and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5/1) to afford the desired product 1c in 57% yield (699 mg) as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.91-7.88 (m, 2H), 7.69-7.63 (m, 2H), 7.52-7.47 (m, 2H), 7.38-7.34 (m, 2H), 7.27-7.23 (m, 2H), 6.82 (d, J = 8.8 Hz, 2H), 3.78 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  166.2 (d, <sup>1</sup>*J*<sub>C-F</sub> = 256.3 Hz), 160.0, 140.3, 134.1, 134.0, 133.6, 131.5 (d, <sup>4</sup>*J*<sub>C-F</sub>) = 2.4 Hz), 131.4, 131.3, 129.5 (d,  ${}^{3}J_{C-F}$  = 6.9 Hz), 116.6 (d,  ${}^{2}J_{C-F}$  = 22.6 Hz), 115.1, 113.9, 113.4, 112.4, 79.8, 71.4, 55.2. <sup>13</sup>F NMR (376 MHz, CDCl<sub>3</sub>): δ -101.5--101.6 (m). IR (neat): 3108, 2843, 2235, 1604, 1590, 1511, 1491, 1447, 1407, 1378, 1336, 1291, 1247, 1177, 1155, 1106, 1086, 1026, 959, 913, 832, 771, 711, 698, 670 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>15</sub>O<sub>3</sub>N<sub>2</sub>FSNa 429.0680, found 429.0675.



OTf

Ρh

CN

S-1d

2. 1.3 equiv

TMS-

DCM, rt, 3 h

CN

SS-1d

 $R = SO_2(p-OMeC_6H_4)$ 

pyridine

0 °C to rt. 18 h

CN

THE

40 °C to 30 °C, 24 h

CN

 $R = SO_2(p-OMeC_6H_4)$ 

1d

`OMe

To solution of 2-aminobenzonitrile (2.36 g, 20 mmol) in pyridine (20 mL) was cooled to 0 °C and 4-methoxybenzenesulfonyl chloride (4.12 g, 20 mmol) was added under argon. The

reaction mixture was warmed up to room temperature and stirred for 18 h until the reaction was completed as monitored by TLC. The reaction mixture was quenched by saturated NH<sub>4</sub>Cl solution and extracted with DCM, washed with brine, and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The mixture was filtered and the solvent was evaporated under the reduced pressure, then the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate/DCM = 10/2/1) to afford **SS-1d** in 67% yield (3.89 g) as white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.76 (d, *J* = 8.8 Hz, 2H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.57-7.53 (m, 1H), 7.49 ((dd, *J* = 8.0 Hz, 1.2 Hz, 1H), 7.20-7.16 (m, 2H), 6.92 (d, *J* = 8.8 Hz, 2H), 3.84 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  163.6, 139.3, 134.1, 132.7, 129.7, 129.5, 125.1, 121.7, 115.7, 114.4, 104.3, 55.6. IR (neat): 3202, 2838, 2233, 1596, 1577, 1495, 1457, 1425, 1330, 1315, 1267, 1155, 1093, 1029, 912, 833, 755, 716, 664 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>14</sub>H<sub>12</sub>O<sub>3</sub>N<sub>2</sub>SNa 311.0461, found 311.0453.

To a solution of SS-1d (1.44 g, 5 mmol) in N,N-dimethylformamide (10 mL) was added Cs<sub>2</sub>CO<sub>3</sub> (2.12 g, 6.5 mmol). The solution was stirred at room temperature for 30 min, then phenyl((trimethylsilyl)ethynyl)iodonium triflate (2.92 g, 6.5 mmol) in dichloromethane (5 mL) was added to the mixture and stirred 3 h until the reaction was completed as monitored by TLC. The reaction mixture was quenched by water and extracted with ethyl acetate, washed with brine, and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The mixture was filtered and the solvent was evaporated under the reduced pressure, then the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5/1) to afford the desired product S-1d in 66% yield (1.03 g) as a white solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.79-7.77 (m, 2H), 7.70 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 7.64 (td, J = 8.0 Hz, 1.6 Hz, 1H), 7.52 (dd, J = 8.0Hz, 1.2 Hz, 1H), 7.39 (dd, J = 8.4 Hz, 0.8 Hz, 1H), 7.04-7.01 (m, 2H), 3.91 (s, 3H), 2.90 (s, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 164.5, 139.8, 134.1, 133.6, 130.9, 129.6, 129.4, 126.8, 115.2, 114.5, 113.0, 75.1, 59.9, 55.7. IR (neat): 3275, 2838, 2228, 2128, 1593, 1577, 1497, 1488, 1443, 1369, 1311, 1263, 1192, 1163, 1115, 1087, 1026, 923, 882, 829, 804, 779, 756, 714, 678, 655 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z:  $[M+Na]^+$  Calcd for  $C_{16}H_{12}O_3N_2SNa$  335.0461, found 335.0452.

To solution of S-1d (1.25 g, 4 mmol) in THF (15 mL) was cooled to -40 °C and LiHMDS

(4.62 mL, 6 mmol, 1.3 M in THF) was added dropwise under argon. After stirring at the same temperature for 40 min, ZnBr<sub>2</sub> (990.9 mg, 4.4 mol) in THF (4 mL) was added and stirred for another 20 min at -40 °C. Then the mixture of Pd<sub>2</sub>(dba)<sub>3</sub> (183.1 mg, 0.2 mmol), PPh<sub>3</sub> (209.8 mg, 0.8 mmol) and 4-iodoanisole (1.40 g, 6 mmol) in THF (3 mL) was added dropwise. The reaction mixture was warmed up to 30 °C (oil bath) and stirred for 24 h until the reaction was completed as monitored by TLC, then quenched by brine and extracted with ethyl acetate. The combined organic layers were washed with brine, and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The mixture was filtered and the solvent was evaporated under the reduced pressure, and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5/1 to 4/1) to afford the desired product 1d in 42% yield (695 mg) as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.82-7.80 (m, 2H), 7.68 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 7.63 (td, J = 8.0 Hz, 0.8 Hz, 1H), 7.51-7.45 (m, 2H), 7.37 (d, *J* = 8.8 Hz, 2H), 7.03-7.01 (m, 2H), 6.82 (d, *J* = 8.8 Hz, 2H), 3.90 (s, 3H), 3.80 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 164.5, 159.9, 140.9, 134.1, 134.0, 133.5, 131.0, 129.7, 129.1, 127.1, 115.3, 114.4, 113.9, 112.7, 80.4, 71.2, 55.7, 55.3. IR (neat): 3079, 2995, 2841, 2231, 1605, 1593, 1574, 1513, 1497, 1488, 1443, 1363, 1329, 1249, 1164, 1089, 1030, 1016, 895, 845, 836, 814, 804, 782, 763, 697, 671 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M+Na]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>18</sub>O<sub>4</sub>N<sub>2</sub>SNa 441.0880, found 441.0869.





To a 100 mL Schlenk tube was added 2-(bromomethyl)benzonitrile (1.96 g, 10 mmol), BocTsNH (2.71 g, 10 mmol), K<sub>2</sub>CO<sub>3</sub> (2.76 g, 20 mmol) and MeCN (50 mL) under argon. The

mixture was heated at 60 °C (oil bath) for 8 h, then removed the solvent under the reduced pressure. The residue was extracted with ethyl acetate and the combined organic layers were washed with water and brine, and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The mixture was filtered and the solvent was evaporated under the reduced pressure, and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5/1) to afford the desired product **SS-5** in 89% yield (3.43 g) as a colorless oil. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.81 (d, *J* = 8.4 Hz, 2H), 7.66-7.58 (m, 3H), 7.39 (td, *J* = 7.6 Hz, 0.8 Hz, 1H), 7.34 (d, *J* = 8.0 Hz, 2H), 5.25 (s, 2H), 2.46 (s, 3H), 1.31 (s, 9H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  150.5, 144.7, 141.5, 136.4, 133.2, 132.6, 129.3, 128.0, 127.6, 126.9, 117.1, 110.6, 85.0, 48.6, 27.7, 21.6. IR (neat): 3001, 2967, 2925, 1719, 1664, 1597, 1462, 1337, 1283, 1219, 1163, 1086, 1027, 880, 812, 777, 734, 705, 673 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M+NH<sub>4</sub>]<sup>+</sup> Calcd for C<sub>20</sub>H<sub>26</sub>N<sub>3</sub>O<sub>4</sub>S 404.1639; Found 404.1637.

To a solution of SS-5 (3.43 g, 8.9 mmol) in DCM (89 mL) was cooled to 0 °C and TFA (10.1 g, 89 mmol) was added dropwise under air. The reaction mixture was warmed up to room temperature and stirred 4 h, then removed the solvent under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 3/1 to MeOH) to afford the crude product. The residue was dissolved with DCM and washed with saturated Na<sub>2</sub>CO<sub>3</sub> solution for three times, then dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The mixture was filtered and the solvent was evaporated under the reduced pressure. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 3/1 to petroleum ether/ethyl acetate/dichloromethane = 2/1/1) to afford the desired product S-5 in 59% yield with two steps (1.68 g) as a white solid. Alternatively, the following work-up procedure is also suitable for isolation of S-5: after the reaction was complete, the solvent was removed under the reduced pressure. The residue was dissolved in DCM and washed with saturated Na<sub>2</sub>CO<sub>3</sub> solution, then dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The mixture was filtered and the solvent was evaporated under the reduced pressure. The residue was purified by column chromatography on silica gel. M.p. 120-122 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.99 (br, 1H), 7.84 (d, *J* = 6.8 Hz, 3H), 7.51 (td, *J* = 7.2 Hz, 0.8 Hz, 1H), 7.42 (t, *J* = 7.2 Hz, 1H), 7.35-7.27 (m, 3H), 4.78 (s, 2H), 2.40 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 157.8 (m), 145.0, 138.1,

134.8, 132.4, 132.1, 130.0, 128.5, 127.1, 123.6, 122.7, 51.9, 21.5. IR (neat): 3318, 1659, 1597, 1468, 1439, 1350, 1304, 1241, 1209, 1169, 1158, 1150, 1107, 1086, 1062, 1017, 947, 875, 814, 807, 779, 741, 726, 703, 665 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>15</sub>H<sub>15</sub>O<sub>2</sub>N<sub>2</sub>S 287.0849; Found 287.0853.

To a solution of CuSO<sub>4</sub>•5H<sub>2</sub>O (50.0 mg, 0.2 mmol), 1,10-Phen (72.1 mg, 0.4 mmol), K<sub>2</sub>CO<sub>3</sub> (691.1 mg, 5 mmol), **S-5** (572.7 mg, 2 mmol) and toluene (6 mL) was added (bromoethynyl)benzene (434.5 mg, 2.4 mmol). The reaction mixture was heated to 80 °C (oil bath) for 18 h until the reaction was completed as monitored by TLC. Then petroleum ether was added and stirred for 10 min. The mixture was filtered over a celite pad, and the solvent was evaporated under the reduced pressure. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 5/1) to afford the desired product **5** in 93% yield (716.2 mg) as a yellow solid. M.p. 96-98 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.88 (d, *J* = 8.0 Hz, 2H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.65-7.60 (m, 2H), 7.44-7.37 (m, 3H), 7.30-7.24 (m, 5H), 4.80 (s, 2H), 2.46 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  145.2, 138.3, 134.0, 133.2, 132.7, 131.2, 130.0, 129.5, 128.7, 128.2, 127.9, 127.7, 122.2, 117.0, 112.2, 81.8, 71.5, 53.2, 21.6. IR (neat): 3016, 2242, 1594, 1365, 1327, 1230, 1187, 1172, 1110, 1086, 1044, 1021, 1012, 936, 814, 799, 785, 758, 738, 705, 692, 682 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + Na]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>18</sub>O<sub>2</sub>N<sub>2</sub>SNa 409.0981; Found 409.0978.

# **Optimization studies for the formation of 3a.**

### General procedure for optimization studies.



The reaction was conducted in an oven-dried screw-cap vial (volume: 4 mL) equipped with a magnetic stir bar. In a nitrogen-filled glove box, NiCl<sub>2</sub>(dppp) (5.4 mg, 0.01 mmol) [or other Ni(II) salts], Zn powder (13.1 mg, 0.2 mmol) [or other reductants], Zn(OTf)<sub>2</sub> (14.5 mg, 0.04 mmol) [or other Lewis acid], ynamide **1a** (74.5 mg, 0.2 mmol), 1,4-dioxane (2 mL) or

other solvents and 4-fluoroaniline (26.7 mg, 0.24 mmol) were added sequentially to a screwcap vial (If the aniline was solid, it was added before dioxane). The vial cap was securely fitted and taken outside the glove box, and sealed with electrical tape. After the reaction mixture was stirred in an oil bath preheated at 80 °C for 12 h, the mixture was quenched with brine and extracted with ethyl acetate. The combined organic layers were washed with brine and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The mixture was filtered and the solvent was evaporated under the reduced pressure. The residue was purified by column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 3/1 as the eluent to afford the crude product mainly containing **3a** and the starting material **1a**. The solvent was evaporated under the reduced pressure and the residue was dissolved in  $d_6$ -DMSO. The NMR yields were obtained by <sup>1</sup>H NMR analysis of the crude mixture using 1,3,5-trimethoxybenzene (33.6 mg, 0.2 mmol) as an internal standard.

|       | s<br>- + F-<br>N        |                         | 10 mol % NiCl <sub>2</sub> (DME)<br>1 mol % ligand<br>20 mol% Zn(OTf) <sub>2</sub><br>1.0 equiv Zn<br>dioxane, 80 °C,12 h | H<br>NH | N-(                    |
|-------|-------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------|---------|------------------------|
|       | 1a 2:                   | <b>a</b> (1.2 equiv)    |                                                                                                                           |         | <sup>2</sup> 3a        |
| entry | catalyst (mol%)         | ligand (mol%)           | Lewis acid (mol%)                                                                                                         | solvent | yield <sup>a</sup> (%) |
| 1     | NiCl <sub>2</sub> (DME) | dppp (10)               | Zn(OTf) <sub>2</sub>                                                                                                      | dioxane | 77 <sup>b</sup>        |
| 2     | NiCl <sub>2</sub> (DME) | dppp (10)               | -                                                                                                                         | dioxane | 38 ( 6 )               |
| 3     | NiCl <sub>2</sub> (DME) | PMePh <sub>2</sub> (20) | Zn(OTf) <sub>2</sub>                                                                                                      | dioxane | 20 (7)                 |
| 4     | NiCl <sub>2</sub> (DME) | Pcy <sub>3</sub> (20)   | Zn(OTf) <sub>2</sub>                                                                                                      | dioxane | 3 (54)                 |
| 5     | NiCl <sub>2</sub> (DME) | dppe (10)               | Zn(OTf) <sub>2</sub>                                                                                                      | dioxane | 4 (73)                 |
| 6     | NiCl <sub>2</sub> (DME) | Xantphos (10)           | Zn(OTf) <sub>2</sub>                                                                                                      | dioxane | - (72)                 |
| 7     | NiCl <sub>2</sub> (DME) | dtbbpy (10)             | Zn(OTf) <sub>2</sub>                                                                                                      | dioxane | - (85)                 |
|       |                         |                         |                                                                                                                           |         |                        |

| Table S1. | The effect of | of the l | ligands |
|-----------|---------------|----------|---------|
|-----------|---------------|----------|---------|

<sup>a</sup>Determined by <sup>1</sup>H NMR using 1,3,5-trimethoxybenzene as an internal standard. The yields of the unreacted **1a** are shown in parentheses. <sup>b</sup>Isolated yield.



|       | Ph + F-                  |               | 10 mol % catalyst<br>10 mol % dppp<br>20 mol% Zn(OTf) <sub>2</sub><br>1.0 equiv Zn<br>dioxane, 80 °C, 12 h | - C     | $N \rightarrow F$<br>Ph    |
|-------|--------------------------|---------------|------------------------------------------------------------------------------------------------------------|---------|----------------------------|
| 18    | a 2a (                   | 1.2 equiv)    |                                                                                                            |         | 3a                         |
| entry | catalyst (mol%)          | ligand (mol%) | Lewis acid (mol%)                                                                                          | solvent | yield <sup>a</sup> (%)     |
| 1     | NiBr <sub>2</sub> (DME)  | dppp          | Zn(OTf) <sub>2</sub>                                                                                       | dioxane | 11 (50)                    |
| 2     | Nil <sub>2</sub>         | dppp          | Zn(OTf) <sub>2</sub>                                                                                       | dioxane | 77 (-)                     |
| 3     | $NiCl_2 \bullet 6H_2O$   | dppp          | Zn(OTf) <sub>2</sub>                                                                                       | dioxane | 38 (6)                     |
| 4     | NiCl <sub>2</sub> (dppp) | -             | Zn(OTf) <sub>2</sub>                                                                                       | dioxane | <b>78, 77</b> <sup>b</sup> |

<sup>a</sup>Determined by <sup>1</sup>H NMR using 1,3,5-trimethoxybenzene as an internal standard. The yields of the unreacted **1a** are shown in parentheses. <sup>b</sup>Isolated yield.

# Table S3. The effect of the additives

|       | rs<br>N<br>Ph + F<br>CN  | $-\sqrt{\frac{10}{\text{NH}_2}}$ | mol % NiCl <sub>2</sub><br>ool% Lewis a<br>equiv Zn<br>oxane, 80 °C | $\frac{(dppp)}{acld}$   | H<br>N<br>NH <sub>2</sub> | N                      |
|-------|--------------------------|----------------------------------|---------------------------------------------------------------------|-------------------------|---------------------------|------------------------|
|       | 1a 2a                    | (1.2 equiv)                      |                                                                     |                         |                           | 3a                     |
| entry | catalyst (mol%)          | Lewis acid (mol%)                | solvent                                                             | temp. ( <sup>o</sup> C) | time (h)                  | yield <sup>a</sup> (%) |
| 1     | NiCl <sub>2</sub> (dppp) | Sc(OTf) <sub>3</sub> (20)        | dioxane                                                             | 80                      | 12                        | 63 (3)                 |
| 2     | NiCl <sub>2</sub> (dppp) | AI(OTf) <sub>3</sub> (20)        | dioxane                                                             | 80                      | 12                        | 48 (7)                 |
| 3     | NiCl <sub>2</sub> (dppp) | Fe(OTf) <sub>3</sub> (20)        | dioxane                                                             | 80                      | 12                        | 7 (54)                 |
| 4     | NiCl <sub>2</sub> (dppp) | ZnCl <sub>2</sub> (20)           | dioxane                                                             | 80                      | 12                        | 73 (2)                 |
| 5     | NiCl <sub>2</sub> (dppp) | BPh <sub>3</sub> (20)            | dioxane                                                             | 80                      | 12                        | 16 (11)                |
| 6     | NiCl <sub>2</sub> (dppp) | Zn(OTf) <sub>2</sub> (50)        | dioxane                                                             | 80                      | 12                        | 73 (2)                 |
| 7     | NiCl <sub>2</sub> (dppp) | Zn(OTf) <sub>2</sub> (100)       | dioxane                                                             | 80                      | 12                        | 78 (-)                 |

<sup>a</sup>Determined by <sup>1</sup>H NMR using 1,3,5-trimethoxybenzene as an internal standard. The yields of the unreacted **1a** are shown in parentheses.

# Table S4. The effect of the solvent

|       | s<br>Ph + F-                  | $- \frac{1.0}{\text{NH}_2} = \frac{1.0}{\text{SO}}$ | nol % NiCl <sub>2</sub> (<br>mol% Zn(O<br>) equiv Zn<br><mark>Ivent</mark> , 80 <sup>o</sup> C, | $\frac{(dppp)}{Tf)_2}$  | H<br>NH <sub>2</sub> | NF<br>Ph                   |
|-------|-------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------|----------------------|----------------------------|
|       |                               |                                                     |                                                                                                 |                         |                      | 5a                         |
| entry | catalyst (mol%)               | Lewis acid (mol%)                                   | solvent                                                                                         | temp. ( <sup>o</sup> C) | time (h)             | yield <sup>a</sup> (%)     |
| 1     | NiCl <sub>2</sub> (dppp) (10) | Zn(OTf) <sub>2</sub>                                | dioxane                                                                                         | 80                      | 12                   | <b>78, 77</b> <sup>b</sup> |
| 2     | NiCl <sub>2</sub> (dppp) (5)  | Zn(OTf) <sub>2</sub>                                | dioxane                                                                                         | 80                      | 12                   | 81, 77 <sup>b</sup>        |
| 3     | NiCl <sub>2</sub> (dppp) (5)  | Zn(OTf) <sub>2</sub>                                | THF                                                                                             | 80                      | 12                   | 71                         |
| 4     | NiCl <sub>2</sub> (dppp) (5)  | Zn(OTf) <sub>2</sub>                                | CH₃CN                                                                                           | 80                      | 12                   | 33 (32)                    |
| 5     | NiCl <sub>2</sub> (dppp) (5)  | Zn(OTf) <sub>2</sub>                                | toluene                                                                                         | 80                      | 12                   | 57 (6)                     |
| 6     | NiCl <sub>2</sub> (dppp) (5)  | Zn(OTf) <sub>2</sub>                                | DMF                                                                                             | 80                      | 12                   | 22 (13)                    |
|       |                               |                                                     |                                                                                                 |                         |                      |                            |

<sup>a</sup>Determined by <sup>1</sup>H NMR using 1,3,5-trimethoxybenzene as an internal standard. The yields of the unreacted **1a** are shown in parentheses. <sup>b</sup>Isolated yield.

# Table S5. The effect of the temperature and the amount of Zn powder



<sup>a</sup>Determined by <sup>1</sup>H NMR using 1,3,5-trimethoxybenzene as an internal standard. The yields of the unreacted **1a** are shown in parentheses. <sup>b</sup>50 mol% Zn powder was used (Alfa 100 mesh). <sup>c</sup>20 mol% Zn powder was used (Alfa 100 mesh).

Table S6. Control experiments

|                       | Ts<br>N<br>CN<br>Ph +         | F             | 5 mol% NiCl <sub>2</sub> (d<br>20 mol% Zn(OT<br>1.0 equiv Zn<br>dioxane, 80 °C, 7 | $\frac{ppp)}{f_{2}} \rightarrow 12 h$ | H<br>NH <sub>2</sub> | N<br>Ph<br>3a | F                      |
|-----------------------|-------------------------------|---------------|-----------------------------------------------------------------------------------|---------------------------------------|----------------------|---------------|------------------------|
| entry                 | catalyst (mol%)               | ligand (mol%) | Lewis acid (mol%)                                                                 | solvent                               | temp. (°C)           | time (h)      | yield <sup>a</sup> (%) |
| 1                     | -                             | dppp (5)      | Zn(OTf) <sub>2</sub> (20)                                                         | dioxane                               | 80                   | 12            | - (70)                 |
| 2                     | NiCl <sub>2</sub> (DME) (5)   | -             | Zn(OTf) <sub>2</sub> (20)                                                         | dioxane                               | 80                   | 12            | - (81)                 |
| 3                     | NiCl <sub>2</sub> (dppp) (5)  | -             | -                                                                                 | dioxane                               | 80                   | 12            | 25 (35)                |
| 4 <sup><i>b</i></sup> | NiCl <sub>2</sub> (dppp) (5)  | -             | Zn(OTf) <sub>2</sub> (20)                                                         | dioxane                               | 80                   | 12            | - (61)                 |
| 5 <sup>c</sup>        | NiCl <sub>2</sub> (dppp) (10) | -             | Zn(OTf) <sub>2</sub> (20)                                                         | dioxane                               | 80                   | 12            | 31 (25)                |
| 6 <sup>c</sup>        | NiCl <sub>2</sub> (dppp) (10) | -             | Zn(OTf) <sub>2</sub> (100)                                                        | dioxane                               | 80                   | 12            | 78                     |

<sup>a</sup>Determined by <sup>1</sup>H NMR using 1,3,5-trimethoxybenzene as an internal standard. The yields of the unreacted **1a** are shown in parentheses. <sup>b</sup>Without Zn powder (Alfa 100 mesh). <sup>c</sup>1.0 equiv Zinc powder (Adamas 325 mesh) was used.

### Synthesis of (E)-2-(((4-Fluorophenyl)imino)(phenyl)methyl)-1H-indol-3-amine (3a).



The reaction was conducted in an oven-dried screw-cap vial (volume: 8 mL) equipped with a magnetic stir bar. In a nitrogen-filled glove box, NiCl<sub>2</sub>(dppp) (8.1 mg, 0.015 mmol), Zn powder (19.6 mg, 0.3 mmol), Zn(OTf)<sub>2</sub> (21.8 mg, 0.06 mmol), ynamide **1a** (111.7 mg, 0.3 mmol), 1,4-dioxane (3 mL) and 4-fluoroaniline (40.0 mg, 0.36 mmol) were added sequentially to a screw-cap vial. The vial cap was securely fitted and taken outside the glove box, and sealed with electrical tape. After the reaction mixture was stirred in an oil bath preheated at 80 °C for 12 h, the mixture was quenched with brine and extracted with ethyl acetate. The combined organic layers were washed with brine and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The mixture was filtered and the solvent was evaporated under the reduced pressure. The residue was purified by column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 3/1 as the eluent to afford the desired product **3a** in 77% yield (75.6 mg) as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.53 (d, *J* = 8.0 Hz, 1H), 7.52-7.35 (br, 1H), 7.35-7.34 (m, 3H), 7.22-7.21

(m, 3H), 7.13-7.11 (m, 1H), 7.02 (t, J = 7.2 Hz, 1H), 6.79 (t, J = 8.4 Hz, 2H), 6.67-6.63 (m, 2H), 5.05 (br, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  161.9 (m), 158.9 (d, <sup>1</sup> $J_{C-F} = 239.9$  Hz), 146.5 (d, <sup>4</sup> $J_{C-F} = 2.3$  Hz), 136.0, 135.5, 132.0, 129.0, 128.8, 128.6, 125.7, 123.3 (d, <sup>3</sup> $J_{C-F} = 7.6$  Hz), 120.5, 118.9, 118.7, 117.3, 114.9 (d, <sup>2</sup> $J_{C-F} = 22.8$  Hz), 111.4. <sup>13</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  -121.3. IR (neat): 3405, 3382, 3257, 3058, 1604, 1593, 1569, 1519, 1494, 1446, 1361, 1327, 1289, 1269, 1214, 1197, 1152, 1091, 1008, 981, 923, 890, 837, 805, 785, 757, 739, 702 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>17</sub>N<sub>3</sub>F 330.1401; Found 330.1394. Note: high purity of the starting material is important for reproducibility.

# Typical procedure for the synthesis of (*E*)-2-(((2-Fluorophenyl)imino)(phenyl)methyl)-1*H*-indol-3-amine (3b).



NiCl<sub>2</sub>(dppp) (16.3 mg, 0.03 mmol), Zn powder (19.6 mg, 0.3 mmol), Zn(OTf)<sub>2</sub> (21.8 mg, 0.06 mmol), ynamide **1a** (111.7 mg, 0.3 mmol), 1,4-dioxane (3 mL) and 2-fluoroaniline (40.4 mg, 0.36 mmol) were added sequentially to a 8 mL screw-cap vial. The vial cap was securely fitted and taken outside the glove box, and sealed with electrical tape. After the reaction mixture was stirred at 80 °C (oil bath) for 12 h, the mixture was quenched with brine and extracted with ethyl acetate. The combined organic layers were washed with brine and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The mixture was filtered and the solvent was evaporated under the reduced pressure. The residue was purified by column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 5/1 as the eluent to afford the desired product **3b** in 50% yield (49.7 mg) as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.53 (d, *J* = 8.0 Hz, 1H), 7.54-7.32 (br, 1H), 7.32-7.30 (m, 5H), 7.25-7.21 (m, 1H), 7.14-7.12 (m, 1H), 7.02 (t, *J* = 7.2 Hz, 1H), 6.90-6.82 (m, 3H), 6.73-6.70 (m, 1H), 5.10 (br, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  163.7, 153.3 (d, <sup>1</sup>*J*<sub>C-F</sub> = 242.6 Hz), 138.8 (d, <sup>2</sup>*J*<sub>C-F</sub> = 12.5 Hz), 136.2, 135.7, 132.7, 129.1, 128.6, 128.0,

125.9, 123.8 (d,  ${}^{3}J_{C-F} = 7.3$  Hz), 123.7, 123.6 (d,  ${}^{4}J_{C-F} = 3.7$  Hz), 120.4, 119.0, 118.6, 117.1, 115.4 (d,  ${}^{2}J_{C-F} = 20.2$  Hz), 111.5.  ${}^{13}F$  NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  -124.7. IR (neat): 3396, 3241, 3058, 3045, 2222, 1604, 1568, 1513, 1490, 1444, 1357, 1328, 1287, 1271, 1248, 1208, 1172, 1152, 1103, 1008, 980, 890, 858, 843, 791, 779, 734, 703 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>17</sub>N<sub>3</sub>F 330.1401; Found 330.1401.



# (*E*)-2-(((4-Chlorophenyl)imino)(phenyl)methyl)-1*H*-indol-3-amine (3c).

NiCl<sub>2</sub>(dppp) (16.3 mg, 0.03 mmol), Zn powder (19.6 mg, 0.3 mmol), Zn(OTf)<sub>2</sub> (21.8 mg, 0.06 mmol), ynamide **1a** (111.7 mg, 0.3 mmol), 4-chloroaniline (45.9 mg, 0.36 mmol) and 1,4-dioxane (3 mL) were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 3/1 as the eluent afforded the desired product **3c** in 35% yield (35.9 mg) as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.54 (d, *J* = 8.0 Hz, 1H), 7.53-7.36 (br, 1H), 7.36 (s, 3H), 7.24 (s, 3H), 7.15-7.13 (m, 1H), 7.06-7.01 (m, 3H), 6.64 (d, *J* = 8.0 Hz, 2H), 5.08 (br, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  161.9, 149.0, 136.1, 135.3, 132.4, 129.1, 128.8, 128.6, 128.3, 127.9, 125.9, 123.4, 120.4, 118.9, 118.7, 117.2, 111.4. IR (neat): 3414, 3390, 3267, 3058, 3021, 1615, 1602, 1594, 1568, 1514, 1486, 1475, 1445, 1359, 1325, 1287, 1262, 1246, 1197, 1154, 1091, 1009, 981, 889, 842, 831, 788, 744, 734, 716, 699 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>17</sub>N<sub>3</sub>Cl 346.1106; Found 346.1105.



### (E)-(4-(((3-Amino-1H-indol-2-yl)(phenyl)methylene)amino)phenyl)(phenyl)methanone

(3d). NiCl<sub>2</sub>(dppp) (16.3 mg, 0.03 mmol), Zn powder (19.6 mg, 0.3 mmol), Zn(OTf)<sub>2</sub> (21.8 mg, 0.06 mmol), ynamide **1a** (111.7 mg, 0.3 mmol), 4-aminobenzophenone (71.0 mg, 0.36 mmol) and 1,4-dioxane (3 mL) were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 3/1 as the eluent afforded the desired product **3d** in 54% yield (67.3 mg) as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.70-7.13 (m, 16H), 7.03 (t, *J* = 7.2 Hz, 1H), 6.79 (d, *J* = 7.6 Hz, 2H), 5.24 (br, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  195.9, 161.8 (m), 155.1, 138.2, 136.4, 135.1, 133.1, 131.8, 131.5, 131.1, 129.7, 129.2, 128.8, 128.5, 128.0, 126.1, 121.9, 120.2, 119.0, 118.7, 117.1, 111.5 IR (neat): 3427, 3368, 3241, 3055, 2239, 1635, 1593, 1567, 1508, 1444, 1412, 1359, 1329, 1315, 1307, 1296, 1270, 1208, 1172, 1160, 1141, 1103, 979, 937, 917, 890, 861, 850, 788, 749, 741, 726, 699 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>28</sub>H<sub>22</sub>N<sub>3</sub>O 416.1757; Found 416.1753.



Ethyl (*E*)-4-(((3-amino-1*H*-indol-2-yl)(phenyl)methylene)amino)benzoate (3e). NiCl<sub>2</sub>(dppp) (16.3 mg, 0.03 mmol), Zn powder (19.6 mg, 0.3 mmol), Zn(OTf)<sub>2</sub> (21.8 mg, 0.06 mmol), ynamide **1a** (111.7 mg, 0.3 mmol), ethyl aminobenzoate (59.5 mg, 0.36 mmol) and 1,4-dioxane (3 mL) were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 3/1 as the eluent afforded the desired product **3e** in 49% yield (55.8 mg) as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.80 (d, *J* = 8.8 Hz, 2H), 7.55 (d, *J* = 8.0 Hz, 1H), 7.56-7.34 (br, 1H), 7.34-7.32 (m, 3H), 7.26-7.23 (m, 3H), 7.15-7.13 (m, 1H), 7.04 (t, *J* = 7.6 Hz, 1H), 6.74 (d, *J* = 8.4 Hz, 2H), 5.18 (br, 2H), 4.29 (q, *J* = 6.8 Hz, 2H), 1.33 (t, *J* = 6.8 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  166.6, 161.8 (m), 155.1, 136.3, 135.1, 132.9, 130.0, 129.1, 128.8, 128.5, 126.1, 124.5, 121.9, 120.2, 119.0, 118.7, 117.1, 111.5, 60.6, 14.3. IR (neat): 3443, 3335, 3055, 2979, 2956, 1673, 1606, 1567, 1505, 1485, 1444, 1363, 1326, 1308, 1290, 1270, 1252, 1164, 1146, 1103, 1010, 977, 896, 867, 792, 780, 757, 744, 712, 702, 687 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z:  $[M + H]^+$  Calcd for C<sub>24</sub>H<sub>22</sub>N<sub>3</sub>O<sub>2</sub> 384.1707; Found 384.1701.



(*E*)-4-(((3-Amino-1*H*-indol-2-yl)(phenyl)methylene)amino)benzonitrile (3f). NiCl<sub>2</sub>(dppp) (16.3 mg, 0.03 mmol), Zn powder (19.6 mg, 0.3 mmol), Zn(OTf)<sub>2</sub> (21.8 mg, 0.06 mmol), ynamide **1a** (111.7 mg, 0.3 mmol), 4-aminobenzonitrile (42.5 mg, 0.36 mmol) and 1,4-dioxane (3 mL) were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 3/1 as the eluent afforded the desired product **3f** in 38% yield (38.5 mg) as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.56 (d, *J* = 8.0 Hz, 1H), 7.55-7.37 (br, 1H), 7.37-7.36 (m, 5H), 7.28-7.23 (m, 3H), 7.16-7.14 (m, 1H), 7.04 (t, *J* = 7.6 Hz, 1H), 6.76 (d, *J* = 8.0 Hz, 2H), 5.29 (br, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  162.3, 155.0, 136.6, 134.8, 132.5, 129.4, 128.9, 128.5, 126.4, 122.8, 120.0, 119.5, 119.1, 118.8, 111.5, 105.4. IR (neat): 3388, 3257, 3207, 3058, 2958, 2919, 2851, 1615, 1595, 1577, 1569, 1518, 1489, 1444, 1363, 1325, 1290, 1248, 1226, 1189, 1161, 1101, 1030, 983, 919, 890, 847, 804, 781, 760, 735, 714, 699 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>17</sub>N<sub>4</sub> 337.1448; Found 337.1440.



(*E*)-2-(Phenyl(phenylimino)methyl)-1*H*-indol-3-amine (3g). NiCl<sub>2</sub>(dppp) (16.3 mg, 0.03 mmol), Zn powder (19.6 mg, 0.3 mmol), Zn(OTf)<sub>2</sub> (21.8 mg, 0.06 mmol), ynamide 1a (111.7 mg, 0.3 mmol), 1,4-dioxane (3 mL) and aniline (33.5 mg, 0.36 mmol) were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum

ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 3/1 as the eluent afforded the desired product **3g** in 76% yield (71.0 mg) as a yellow solid. m.p. = 189-191 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.52 (d, *J* = 7.6 Hz, 1H), 7.53-7.32 (br, 1H), 7.32-7.31 (m, 3H), 7.26-7.20 (m, 3H), 7.13-7.07 (m, 3H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.87 (t, *J* = 7.2 Hz, 1H), 6.72 (d, *J* = 7.6 Hz, 2H), 4.98 (br, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  161.4, 150.5, 136.0, 135.6, 131.9, 128.8, 128.7, 128.6, 128.2, 125.6, 122.7, 122.1, 120.6, 118.8, 118.6, 117.4, 111.4. IR (neat): 3386, 3254, 3202, 3060, 3011, 1615, 1604, 1595, 1570, 1522, 1488, 1445, 1363, 1324, 1290, 1272, 1247, 1201, 1157, 1070, 984, 901, 847, 806, 785, 772, 755, 740, 728, 695 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>18</sub>N<sub>3</sub> 312.1495; Found 312.1493.



(*E*)-2-(Phenyl(*p*-tolylimino)methyl)-1*H*-indol-3-amine (3h). NiCl<sub>2</sub>(dppp) (10.8 mg, 0.02 mmol), Zn powder (13.1 mg, 0.2 mmol), Zn(OTf)<sub>2</sub> (14.5 mg, 0.04 mmol), ynamide 1a (74.5 mg, 0.2 mmol), *p*-toluidine (25.7 mg, 0.24 mmol) and 1,4-dioxane (2 mL) were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 3/1 as the eluent afforded the desired product 3h in 77% yield (50.2 mg) as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.52 (d, *J* = 8.0 Hz, 1H), 7.54-7.34 (br, 1H), 7.34-7.33 (m, 3H), 7.27-7.19 (m, 3H), 7.13-7.11 (m, 1H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.90 (d, *J* = 7.2 Hz, 2H), 6.62 (d, *J* = 8.0 Hz, 2H), 5.02 (br, 2H), 2.20 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  161.2 (m), 147.7, 135.80, 135.78, 132.1, 131.5, 128.9, 128.8, 128.7, 128.6, 125.4, 122.0, 120.6, 118.8, 118.6, 117.6, 111.3, 20.8. IR (neat): 3394, 3249, 3220, 3058, 3016, 2917, 2854, 1615, 1606, 1596, 1571, 1522, 1505, 1444, 1359, 1325, 1287, 1270, 1248, 1156, 1100, 983, 917, 888, 827, 816, 779, 756, 735, 700 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>20</sub>N<sub>3</sub> 326.1652; Found 326.1655.



(*E*)-2-(((4-Methoxyphenyl)imino)(phenyl)methyl)-1*H*-indol-3-amine (3i). NiCl<sub>2</sub>(dppp) (10.8 mg, 0.02 mmol), Zn powder (13.1 mg, 0.2 mmol), Zn(OTf)<sub>2</sub> (14.5 mg, 0.04 mmol), ynamide 1a (74.5 mg, 0.2 mmol), *p*-anisidine (29.6 mg, 0.24 mmol) and 1,4-dioxane (2 mL) were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 2/1 as the eluent afforded the desired product **3i** in 76% yield (51.8 mg) as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.52 (d, *J* = 8.0 Hz, 1H), 7.54-7.36 (br, 1H), 7.36-7.34 (m, 3H), 7.27-7.19 (m, 3H), 7.13-7.11 (m, 1H), 7.02 (t, *J* = 7.2 Hz, 1H), 6.66 (s, 4H), 5.03 (br, 2H), 3.69 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  161.0, 155.4, 143.5, 135.9, 135.8, 131.4, 128.8, 128.7, 125.4, 123.3, 120.6, 118.8, 118.5, 117.7, 113.6, 111.3, 55.2. IR (neat): 3419, 3370, 3291, 3055, 2992, 2958, 2833, 1608, 1596, 1560, 1513, 1505, 1494, 1465, 1452, 1440, 1355, 1321, 1276, 1247, 1230, 1179, 1170, 1104, 1025, 982, 888, 828, 811, 777, 740, 724, 702 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>20</sub>N<sub>3</sub>O 342.1601; Found 342.1596.



(*E*)-2-(((4-(*tert*-Butyl)phenyl)imino)(phenyl)methyl)-1*H*-indol-3-amine (3j). NiCl<sub>2</sub>(dppp) (10.8 mg, 0.02 mmol), Zn powder (13.1 mg, 0.2 mmol), Zn(OTf)<sub>2</sub> (14.5 mg, 0.04 mmol), ynamide 1a (74.5 mg, 0.2 mmol), 1,4-dioxane (2 mL) and 4-tert-butylaniline (35.8 mg, 0.24 mmol) were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 3/1 as the eluent afforded the desired product 3j

in 81% yield (59.6 mg) as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.51 (d, *J* = 8.0 Hz, 1H), 7.52-7.33 (br, 1H), 7.33-7.18 (m, 6H), 7.12-7.09 (m, 3H), 7.00 (t, *J* = 7.6 Hz, 1H), 6.66 (d, *J* = 8.4 Hz, 2H), 5.04 (br, 2H), 1.23 (s, 9H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  161.0 (m), 147.5, 145.5, 135.77, 135.76, 131.6, 128.8, 128.7, 128.6, 125.4, 125.1, 121.8, 120.6, 118.8, 118.5, 117.6, 111.3, 34.1, 31.3. IR (neat): 3443, 3055, 2960, 2901, 2862, 1606, 1568, 1507, 1492, 1444, 1360, 1322, 1283, 1267, 1246, 1200, 1150, 1106, 980, 888, 838, 787, 741, 703 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>25</sub>H<sub>26</sub>N<sub>3</sub> 368.2121; Found 368.2115.



(*E*)-2-(((4-(Dimethylamino)phenyl)imino)(phenyl)methyl)-1*H*-indol-3-amine (3k). NiCl<sub>2</sub>(dppp) (16.3 mg, 0.03 mmol), Zn powder (19.6 mg, 0.3 mmol), Zn(OTf)<sub>2</sub> (21.8 mg, 0.06 mmol), ynamide 1a (111.7 mg, 0.3 mmol), *N*,*N*-dimethyl-1,4-phenylenediamine (49.0 mg, 0.36 mmol) and 1,4-dioxane (3 mL) were stirred at 80 °C (oil bath) for 12 h. Twice column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 3/1 as the eluent afforded the desired product **3k** in 28% yield (29.3 mg) as a brown solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.53 (d, *J* = 8.4 Hz, 1H), 7.52-7.39 (br, 1H), 7.39-7.30 (m, 5H), 7.24-7.13 (m, 2H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.68 (d, *J* = 8.8 Hz, 2H), 6.52 (d, *J* = 8.8 Hz, 2H), 4.96 (br, 2H), 2.84 (s, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  159.4, 147.0, 139.9, 136.4, 135.6, 130.9, 128.9, 128.7, 125.1, 123.7, 120.9, 118.6, 118.5, 118.1, 112.7, 111.3, 40.9. IR (neat): 3424, 3259, 3205, 3053, 2791, 1606, 1593, 1569, 1509, 1441, 1324, 1284, 1272, 1245, 1222, 1164, 1058, 980, 948, 920, 889, 819, 789, 756, 740, 718, 699 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>23</sub>N4 355.1917; Found 355.1908.



(*E*)-2-(((3,5-Dimethylphenyl)imino)(phenyl)methyl)-1*H*-indol-3-amine (31). NiCl<sub>2</sub>(dppp) (16.3 mg, 0.03 mmol), Zn powder (19.6 mg, 0.3 mmol), Zn(OTf)<sub>2</sub> (21.8 mg, 0.06 mmol), ynamide 1a (111.7 mg, 0.3 mmol), 3,5-dimethylaniline (43.6 mg, 0.36 mmol) and 1,4-dioxane (3 mL) were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 3/1 as the eluent afforded the desired product **31** in 40% yield (40.6 mg) as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.53 (d, *J* = 8.0 Hz, 1H), 7.54-7.35 (br, 1H), 7.35-7.22 (m, 6H), 7.14-7.12 (m, 1H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.53 (s, 1H), 6.35 (s, 2H), 4.96 (br, 2H), 2.14 (s, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  161.1 (m), 150.3, 137.7, 135.83, 135.75, 131.6, 128.7, 128.6, 125.4, 124.5, 120.6, 119.9, 118.8, 118.6, 117.5, 111.4, 21.2. IR (neat): 3416, 3267, 3202, 2911, 2859, 1618, 1604, 1576, 1522, 1448, 1363, 1328, 1292, 1245, 1173, 1138, 1105, 1019, 979, 943, 891, 842, 739, 714, 698, 684 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>22</sub>N<sub>3</sub> 340.1808; Found 340.1806.



(*E*)-2-(([1,1'-Biphenyl]-4-ylimino)(phenyl)methyl)-1*H*-indol-3-amine (3m). NiCl<sub>2</sub>(dppp) (16.3 mg, 0.03 mmol), Zn powder (19.6 mg, 0.3 mmol), Zn(OTf)<sub>2</sub> (21.8 mg, 0.06 mmol), ynamide 1a (111.7 mg, 0.3 mmol), 4-aminobiphenyl (60.9 mg, 0.36 mmol) and 1,4-dioxane (3 mL) were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 3/1 as the eluent afforded the desired product **3m** in 45% yield (52.0 mg) as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.55-7.49 (m, 4H), 7.37-7.21

(m, 11H), 7.14-7.12 (m, 1H), 7.03 (t, J = 7.6 Hz, 1H), 6.79 (d, J = 8.0 Hz, 2H), 5.13 (br, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  161.4, 149.7, 140.7, 136.0, 135.6, 135.4, 132.1, 128.9, 128.8, 128.7, 128.6, 126.9, 126.7, 126.6, 125.7, 122.6, 120.5, 118.9, 118.6, 117.5, 111.4. IR (neat): 3427, 3283, 3160, 3079, 3053, 3024, 1602, 1592, 1567, 1513, 1480, 1445, 1326, 1290, 1259, 1248, 1154, 979, 922, 889, 840, 817, 789, 767, 734, 723, 697 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>27</sub>H<sub>22</sub>N<sub>3</sub> 388.1808; Found 388.1808.



(*E*)-2-((Naphthalen-1-ylimino)(phenyl)methyl)-1*H*-indol-3-amine (3h). NiCl<sub>2</sub>(dppp) (16.3 mg, 0.03 mmol), Zn powder (19.6 mg, 0.3 mmol), Zn(OTf)<sub>2</sub> (21.8 mg, 0.06 mmol), ynamide 1a (111.7 mg, 0.3 mmol), 1-naphthylamine (51.5 mg, 0.36 mmol) and 1,4-dioxane (3 mL) were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 5/1 as the eluent afforded the desired product **3n** in 34% yield (37.2 mg) as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.32-8.24 (m, 1H), 7.77-7.75 (m, 1H), 7.57(d, *J* = 8.0 Hz, 1H), 7.47-7.45 (m, 2H), 7.39 (d, *J* = 8.4 Hz, 1H), 7.27-7.03 (m, 10H), 6.45 (d, *J* = 7.6 Hz, 1H), 5.26 (br, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  161.9 (m), 147.1, 136.0, 135.5, 133.8, 132.2, 128.9, 128.6, 128.4, 128.0, 127.7, 125.9, 125.7, 125.5, 125.3, 124.1, 122.7, 120.5, 118.9, 118.7, 117.5, 115.8, 111.5. IR (neat): 3421, 3293, 3053, 1615, 1604, 1595, 1563, 1510, 1488, 1443, 1389, 1362, 1323, 1281, 1248, 1140, 1107, 1071, 1038, 1012, 1001, 982, 912, 885, 806, 791, 774, 735, 725, 714, 699 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>25</sub>H<sub>20</sub>N<sub>3</sub> 362.1652; Found 362.1650.



(*E*)-2-(Phenyl(thiazol-2-ylimino)methyl)-1*H*-indol-3-amine (30). NiCl<sub>2</sub>(dppp) (16.3 mg, 0.03 mmol), Zn powder (19.6 mg, 0.3 mmol), Zn(OTf)<sub>2</sub> (21.8 mg, 0.06 mmol), ynamide 1a (111.7 mg, 0.3 mmol), 2-aminothiazole (36.1 mg, 0.36 mmol) and 1,4-dioxane (3 mL) were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate/acetone = 1/3/1 as the eluent afforded the desired product **30** in 54% yield (51.9 mg) as a red solid. <sup>1</sup>H NMR (400 MHz, *d*<sub>6</sub>-DMSO):  $\delta$  9.57 (br, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.56 (s, 3H), 7.39-7.37 (m, 3H), 7.20-7.19 (m, 2H), 7.103-7.095 (m, 1H), 6.92-6.90 (m, 1H), 3.39 (br, 1H). <sup>13</sup>C NMR (100 MHz, *d*<sub>6</sub>-DMSO):  $\delta$  170.0, 163.6 (m), 139.4, 139.1, 138.2, 134.8, 130.2, 129.8, 128.6, 127.3, 121.1, 118.5, 118.0, 116.8, 116.6, 112.6. IR (neat): 3385, 3358, 3263, 2252, 1612, 1560, 1521, 1502, 1473, 1433, 1356, 1329, 1312, 1293, 1248, 1128, 1114, 1101, 1046, 1023, 995, 883, 821, 789, 753, 708, 695 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>18</sub>H<sub>15</sub>N<sub>4</sub>S 319.1012; Found 319.1014.



(*E*)-2-(((4-Fluorophenyl)imino)(phenyl)methyl)-1*H*-indol-3-amine (3a). This compound was synthesized from ynamide 1b. NiCl<sub>2</sub>(dppp) (10.8 mg, 0.02 mmol), Zn powder (13.1 mg, 0.2 mmol), Zn(OTf)<sub>2</sub> (72.7 mg, 0.2 mmol), ynamide 1b (59.3 mg, 0.2 mmol), 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg, 0.24 mmol) were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 3/1 as the eluent afforded the desired product **3a** in 58% yield (38.4 mg) as a yellow solid. The

spectroscopic data are in agreement with that obtained from 1a.



**3p**, EWG =  $SO_2(p-FC_6H_4)$ 

(E)-2-(((4-Fluorophenyl)imino)(4-methoxyphenyl)methyl)-1H-indol-3-amine (**3**p). NiCl<sub>2</sub>(dppp) (10.8 mg, 0.02 mmol), Zn powder (13.1 mg, 0.2 mmol), Zn(OTf)<sub>2</sub> (72.7 mg, 0.2 mmol), ynamide 1c (81.3 mg, 0.2 mmol), 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg, 0.24 mmol) in 4 mL screw-cap vial were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with  $NEt_3$ :petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 3/1 as the eluent afforded the desired product **3p** in 59% yield (42.3 mg) as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.56 (d, J = 8.0 Hz, 1H), 7.55-7.27 (br, 1H), 7.27-7.23 (m, 1H), 7.19-7.16 (m, 3H), 7.05 (t, *J* = 7.2 Hz, 1H), 6.89-6.81 (m, 4H), 6.70-6.66 (m, 2H), 5.02 (br, 2H), 3.82 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  161.7 (m), 159.8, 158.8 (d, <sup>1</sup>J<sub>C-F</sub> = 240.3 Hz), 146.7 (d, <sup>4</sup>J<sub>C-F</sub> = 2.8 Hz), 135.9, 131.8, 130.2, 127.5, 125.6, 123.3 (d,  ${}^{3}J_{C-F}$  = 7.6 Hz), 120.6, 118.8, 118.6, 117.7, 115.0 (d,  ${}^{2}J_{C-F}$  = 22.2 Hz), 114.1, 111.4, 55.2.  ${}^{13}F$  NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  -121.4. IR (neat): 3440, 3381, 1607, 1569, 1512, 1500, 1488, 1444, 1354, 1323, 1281, 1250, 1215, 1199, 1176, 1155, 1089, 1027, 983, 888, 838, 811, 789, 749, 735 cm<sup>-1</sup>. HRMS (ESI) calcd for C<sub>22</sub>H<sub>19</sub>N<sub>3</sub>OF [M+H]<sup>+</sup>: 360.1507, found 360.1504.



**3p**, EWG =  $SO_2(p-OMeC_6H_4)$ 

(*E*)-2-(((4-Fluorophenyl)imino)(4-methoxyphenyl)methyl)-1*H*-indol-3-amine (3p). This compound was synthesized from ynamide 1d. NiCl<sub>2</sub>(dppp) (10.8 mg, 0.02 mmol), Zn powder

(13.1 mg, 0.2 mmol),  $Zn(OTf)_2$  (72.7 mg, 0.2 mmol), ynamide 1d (83.7 mg, 0.2 mmol), 1,4dioxane (2 mL) and 4-fluoroaniline (26.7 mg, 0.24 mmol) in 4 mL screw-cap vial were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 3/1 as the eluent afforded the desired product **3p** in 58% yield (41.9 mg) as a yellow solid. The spectroscopic data are in agreement with that obtained from **1c**.



(*E*)-2-(((4-Fluorophenyl)imino)(*p*-tolyl)methyl)-1*H*-indol-3-amine (3q). NiCl<sub>2</sub>(dppp) (10.8 mg, 0.02 mmol), Zn powder (13.1 mg, 0.2 mmol), Zn(OTf)<sub>2</sub> (72.7 mg, 0.2 mmol), ynamide 1e (77.3 mg, 0.2 mmol), 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg, 0.24 mmol) in 4 mL screw-cap vial were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 5/1 as the eluent afforded the desired product 3q in 66% yield (45.5 mg) as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.54 (d, *J* = 8.0 Hz, 1H), 7.53-7.25 (br, 1H), 7.25-7.21 (m, 2H), 7.17-7.12 (m, 5H), 7.03 (t, *J* = 7.6 Hz, 1H), 6.80 (t, *J* = 8.8 Hz, 2H), 6.68-6.65 (m, 2H), 5.02 (br, 2H), 2.35 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 162.1 (m), 158.9 (d, <sup>1</sup>*J*<sub>C-F</sub> = 239.8 Hz), 146.7 (d, <sup>4</sup>*J*<sub>C-F</sub> = 2.8 Hz), 139.0, 135.9, 132.5, 131.8, 129.5, 128.6, 125.6, 123.3 (d, <sup>3</sup>*J*<sub>C-F</sub> = 7.7 Hz), 120.6, 118.8, 118.6, 117.5, 114.9 (d, <sup>2</sup>*J*<sub>C-F</sub> = 21.8 Hz), 111.4, 21.3. <sup>13</sup>F NMR (376 MHz, CDCl<sub>3</sub>): δ -121.4. IR (neat): 3453, 3304, 3249, 3058, 3021, 2917, 1598, 1570, 1514, 1493, 1446, 1357, 1328, 1285, 1266, 1221, 1213, 1194, 1181, 1151, 1088, 980, 834, 825, 789, 761, 742, 735, 703 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>19</sub>N<sub>3</sub>F 344.1558; Found 344.1565.



(*E*)-2-(((4-Fluorophenyl)imino)(4-methoxyphenyl)methyl)-1*H*-indol-3-amine (3p). This compound was synthesized from ynamide 1f. NiCl<sub>2</sub>(dppp) (10.8 mg, 0.02 mmol), Zn powder (13.1 mg, 0.2 mmol), Zn(OTf)<sub>2</sub> (72.7 mg, 0.2 mmol), ynamide 1f (80.5 mg, 0.2 mmol), 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg, 0.24 mmol) in 4 mL screw-cap vial were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 5/1 as the eluent afforded the desired product 3p in 58% yield (41.8 mg) as a yellow solid. The spectroscopic data are in agreement with that obtained from 1c.



(*E*)-2-((3,5-Dimethylphenyl)((4-fluorophenyl)imino)methyl)-1*H*-indol-3-amine (3r). NiCl<sub>2</sub>(dppp) (10.8 mg, 0.02 mmol), Zn powder (13.1 mg, 0.2 mmol), Zn(OTf)<sub>2</sub> (72.7 mg, 0.2 mmol), ynamide **1g** (80.1 mg, 0.2 mmol), 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg, 0.24 mmol) in 4 mL screw-cap vial were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 5/1 as the eluent afforded the desired product **3r** in 67% yield (48.1 mg) as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.52 (d, *J* = 8.4 Hz, 1H), 7.51-7.23 (br, 1H), 7.23-7.20 (m, 1H), 7.14-7.12 (m, 1H), 7.01 (t, *J* = 7.6 Hz, 1H), 6.97 (s, 1H), 6.83-6.77 (m, 4H), 6.69-6.65 (m, 2H), 4.99 (br, 2H), 2.25 (s, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  162.2 (m), 158.9 (d, <sup>1</sup>*J*<sub>C-F</sub> = 239.8 Hz), 146.6 (d, <sup>4</sup>*J*<sub>C-F</sub> = 2.8 Hz), 138.4, 135.9, 135.4, 131.7, 130.6, 126.1, 125.5, 123.3 (d, <sup>3</sup>*J*<sub>C-F</sub> = 8.1 Hz), 120.6, 118.8, 118.6, 117.6, 114.8 (d,  ${}^{2}J_{C-F}$  = 22.2 Hz), 111.4, 21.2.  ${}^{13}F$  NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  - 121.4. IR (neat): 3432, 3286, 3199, 2914, 2856, 1731, 1615, 1592, 1570, 1518, 1496, 1447, 1359, 1326, 1305, 1223, 1192, 1149, 1090, 1035, 1006, 919, 850, 824, 789, 759, 741, 730, 697 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>23</sub>H<sub>21</sub>N<sub>3</sub>F 358.1714; Found 358.1710.



(E)-2-((4-Chlorophenyl)((4-fluorophenyl)imino)methyl)-1H-indol-3-amine **(3s)**. NiCl<sub>2</sub>(dppp) (10.8 mg, 0.02 mmol), Zn powder (13.1 mg, 0.2 mmol), Zn(OTf)<sub>2</sub> (72.7 mg, 0.2 mmol), ynamide 1h (81.4 mg, 0.2 mmol), 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg, 0.24 mmol) in 4 mL screw-cap vial were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with  $NEt_3$ :petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 5/1 as the eluent afforded the desired product **3s** in 39% yield (28.4 mg) as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.55 (d, J = 8.0 Hz, 1H), 7.54-7.36 (br, 1H), 7.36-7.33 (m, 2H), 7.25 (td, J = 6.8 Hz, 1.2 Hz, 1H), 7.20-7.15 (m, 3H), 7.07-7.03 (m, 1H), 6.84-6.80 (m, 2H), 6.66-6.63 (m, 2H), 5.14 (br, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 160.7 (m), 159.0 (d, <sup>1</sup>J<sub>C-F</sub> = 240.6 Hz), 146.3 (d,  ${}^{4}J_{C-F} = 2.8$  Hz), 136.2, 135.1, 133.8, 132.4, 130.1, 129.1, 126.0, 123.2 (d,  ${}^{3}J_{C-F} = 8.1$  Hz), 120.4, 118.94, 118.85, 116.9, 115.1 (d,  ${}^{2}J_{C-F}$  = 22.2 Hz), 111.5.  ${}^{13}F$  NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$ -120.85--120.86 (m). IR (neat): 3424, 3259, 3045, 2919, 1599, 1572, 1517, 1493, 1447, 1328, 1285, 1261, 1216, 1196, 1152, 1085, 1015, 982, 832, 805, 754, 744, 731 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z:  $[M + H]^+$  Calcd for C<sub>21</sub>H<sub>16</sub>N<sub>3</sub>FCl 364.1011; Found 364.1006.



#### (E)-2-((2-Fluorophenyl)((4-fluorophenyl)imino)methyl)-1H-indol-3-amine

(3t).

NiCl<sub>2</sub>(dppp) (10.8 mg, 0.02 mmol), Zn powder (13.1 mg, 0.2 mmol), Zn(OTf)<sub>2</sub> (72.7 mg, 0.2 mmol), ynamide 1i (78.1 mg, 0.2 mmol), 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg, 0.24 mmol) in 4 mL screw-cap vial were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with  $NEt_3$ :petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 5/1 as the eluent afforded the desired product 3t in 56% yield (38.6 mg) as a yellow solid. The product contains small amount of ethyl acetate and NEt<sub>3</sub>. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.55 (d, J = 8.0 Hz, 1H), 7.54-7.39 (br, 1H), 7.39-7.33 (m, 1H), 7.27-7.22 (m, 2H), 7.18-7.14 (m, 2H), 7.08-7.02 (m, 2H), 6.83-6.79 (m, 2H), 6.73-6.70 (m, 2H), 5.09 (br, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 159.2 (d,  ${}^{1}J_{C-F}$  = 240.3 Hz), 158.6 (d,  ${}^{1}J_{C-F}$  = 247.5 Hz), 156.4 (m), 146.7 (d,  ${}^{4}J_{C-F}$  = 2.4 Hz), 136.3, 132.3, 131.2 (d,  ${}^{3}J_{C-F}$  = 7.6 Hz), 130.1 (d,  ${}^{4}J_{C-F}$  = 4.0 Hz), 125.9, 124.6 (d,  ${}^{4}J_{C-F}$  = 3.3 Hz), 123.3 (d,  ${}^{2}J_{C-F}$  = 18.1 Hz), 122.4 (d,  ${}^{3}J_{C-F}$  = 8.1 Hz), 120.5, 118.9, 118.8, 117.1, 116.2 (d,  ${}^{2}J_{C-F}$ = 21.4 Hz), 114.9 (d,  ${}^{2}J_{C-F}$  = 22.2 Hz), 111.5.  ${}^{13}F$  NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  -111.4--111.5 (m), -120.9. IR (neat): 3396, 3207, 3058, 1616, 1597, 1572, 1524, 1495, 1448, 1362, 1325, 1293, 1248, 1223, 1195, 1161, 1149, 1088, 1011, 987, 892, 839, 822, 800, 766, 753, 733, 704 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z:  $[M + H]^+$  Calcd for C<sub>21</sub>H<sub>16</sub>N<sub>3</sub>F<sub>2</sub> 348.1307; Found 348.1304.



# (*E*)-2-((4-Fluorophenyl)((4-fluorophenyl)imino)methyl)-1*H*-indol-3-amine (3u). NiCl<sub>2</sub>(dppp) (10.8 mg, 0.02 mmol), Zn powder (13.1 mg, 0.2 mmol), Zn(OTf)<sub>2</sub> (72.7 mg, 0.2 mmol), ynamide 1j (78.1 mg, 0.2 mmol), 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg, 0.24 mmol) in 4 mL screw-cap vial were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 5/1 as the eluent afforded the desired product **3u** in 68% yield (46.9 mg) as a yellow solid. <sup>1</sup>H NMR (400

MHz, CDCl<sub>3</sub>):  $\delta$  7.55 (d, J = 7.6 Hz, 1H), 7.42 (br, 1H), 7.26-7.20 (m, 3H), 7.16-7.14 (m, 1H), 7.07-7.03 (m, 3H), 6.81 (t, J = 8.8 Hz, 2H), 6.65-6.61 (m, 2H), 5.08 (br, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  162.7 (d, <sup>1</sup> $J_{C-F}$  = 248.7 Hz), 160.9 (m), 158.9 (d, <sup>1</sup> $J_{C-F}$  = 240.3 Hz), 146.4 (d, <sup>4</sup> $J_{C-F}$  = 2.8 Hz), 136.1, 132.3, 131.3 (d, <sup>4</sup> $J_{C-F}$  = 3.2 Hz), 130.7 (d, <sup>3</sup> $J_{C-F}$  = 8.0 Hz), 125.9, 123.2 (d, <sup>3</sup> $J_{C-F}$  = 7.7 Hz), 120.4, 118.9, 118.8, 117.1, 116.0 (d, <sup>2</sup> $J_{C-F}$  = 21.4 Hz), 115.1 (d, <sup>2</sup> $J_{C-F}$  = 22.2 Hz), 111.5. <sup>13</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  -110.8, -121.0. IR (neat): 3430, 3416, 3257, 3058, 1603, 1571, 1518, 1494, 1449, 1362, 1330, 1285, 1268, 1226, 1212, 1198, 1153, 1093, 1008, 985, 922, 836, 816, 797, 743, 735, 704 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>21</sub>H<sub>16</sub>N<sub>3</sub>F<sub>2</sub> 348.1307; Found 348.1301.



Ethyl (E)-4-((3-amino-1H-indol-2-yl)((4-fluorophenyl)imino)methyl)benzoate (**3**v). NiCl<sub>2</sub>(dppp) (10.8 mg, 0.02 mmol), Zn powder (13.1 mg, 0.2 mmol), Zn(OTf)<sub>2</sub> (72.7 mg, 0.2 mmol), ynamide 1k (88.9 mg, 0.2 mmol), 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg, 0.24 mmol) in 4 mL screw-cap vial were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with NEt3:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 5/1 as the eluent afforded the desired product **3v** in 61% yield (48.8 mg) as a yellow solid.<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.01 (d, *J* = 8.0 Hz, 2H), 7.55 (d, *J* = 8.0 Hz, 1H), 7.56-7.32 (br, 1H), 7.31 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 7.2 Hz, 1H), 7.15-7.13 (m, 1H), 7.04 (t, J = 7.2 Hz, 1H), 6.79 (t, J = 8.8 Hz, 2H), 6.65-6.62 (m, 2H), 5.19 (br, 2H), 4.36 (q, J = 7.2 Hz, 2H), 1.38 (t, J = 7.2 Hz, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  165.8, 161.0 (m), 159.0 (d, <sup>1</sup>J<sub>C-F</sub> = 240.6 Hz), 146.3 (d,  ${}^{4}J_{C-F} = 2.8$  Hz), 140.0, 136.3, 132.6, 130.8, 129.9, 128.7, 125.9, 123.2 (d,  ${}^{3}J_{C-F} = 7.7$  Hz), 120.3, 118.9, 118.8, 116.8, 115.1 (d,  ${}^{2}J_{C-F} = 22.2 \text{ Hz}$ ), 111.5, 61.3, 14.2.  ${}^{13}F$  NMR (376 MHz, CDCl<sub>3</sub>): δ-120.82--120.83 (m). IR (neat): 3458, 3440, 3357, 3060, 2987, 1712, 1703, 1695, 1617, 1601, 1572, 1513, 1499, 1490, 1448, 1403, 1365, 1327, 1289, 1278, 1216, 1179, 1152, 1131, 1104, 1090, 1021, 983, 856, 840, 804, 782, 740, 727, 706 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z:  $[M + H]^+$  Calcd for C<sub>24</sub>H<sub>21</sub>N<sub>3</sub>O<sub>2</sub>F 402.1612; Found 402.1613.



(*Z*)-2-((Phenylimino)(thiophen-2-yl)methyl)-1*H*-indol-3-amine (3w). NiCl<sub>2</sub>(dppp) (10.8 mg, 0.02 mmol), Zn powder (13.1 mg, 0.2 mmol), Zn(OTf)<sub>2</sub> (72.7 mg, 0.2 mmol), ynamide 11 (75.7 mg, 0.2 mmol), 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg, 0.24 mmol) in 4 mL screw-cap vial were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 5/1 as the eluent afforded the desired product **3w** in 58% yield (39.1 mg) as a yellow solid. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.66 (bs, 1H), 7.55 (d, *J* = 7.6 Hz, 1H), 7.40-7.39 (m, 1H), 7.27-7.23 (m, 1H), 7.18-7.16 (m, 1H), 7.10-7.09 (m, 1H), 7.06-7.02 (m, 2H), 6.88-6.84 (m, 2H), 6.74-6.70 (m, 2H), 5.17 (br, 2H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  159.2 (d, <sup>1</sup>*J*<sub>C-F</sub> = 240.6 Hz), 154.8, 146.9 (d, <sup>4</sup>*J*<sub>C-F</sub> = 2.8 Hz), 136.0, 134.8, 132.4, 129.6, 128.3, 126.9, 125.9, 122.7 (d, <sup>3</sup>*J*<sub>C-F</sub> = 7.7 Hz), 120.4, 119.0, 118.8, 117.3, 115.1 (d, <sup>2</sup>*J*<sub>C-F</sub> = 22.2 Hz), 111.5. <sup>13</sup>F NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  -120.8--120.9 (m). IR (neat): 3398, 3207, 3063, 1590, 1569, 1519, 1495, 1447, 1424, 1362, 1346, 1325, 1281, 1270, 1249, 1223, 1192, 1145, 1089, 1040, 965, 888, 853, 828, 800, 736, 699 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>19</sub>H<sub>15</sub>N<sub>3</sub>FS 336.0965; Found 336.0956.



(*E*)-2-(1-((4-Fluorophenyl)imino)ethyl)-1*H*-indol-3-amine (3x). NiCl<sub>2</sub>(dppp) (27.1 mg, 0.05 mmol), Zn powder (32.7 mg, 0.5 mmol), Zn(OTf)<sub>2</sub> (181.8 mg, 0.5 mmol), ynamide 1m 310.37 (155.2 mg, 0.5 mmol), 1,4-dioxane (5 mL) and 4-fluoroaniline (66.7 mg, 0.6 mmol) in 12 mL

screw-cap vial were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 5/1 as the eluent afforded the desired product **3x** in 21% yield (28.0 mg) as a yellow solid, and product **4** in 35% yield (54.8 mg). <sup>1</sup>H NMR (400 MHz, *d*<sub>6</sub>-DMSO): δ 10.34 (s, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.27 (d, *J* = 8.4 Hz, 1H), 7.18-7.13 (m, 3H), 6.92-6.85 (m, 3H), 6.17 (br, 2H), 2.21 (s, 3H). <sup>13</sup>C NMR (100 MHz, *d*<sub>6</sub>-DMSO): δ 161.1, 158.3 (d, <sup>1</sup>*J*<sub>C-F</sub> = 236.5 Hz), 147.6 (d, <sup>4</sup>*J*<sub>C-F</sub> = 2.3 Hz), 136.1, 132.0, 124.6, 122.5 (d, <sup>3</sup>*J*<sub>C-F</sub> = 7.4 Hz), 120.0, 119.6, 117.3, 117.0, 115.4 (d, <sup>2</sup>*J*<sub>C-F</sub> = 22.3 Hz), 111.6, 17.4. <sup>13</sup>F NMR (376 MHz, *d*<sub>6</sub>-DMSO): δ -121.9--122.0 (m). IR (neat): 3427, 3398, 3327, 3246, 3173, 3058, 1600, 1574, 1533, 1496, 1370, 1317, 1246, 1223, 1210, 1194, 1092, 1006, 853, 760, 743, 714 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>16</sub>H<sub>15</sub>N<sub>3</sub>F 268.1245; Found 268.1247.



#### N-(2-Cyanophenyl)-N-(3,4-dimethyl-5-tosyl-5H-pyrido[3,2-b]indol-2-yl)-4-

methylbenzenesulfonamide (4). M.p. 182-184 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.17 (d, J = 8.4 Hz, 1H), 7.78-7.76 (m, 1H), 7.64-7.61 (m, 1H), 7.50 (t, J = 7.6Hz, 1H), 7.44-7.41 (m, 3H), 7.33 (d, J = 7.2 Hz, 2H), 7.23 (d, J = 8.0 Hz, 2H), 7.10 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 8.0 Hz, 2H), 6.92 (d, J = 8.0 Hz, 2H), 2.80 (s, 3H), 2.77 (s, 3H), 2.46 (s, 3H), 2.22 (s, 3H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  149.7, 145.5, 144.6, 144.0, 142.9, 141.8, 141.6, 135.3, 134.5, 134.1, 132.8, 132.7, 131.5, 130.9, 129.6, 129.0, 128.8, 128.65, 128.56, 128.5, 127.0, 126.0, 120.0, 119.6, 117.5, 115.8, 21.7, 21.4, 19.5, 15.8. IR (neat): 2959, 2920, 2852, 2234, 1730, 1595, 1448, 1362, 1187, 1165, 1097, 1088, 1070, 875, 816, 790, 761, 719, 700, 681, 664 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>34</sub>H<sub>29</sub>N<sub>4</sub>O<sub>4</sub>S<sub>2</sub> 621.1625; Found 621.1625.

Typicalprocedureforthesynthesisof3-(((4-Fluorophenyl)amino)(phenyl)methyl)isoquinolin-4-amine (6).



NiCl<sub>2</sub>(dppp) (10.8 mg, 0.02 mmol), Zn powder (13.1 mg, 0.2 mmol), Zn(OTf)<sub>2</sub> (72.7 mg, 0.2 mmol), ynamide 5 (77.3 mg, 0.2 mmol), 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg, 0.24 mmol) were added sequentially to a 4 mL screw-cap vial. The vial cap was then securely fitted and taken outside the glove box. After the reaction mixture was stirred at 100 °C (oil bath) for 11 h, the mixture was quenched with brine and extracted with ethyl acetate. The combined organic layers were washed with brine and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The mixture was filtered and the solvent was evaporated under the reduced pressure, and the residue was purified by column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 5/1as the eluent to afford the desired product 6 in 57% yield (39.3 mg) as a yellow solid. M.p. = 143-145 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.76 (s, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.63-7.59 (m, 1H), 7.54-7.50 (m, 3H), 7.30 (t, *J* = 7.2 Hz, 2H), 7.24-7.20 (m, 1H), 6.82 (t, J = 8.8 Hz, 2H), 6.66-6.63 (m, 2H), 5.75 (s, 1H), 5.29 (br, 1H), 4.58 (s, 2H). <sup>13</sup>C NMR  $(100 \text{ MHz}, \text{CDCl}_3)$ :  $\delta$  156.1 (d,  ${}^{1}J_{\text{C-F}}$  = 234.0 Hz), 143.6 (d,  ${}^{4}J_{\text{C-F}}$  = 1.7 Hz), 142.1, 141.4, 135.7, 134.0, 129.2, 128.8, 128.1, 127.9, 127.6, 127.5, 126.8, 126.7, 119.7, 115.5 (d,  ${}^{2}J_{C-F}$  = 22.2 Hz), 114.9 (d,  ${}^{3}J_{C-F} = 7.6 \text{ Hz}$ ), 61.8.  ${}^{13}F$  NMR (376 MHz, CDCl<sub>3</sub>):  $\delta$  -127.27--127.3 (m). IR (neat): 3474, 3399, 3358, 3076, 3055, 2919, 2846, 1843, 1622, 1507, 1470, 1443, 1401, 1309, 1219, 1188, 1091, 951, 894, 817, 784, 770, 750, 736, 699 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>22</sub>H<sub>19</sub>N<sub>3</sub>F 344.1558; Found 344.1549.

Mechanistic studies.



The reaction was conducted in an oven-dried screw-cap vial (volume: 4 mL) equipped with a magnetic stir bar. In a nitrogen-filled glove box,  $Ni(cod)_2$  (5.5 mg, 0.02 mmol), dppp (8.2 mg, 0.02 mmol),  $Zn(OTf)_2$  (14.5 mg, 0.04 mmol), ynamide **1a** (74.5 mg, 0.2 mmol), 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg, 0.24 mmol) were added sequentially to a screw-cap vial. The vial cap was then securely fitted and taken outside the glove box. After the reaction mixture was stirred at 80 °C (oil bath) for 12 h, trace amount of **3a** was observed according to TLC analysis.

When Ni(cod)<sub>2</sub> (5.5 mg, 0.02 mmol), dppp (8.2 mg, 0.02 mmol), Zn powder (13.1 mg, 0.2 mmol), Zn(OTf)<sub>2</sub> (14.5 mg, 0.04 mmol), ynamide **1a** (74.5 mg, 0.2 mmol), 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg, 0.24 mmol) were stirred at 80 °C (oil bath) for 12 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 3/1 as the eluent to afford the main product **3a** and starting material **1a** mixture. The solvent was evaporated under the reduced pressure and the residue was dissolved in  $d_6$ -DMSO. The NMR yields were obtained by <sup>1</sup>H NMR analysis of the crude mixture using 1,3,5-trimethoxybenzene (33.6 mg, 0.2 mmol) as an internal standard. The NMR yield of **3a** was 21% and the NMR yield of the unreacted **1a** was 24%.

When Ni(cod)<sub>2</sub> (55.0 mg, 0.2 mmol), dppp (82.5 mg, 0.2 mmol), ynamide **1a** (74.5 mg, 0.2 mmol), 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg, 0.24 mmol) were stirred at 80 °C (oil bath) for 1 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 3/1 as the eluent afforded the desired product **3a** in 50% yield (33.1 mg) as a yellow solid.

When Ni(cod)<sub>2</sub> (55.0 mg, 0.2 mmol), dppp (82.5 mg, 0.2 mmol), Zn(OTf)<sub>2</sub> (72.7 mg, 0.2 mmol), ynamide **1a** (74.5 mg, 0.2 mmol), 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg, 0.24 mmol) were stirred at 80 °C (oil bath) for 1 h. Column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 3/1 as the eluent afforded the desired product **3a** in 60% yield (39.8 mg) as a yellow solid.



The reaction was conducted in an oven-dried screw-cap vial (volume: 4 mL) equipped with a magnetic stir bar. In a nitrogen-filled glove box, ynamide 5 (77.3 mg, 0.2 mmol), Zn(OTf)<sub>2</sub> (72.7 mg, 0.2 mmol), dioxane (2 mL) and 4-fluoroaniline (26.7 mg, 0.24 mmol) were added sequentially to a screw-cap vial. The vial cap was then securely fitted and taken outside the glove box. After the reaction mixture was stirred at 100 °C (oil bath) for 10 h, the mixture was filter with a silica pad and washed with ethyl acetate. The solvent was evaporated under the reduced pressure and and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1) to afford the desired product 7 in 65% yield (64.9 mg) as a white solid. M.p. 119-121 °C. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.73 (d, J = 8.4 Hz, 2H), 7.52-7.50 (m, 1H), 7.34 (d, J = 8.0 Hz, 2H), 7.28-7.25 (m, 2H), 7.18-7.08 (m, 4H), 6.93 (t, J = 8.4 Hz, 2H), 6.84 (d, J = 7.2 Hz, 2H), 6.41-6.38 (m, 2H), 4.93 (s, 2H), 4.00 (s, 2H), 2.46 (s, 3H). m.p. = 119-121 °C. <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  159.4 (d, <sup>1</sup>*J*<sub>C-F</sub> = 240.4 Hz), 156.2, 144.7, 143.5 (d,  ${}^{4}J_{C-F}$  = 2.8 Hz), 139.9, 134.7, 134.3, 132.5, 132.3, 129.8, 129.1, 129.0, 128.5, 127.7, 127.5, 126.7, 120.9 (d,  ${}^{3}J_{C-F} = 8.0$  Hz), 117.2, 115.7 (d,  ${}^{2}J_{C-F} = 22.2$  Hz), 111.9, 49.2, 37.1, 21.6. <sup>13</sup>F NMR (376 MHz, CDCl<sub>3</sub>): δ -120.1. IR (neat): 3061, 3030, 2954, 2922, 2852, 2223, 1660, 1594, 1498, 1453, 1365, 1351, 1226, 1206, 1184, 1170, 1144, 1087, 1019, 881, 854, 844, 811, 771, 761, 737, 720, 707, 700, 692, 657 cm<sup>-1</sup>. HRMS (ESI-TOF) m/z: [M + H]<sup>+</sup> Calcd for C<sub>29</sub>H<sub>25</sub>N<sub>3</sub>O<sub>2</sub>FS 498.1646; Found 498.1646.



The reaction was conducted in an oven-dried screw-cap vial (volume: 4 mL) equipped with a magnetic stir bar. In a nitrogen-filled glove box, ynamide **5** (77.3 mg, 0.2 mmol),  $Zn(OTf)_2$  (14.5 mg, 0.04 mmol), toluene (2 mL) and 4-fluoroaniline (26.7 mg, 0.24 mmol) were added sequentially to a screw-cap vial. The vial cap was then securely fitted and taken outside the glove box. After the reaction mixture was stirred at 100 °C (oil bath) for 5h, the mixture was filter with a silica pad and washed with ethyl acetate. The solvent was evaporated under the reduced pressure and and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate = 10/1) to afford the desired product 7 in 88% yield (87.5 mg) as a white solid.



The reaction was conducted in an oven-dried screw-cap vial (volume: 4 mL) equipped with a magnetic stir bar. In a nitrogen-filled glove box, ynamide **5** (77.3 mg, 0.2 mmol), 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg, 0.24 mmol) were added sequentially to a screw-cap vial. The vial cap was then securely fitted and taken outside the glove box. After the reaction mixture was stirred at 100 °C (oil bath) for 10 h. The mixture was filter with a silica pad and washed with ethyl acetate. The solvent was evaporated under the reduced pressure and the NMR yields were obtained by <sup>1</sup>H NMR analysis of the crude mixture using 1,3,5-trimethoxybenzene (33.6 mg, 0.2 mmol) as an internal standard. No desired product was formed. The NMR yield of **5** was 96%.

## 1 mmol scale reaction of 1f.



(*E*)-2-(((4-Fluorophenyl)imino)(4-methoxyphenyl)methyl)-1*H*-indol-3-amine (3p). This compound was synthesized from ynamide 1f. To an oven dried Schlenk tube (25 mL) were added NiCl<sub>2</sub>(dppp) (54.2 mg, 0.1 mmol), Zn powder (65.4 mg, 1 mmol), Zn(OTf)<sub>2</sub> (363.5 mg, 1 mmol), ynamide 1f (402.5 mg, 1 mmol), 1,4-dioxane (10 mL) and 4-fluoroaniline (133.3 mg, 1.2 mmol) in the glovebox. The Schlenk tube was capped with a rubber septum and take out of the golvebox. The tube cap was then securely fitted and sealed with electrical tape, and the stopcock valve on the sidearm of the Schlenk tube was closed. After the reaction mixture was stirred at 80 °C (oil bath) for 12 h, the mixture was quenched with brine and extracted with ethyl acetate. The combined organic layers were washed with brine and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>. The mixture was filtered and the solvent was evaporated under the reduced pressure. The residue was purified by column chromatography on silica gel (which was treated with NEt<sub>3</sub>:petroleum ether = 1:20 and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate = 5/1 as the eluent afforded the desired product **3p** in 62% yield (222.8 mg) as a yellow solid.

## **References:**

- (1) Zhang, J.; Guo, M.; Chen, Y.; Zhang, S.; Wang, X.-N.; Chang, J. Org. Lett. 2019, 21, 1331.
- (2) (a) Wang, G.; You, X.; Gan, Y.; Liu, Y. Org. Lett. 2017, 19, 110. (b) Kloeckner, U.; Nachtsheim, B. J. Chem. Commun. 2014, 50, 10485.

The single crystal of 3g was prepared by slow diffusion of its solution in ethyl acetate/hexane. The structure of 3g was established by X-ray analysis of its crystal (Figure S1). Thermal ellipsoids are set at 30% probability.





| Crystal data and structure refinement for cd1 | 7034 (compound <b>3g</b> ). |                                 |  |  |
|-----------------------------------------------|-----------------------------|---------------------------------|--|--|
| Identification code                           | cd17034                     |                                 |  |  |
| Empirical formula                             | C21 H17 N3                  |                                 |  |  |
| Formula weight                                | 311.38                      |                                 |  |  |
| Temperature                                   | 293(2) K                    |                                 |  |  |
| Wavelength                                    | 0.71073 Å                   |                                 |  |  |
| Crystal system                                | Monoclinic                  |                                 |  |  |
| Space group                                   | P 21/c                      |                                 |  |  |
| Unit cell dimensions                          | a = 11.5511(18) Å           | $\alpha = 90^{\circ}$ .         |  |  |
|                                               | b = 15.281(3) Å             | $\beta = 103.866(4)^{\circ}.$   |  |  |
|                                               | c = 9.5714(16) Å            | $\gamma = 90^{\circ}.$          |  |  |
| Volume                                        | 1640.2(5) Å <sup>3</sup>    |                                 |  |  |
| Z                                             | 4                           |                                 |  |  |
| Density (calculated)                          | 1.261 Mg/m <sup>3</sup>     |                                 |  |  |
| Absorption coefficient                        | 0.076 mm <sup>-1</sup>      |                                 |  |  |
| F(000)                                        | 656                         |                                 |  |  |
| Crystal size                                  | 0.180 x 0.140 x 0.100 m     | m <sup>3</sup>                  |  |  |
| Theta range for data collection               | 1.816 to 24.996°.           |                                 |  |  |
| Index ranges                                  | -13<=h<=13, -18<=k<=        | 13, -11<=l<=11                  |  |  |
| Reflections collected                         | 8935                        |                                 |  |  |
| Independent reflections                       | 2886 [R(int) = 0.0405]      |                                 |  |  |
| Completeness to theta = $25.242^{\circ}$      | 97.4 %                      | 97.4 %                          |  |  |
| Absorption correction                         | Semi-empirical from equ     | Semi-empirical from equivalents |  |  |
| Max. and min. transmission                    | 0.7456 and 0.6486<br>\$36   | 0.7456 and 0.6486<br>\$36       |  |  |
| Refinement method                 | Full-matrix least-squares on F <sup>2</sup> |
|-----------------------------------|---------------------------------------------|
| Data / restraints / parameters    | 2886 / 0 / 229                              |
| Goodness-of-fit on F <sup>2</sup> | 1.151                                       |
| Final R indices [I>2sigma(I)]     | R1 = 0.0651, wR2 = 0.1398                   |
| R indices (all data)              | R1 = 0.0904, wR2 = 0.1513                   |
| Extinction coefficient            | n/a                                         |
| Largest diff. peak and hole       | 0.186 and -0.139 e.Å <sup>-3</sup>          |

The single crystal of **4** was prepared by slow diffusion of its solution in dichloromethane/ethyl acetate/hexane. The structure of **4** was established by X-ray analysis of its crystal (Figure S2). Thermal ellipsoids are set at 30% probability.



Figure S2. X-ray crystal structure of compound 4

| Crystal data and structure refinement f | for mo_d8v21043_0m_4. (compound <b>4</b> ) |
|-----------------------------------------|--------------------------------------------|
| Identification code                     | mo_d8v21043_0m_4                           |
| Empirical formula                       | C34 H28 N4 O4 S2                           |
| Formula weight                          | 620.72                                     |
| Temperature                             | 193(2) K                                   |
|                                         | S37                                        |

| Wavelength                               | 0.71073 Å                          |                                             |  |
|------------------------------------------|------------------------------------|---------------------------------------------|--|
| Crystal system                           | Triclinic                          |                                             |  |
| Space group                              | P -1                               |                                             |  |
| Unit cell dimensions                     | a = 9.4151(8) Å                    | $\alpha = 90.241(3)^{\circ}.$               |  |
|                                          | b = 13.3841(12) Å                  | β= 94.199(3)°.                              |  |
|                                          | c = 14.0084(13)  Å                 | $\gamma = 104.514(3)^{\circ}.$              |  |
| Volume                                   | 1703.8(3) Å <sup>3</sup>           |                                             |  |
| Z                                        | 2                                  |                                             |  |
| Density (calculated)                     | 1.210 Mg/m <sup>3</sup>            |                                             |  |
| Absorption coefficient                   | 0.197 mm <sup>-1</sup>             |                                             |  |
| F(000)                                   | 648                                |                                             |  |
| Crystal size                             | 0.200 x 0.150 x 0.120 mr           | n <sup>3</sup>                              |  |
| Theta range for data collection          | 2.766 to 24.996°.                  |                                             |  |
| Index ranges                             | -16<=h<=16, -17<=k<=1              | 7, -22<=l<=20                               |  |
| Reflections collected                    | 48588                              |                                             |  |
| Independent reflections                  | 5918 [R(int) = 0.0583]             |                                             |  |
| Completeness to theta = $25.242^{\circ}$ | 96.1 %                             |                                             |  |
| Absorption correction                    | Semi-empirical from equ            | ivalents                                    |  |
| Max. and min. transmission               | 0.7456 and 0.6630                  | 0.7456 and 0.6630                           |  |
| Refinement method                        | Full-matrix least-squares          | Full-matrix least-squares on F <sup>2</sup> |  |
| Data / restraints / parameters           | 5918 / 0 / 401                     | 5918 / 0 / 401                              |  |
| Goodness-of-fit on F <sup>2</sup>        | 1.103                              |                                             |  |
| Final R indices [I>2sigma(I)]            | R1 = 0.0802, wR2 = 0.20            | 22                                          |  |
| R indices (all data)                     | R1 = 0.0916, $wR2 = 0.20$          | 86                                          |  |
| Extinction coefficient                   | n/a                                |                                             |  |
| Largest diff. peak and hole              | 0.444 and -0.723 e.Å <sup>-3</sup> |                                             |  |

The single crystal of **S-5** was prepared by slow evaporation of its solution in methyl acetate/petroleum ether. The structure of **S-5** was established by X-ray analysis of its crystal (Figure S3). Thermal ellipsoids are set at 30% probability.





| Identification code                      | mo_d8v21055_0m                        |                         |
|------------------------------------------|---------------------------------------|-------------------------|
| Empirical formula                        | C15 H14 N2 O2 S                       |                         |
| Formula weight                           | 286.34                                |                         |
| Temperature                              | 193(2) K                              |                         |
| Wavelength                               | 0.71073 Å                             |                         |
| Crystal system                           | Monoclinic                            |                         |
| Space group                              | P 21/c                                |                         |
| Unit cell dimensions                     | a = 12.4834(5) Å                      | $\alpha = 90^{\circ}$ . |
|                                          | b = 5.1425(2) Å                       | β= 94.4310(10)°.        |
|                                          | c = 20.4041(6)  Å                     | $\gamma = 90^{\circ}.$  |
| Volume                                   | 1305.94(8) Å <sup>3</sup>             |                         |
| Z                                        | 4                                     |                         |
| Density (calculated)                     | $1.456 \text{ Mg/m}^3$                |                         |
| Absorption coefficient                   | 0.250 mm <sup>-1</sup>                |                         |
| F(000)                                   | 600                                   |                         |
| Crystal size                             | 0.200 x 0.120 x 0.100 mm <sup>3</sup> |                         |
| Theta range for data collection          | 2.486 to 25.998°.                     |                         |
| Index ranges                             | -15<=h<=12, -6<=k<=6, -25<=           | =l<=25                  |
| Reflections collected                    | 10279                                 |                         |
| Independent reflections                  | 2560 [R(int) = 0.0286]                |                         |
| Completeness to theta = $25.242^{\circ}$ | 99.6 %                                |                         |
|                                          | S39                                   |                         |

Crystal data and structure refinement for mo\_d8v21055\_0m (compound S-5).

| Absorption correction             | Semi-empirical from equivalents             |
|-----------------------------------|---------------------------------------------|
| Max. and min. transmission        | 0.7456 and 0.6605                           |
| Refinement method                 | Full-matrix least-squares on F <sup>2</sup> |
| Data / restraints / parameters    | 2560 / 0 / 186                              |
| Goodness-of-fit on F <sup>2</sup> | 1.063                                       |
| Final R indices [I>2sigma(I)]     | R1 = 0.0352, wR2 = 0.0843                   |
| R indices (all data)              | R1 = 0.0453, wR2 = 0.0916                   |
| Extinction coefficient            | n/a                                         |
| Largest diff. peak and hole       | 0.286 and -0.389 e.Å <sup>-3</sup>          |

The single crystal of **5** was prepared by slow evaporation of its solution in dichloromethane/hexane. The structure of **5** was established by X-ray analysis of its crystal (Figure S4). Thermal ellipsoids are set at 30% probability.



Figure S4. X-ray crystal structure of compound 5

Crystal data and structure refinement for d8v21050 (compound 5).

| Identification code  | d8v21050                                          |
|----------------------|---------------------------------------------------|
| Empirical formula    | C23 H18 N2 O2 S                                   |
| Formula weight       | 386.45                                            |
| Temperature          | 293(2) K                                          |
| Wavelength           | 0.71073 Å                                         |
| Crystal system       | Monoclinic                                        |
| Space group          | P 21/c                                            |
| Unit cell dimensions | $a = 10.2238(4) \text{ Å}$ $\alpha = 90^{\circ}.$ |
|                      | S41                                               |

|                                                  | b = 22.1909(10) Å                           | β=117.9640(10)°.       |
|--------------------------------------------------|---------------------------------------------|------------------------|
|                                                  | c = 10.0711(4)  Å                           | $\gamma = 90^{\circ}.$ |
| Volume                                           | 2018.11(15) Å <sup>3</sup>                  |                        |
| Z                                                | 4                                           |                        |
| Density (calculated)                             | 1.272 Mg/m <sup>3</sup>                     |                        |
| Absorption coefficient                           | 0.181 mm <sup>-1</sup>                      |                        |
| F(000)                                           | 808                                         |                        |
| Crystal size                                     | 0.180 x 0.150 x 0.100 mm <sup>3</sup>       |                        |
| Theta range for data collection                  | 2.255 to 25.999°.                           |                        |
| Index ranges                                     | -12<=h<=11, -23<=k<=27, -12                 | l<=l<=12               |
| Reflections collected                            | 10038                                       |                        |
| Independent reflections                          | 3941 [R(int) = 0.0283]                      |                        |
| Completeness to theta = $25.242^{\circ}$         | 99.3 %                                      |                        |
| Absorption correction                            | Semi-empirical from equivalen               | its                    |
| Max. and min. transmission                       | 0.7456 and 0.6763                           |                        |
| Refinement method                                | Full-matrix least-squares on F <sup>2</sup> |                        |
| Data / restraints / parameters                   | 3941 / 0 / 255                              |                        |
| Goodness-of-fit on F <sup>2</sup>                | 1.051                                       |                        |
| Final R indices [I>2sigma(I)]                    | R1 = 0.0469, wR2 = 0.1013                   |                        |
| R indices (all data)                             | R1 = 0.0665, wR2 = 0.1157                   |                        |
| Extinction coefficient                           | 0.018(3)                                    |                        |
| Largest diff. peak and hole 0.183 and -0.277 e.Å | -3                                          |                        |

The single crystal of **6** was prepared by slow evaporation of its solution in dichloromethane/petroleum ether. The structure of **6** was established by X-ray analysis of its crystal (Figure S5). Thermal ellipsoids are set at 30% probability.



### Figure S5. X-ray crystal structure of compound 6

| -                                        | - 、 1 /                                     |                                |
|------------------------------------------|---------------------------------------------|--------------------------------|
| Identification code                      | mo_d8v20253_0m                              |                                |
| Empirical formula                        | C22 H18 F N3                                |                                |
| Formula weight                           | 343.39                                      |                                |
| Temperature                              | 293(2) K                                    |                                |
| Wavelength                               | 0.71073 Å                                   |                                |
| Crystal system                           | Monoclinic                                  |                                |
| Space group                              | C 2/c                                       |                                |
| Unit cell dimensions                     | a = 18.6906(6) Å                            | $\alpha = 90^{\circ}$ .        |
|                                          | b = 8.6187(3) Å                             | $\beta = 92.8330(10)^{\circ}.$ |
|                                          | c = 21.8032(9) Å                            | $\gamma = 90^{\circ}$ .        |
| Volume                                   | 3508.0(2) Å <sup>3</sup>                    |                                |
| Z                                        | 8                                           |                                |
| Density (calculated)                     | 1.300 Mg/m <sup>3</sup>                     |                                |
| Absorption coefficient                   | 0.085 mm <sup>-1</sup>                      |                                |
| F(000)                                   | 1440                                        |                                |
| Crystal size                             | $0.200 \ge 0.160 \ge 0.140 \text{ mm}^3$    |                                |
| Theta range for data collection          | 2.603 to 25.998°.                           |                                |
| Index ranges                             | -22<=h<=22, -10<=k<=10, -26                 | 5<=l<=21                       |
| Reflections collected                    | 17267                                       |                                |
| Independent reflections                  | 3440 [R(int) = 0.0324]                      |                                |
| Completeness to theta = $25.242^{\circ}$ | 99.5 %                                      |                                |
| Absorption correction                    | Semi-empirical from equivalen               | its                            |
| Max. and min. transmission               | 0.7456 and 0.6494                           |                                |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup> |                                |
| Data / restraints / parameters           | 3440 / 0 / 244                              |                                |
| Goodness-of-fit on F <sup>2</sup>        | 1.036                                       |                                |
| Final R indices [I>2sigma(I)]            | R1 = 0.0423, wR2 = 0.1010                   |                                |
| R indices (all data)                     | R1 = 0.0599, wR2 = 0.1151                   |                                |
| Extinction coefficient                   | 0.0048(10)                                  |                                |
| Largest diff. peak and hole              | 0.301 and -0.287 e.Å <sup>-3</sup>          |                                |

Crystal data and structure refinement for mo\_d8v20253\_0m (compound 6).

The single crystal of 7 was prepared by slow evaporation of its solution in dichloromethane/hexane. The structure of 7 was established by X-ray analysis of its crystal (Figure S6). Thermal ellipsoids are set at 30% probability.



Figure S6. X-ray crystal structure of compound 7

Crystal data and structure refinement for mo\_d8v20727\_0m (compound 7).

| Identification code             | mo_d8v20727_0m                        |                         |
|---------------------------------|---------------------------------------|-------------------------|
| Empirical formula               | C29 H24 F N3 O2 S                     |                         |
| Formula weight                  | 497.57                                |                         |
| Temperature                     | 293(2) K                              |                         |
| Wavelength                      | 0.71073 Å                             |                         |
| Crystal system                  | Monoclinic                            |                         |
| Space group                     | C 2/c                                 |                         |
| Unit cell dimensions            | a = 30.093(2) Å                       | $\alpha = 90^{\circ}$ . |
|                                 | b = 8.4008(5) Å                       | β=103.592(2)°.          |
|                                 | c = 21.1075(15) Å                     | $\gamma = 90^{\circ}.$  |
| Volume                          | 5186.7(6) Å <sup>3</sup>              |                         |
| Z                               | 8                                     |                         |
| Density (calculated)            | 1.274 Mg/m <sup>3</sup>               |                         |
| Absorption coefficient          | 0.163 mm <sup>-1</sup>                |                         |
| F(000)                          | 2080                                  |                         |
| Crystal size                    | 0.180 x 0.130 x 0.100 mm <sup>3</sup> |                         |
| Theta range for data collection | 2.522 to 25.999°.                     |                         |
| Index ranges                    | -34<=h<=36, -10<=k<=10, -26<=l<=26    |                         |
| Reflections collected           | 38089<br>\$44                         |                         |

| Independent reflections                  | 5092 [R(int) = 0.0659]                      |
|------------------------------------------|---------------------------------------------|
| Completeness to theta = $25.242^{\circ}$ | 99.8 %                                      |
| Absorption correction                    | Semi-empirical from equivalents             |
| Max. and min. transmission               | 0.7456 and 0.6034                           |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup> |
| Data / restraints / parameters           | 5092 / 0 / 326                              |
| Goodness-of-fit on F <sup>2</sup>        | 1.055                                       |
| Final R indices [I>2sigma(I)]            | R1 = 0.0551, wR2 = 0.1178                   |
| R indices (all data)                     | R1 = 0.0931, wR2 = 0.1415                   |
| Extinction coefficient                   | n/a                                         |
| Largest diff. peak and hole              | 0.270 and -0.274 e.Å <sup>-3</sup>          |





 $\begin{array}{l} \textbf{SS-1c} \\ \textbf{R} = \textbf{SO}_2(p\textbf{-FC}_6\textbf{H}_4) \end{array}$ 



0.000



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)







**S-1c**  $R = SO_2(p-FC_6H_4)$ 



- 2.926

- 1.594

0.000



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)



S-1c

 $\mathsf{R}=\mathsf{SO}_2(p\mathsf{-}\mathsf{FC}_6\mathsf{H}_4)$ 







- 3.784

--0.000



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)





<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)











0.000

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)

Ŗ CN

 $\mathsf{R} = \mathsf{SO}_2(p\text{-}\mathsf{OMeC}_6\mathsf{H}_4)$ 

S-1d





<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)











<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)









<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)









<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)







<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)





Ρh ΝH<sub>2</sub> 3a



5.054

-0.000









Ν· Ρh ΝH<sub>2</sub> 3b



5.099

-0.000





Ρh ΝH<sub>2</sub> 3c



5.075

- 0.000









 $\cap$ Ρh Ρh ΝH2 3d



5.239

- 0.000





<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)






<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)







<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)

CN Ρh ΝH2 3f













4.975

-0.000





0000 —

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)

 $CH_3$ Ρh ΝH<sub>2</sub>

3h









<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)















5.035

1.225

-0.000





<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)

N Ρh  $\dot{N}H_2$ 3k





<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)







N٠ Ρh NH₂ 3I





<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)











5.125

--0.000



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)







--0.000



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)





<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>)





- 3.385

- 2.500





 $\dot{N}H_2$ 







<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)









S96

3p, EWG =  $SO_2(p-F)C_6H_4$ 



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)





- 2.051

- 0.020





3p, EWG =  $SO_2(p-F)C_8H_4$ 





<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)



3p, EWG = SO<sub>2</sub>(p-OMe)C<sub>6</sub>H<sub>4</sub>



3.803

- 0.000



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)



 $\mathbf{3p}$ , EWG = SO<sub>2</sub>(p-OMe)C<sub>6</sub>H<sub>4</sub>





- 2.352

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)









<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)





3.795



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)





<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)





1.986

- 2.250

--0.000



- 21.248

<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)









1.254

-0.000







<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)



3t




<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)







## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)





5.080

- 0.000



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)





0.000

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)







<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)







## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)





- 2.029

0.000



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)







<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )









<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)









<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)





<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)





- 1.256



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)





<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)







<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)

