Supporting Information for

Nickel-Catalyzed $\boldsymbol{\beta}$-Regioselective Amination/Cyclization of Ynamide-Nitriles with
Amines: Synthesis of Functionalized 3-Aminoindoles and 4-Aminoisoquinolines

Xiaoping Hu, Xin Xie, Yi Gan, Gaonan Wang and Yuanhong Liu*

State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
Fax: (+86) 021-64166128, E-mail: vhliu@sioc.ac.cn

Contents: Page
General methods S1
Synthesis and characterization of substrates $\mathbf{1}$ and $\mathbf{5}$ S2
Optimization studies for the formation of $\mathbf{3 a}$ S8
Synthesis and characterization of products $\mathbf{3}$ and $\mathbf{4}$ S12
Mechanistic studies S31
1 mmol scale experiment of $\mathbf{1 f}$ S35
References S35
X-ray crystal structure of compounds $\mathbf{3 g}, \mathbf{4}, \mathbf{S - 5}, 5,6$ and 7 S35
NMR spectra of all compounds S46

General Methods. Unless noted, all reactions were carried out using standard Schlenk technique under an argon atmosphere or a dry box technique under a nitrogen atmosphere. Tetrahydrofuran and 1, 4-dioxane were distilled from sodium and benzophenone. Toluene was distilled from sodium. Acetonitrile was dried using Innovative Technology Solvent Purifier. Dimethyl formamide was purchased from J \& K. Zinc powder (99.8% metals basis, -100 mesh) was purchased from Alfa Aesar Organics. Zinc powder ($98 \%,-325$ mesh) was purchased from

Adamas. Before using, zinc powder was stirred with 1 M HCl , filtered and washed thoroughly with water, acetone and diethyl ether and dried under vacuum. NiCl_{2} (DME) was purchased from Sigma Aldrich. $\mathrm{Ni}(\mathrm{COD})_{2}$ and NiI_{2} were purchased from Strem Chemicals Inc. $\mathrm{NiCl}_{2}(\mathrm{dppp})$ was purchased from TCI. 4-Fluoroaniline was purified by distillation before use. Unless noted, all commercial reagents were used without further purification. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at room temperature in CDCl_{3} or d_{6}-DMSO (containing $0.03 \% \mathrm{TMS}$) on Varian or Agilent XL-400 MHz spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra was recorded with tetramethylsilane ($\delta=$ 0.00 ppm) or solvent residual peak ($\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm}$; $d_{6}-\mathrm{DMSO}: 2.50 \mathrm{ppm}$) as internal reference; ${ }^{13} \mathrm{C}$ NMR spectra was recorded with $\mathrm{CDCl}_{3}(77.00 \mathrm{ppm})$ or d_{6}-DMSO (39.52 ppm) as internal reference. ${ }^{19} \mathrm{~F}$ NMR spectra was recorded with $\mathrm{CFCl}_{3}(0.00 \mathrm{ppm})$ as outside reference. High-resolution mass spectra were obtained by using AccuTOF 4G LC-plus and Waters Premier GC-TOF MS. The IR spectra were measured on a ThermoFisher Nicolet FT-IR spectrometer. Single crystal X-ray diffraction data were collected at Single crystal X-ray diffraction data were collected at 293(2) K for $\mathbf{3 g}, \mathbf{5}, \mathbf{6}, 7$ and at 193(2) K for 4, S-5 on a Bruker SMART diffractometer or a Bruker APEX-II diffractometer. The X-ray crystal structure of $\mathbf{4}$ has been reported previously. ${ }^{1}$

Ynamides $\mathbf{1 a - 1 b}, \mathbf{1 e - 1 m}$ were synthesized according to the published methods, ${ }^{2}$ if needed, which were recrystallized before using. For the characterization of the new compounds, see following:

Synthesis

of
N-(2-Cyanophenyl)-4-fluoro- N -((4methoxyphenyl)ethynyl)benzenesulfonamide (1c).

To solution of 2-aminobenzonitrile ($4.96 \mathrm{~g}, 42 \mathrm{mmol}$) in pyridine $(30 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ and 4 -fluorobenzenesulfonyl chloride ($7.78 \mathrm{~g}, 40 \mathrm{mmol}$) was added under argon. The
reaction mixture was warmed up to room temperature and stirred for 12 h until the reaction was completed as monitored by TLC. The reaction mixture was quenched by water and extracted with ethyl acetate, washed with water and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and the solvent was evaporated under the reduced pressure, then the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=5 / 1$) to afford the crude and recrystallization (petroleum ether/ethyl acetate $=5 / 1$) to afford SS-1c in 63% yield (6.99 g) as white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.87-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=255.1 \mathrm{~Hz}\right), 138.8,134.4\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}\right.$ $=3.2 \mathrm{~Hz}), 134.2,132.9,130.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=10.0 \mathrm{~Hz}\right), 125.7,122.8,116.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.6 \mathrm{~Hz}\right)$, 115.6, 105.1. ${ }^{13}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-103.2-102.3$ (m). IR (neat): 3196, 2237, 1590, 1493, 1457, 1414, 1342, 1291, 1240, 1231, 1166, 1151, 1098, 1088, 1011, 912, 837, 821, 772, 746, 708, $692 \mathrm{~cm}^{-1}$. HRMS (EI-TOF) m/z: $[M]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{FS} 300.0363$, found 300.0360 .

To a solution of SS-1c ($2.76 \mathrm{~g}, 10 \mathrm{mmol}$) in N, N-dimethylformamide (25 mL) was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(4.24 \mathrm{~g}, 13 \mathrm{mmol})$. The solution was stirred at room temperature for 30 min , then phenyl((trimethylsilyl)ethynyl)iodonium triflate ($5.85 \mathrm{~g}, 13 \mathrm{mmol}$) in dichloromethane (10 mL) was added to the mixture and stirred 5 h until the reaction was completed as monitored by TLC. The reaction mixture was quenched by water. The resulting mixture was extracted with EA, washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and the solvent was evaporated under the reduced pressure, then the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=5 / 1$) to afford the desired product S-1c in 58% yield $(1.74 \mathrm{~g})$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.92-7.88$ (m, 2H), 7.71 (dd, $J=7.6 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{td}, J=8.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{td}, J=7.6$ $\mathrm{Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 166.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=257.1 \mathrm{~Hz}\right), 139.4,134.2,133.8,131.7,131.6,131.5,129.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}\right.$ $=8.9 \mathrm{~Hz}), 116.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=23.0 \mathrm{~Hz}\right), 114.9,112.8,74.6,60.3 .{ }^{13} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ -101.2--101.3 (m). IR (neat): 3310, 3100, 2236, 2136, 1588, 1490, 1483, 1447, 1380, 1293, 1230, 1182, 1155, 1118, 1083, 920, 885, 843, 816, 771, 737, 708, 678, 665, $656 \mathrm{~cm}^{-1}$. HRMS
(EI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{FS} 276.0363$, found 276.0362.
To solution of $\mathbf{S - 1 \mathbf { c }}(901.0 \mathrm{mg}, 3 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ was cooled to $-40^{\circ} \mathrm{C}$ and LiHMDS ($3.5 \mathrm{~mL}, 4.5 \mathrm{mmol}, 1.3 \mathrm{M}$ in THF) was added dropwise under argon. After stirring at the same temperature for $40 \mathrm{~min}, \mathrm{ZnBr}_{2}(743.1 \mathrm{mg}, 3.3 \mathrm{~mol})$ in THF (3 mL) was added and stirred for another 20 min at $-40^{\circ} \mathrm{C}$. Then the mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(137.4 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{PPh}_{3}(157.4$ $\mathrm{mg}, 0.6 \mathrm{mmol}$) and 4-methoxyiodobenzene ($1.05 \mathrm{~g}, 4.5 \mathrm{mmol}$) in THF (2 mL) was added dropwise. The reaction mixture was warmed up to $30^{\circ} \mathrm{C}$ and stirred for 24 h until the reaction was completed as monitored by TLC, then quenched by brine and extracted with ethyl acetate. The combined organic layers were washed with water and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and the solvent was evaporated under the reduced pressure, and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=5 / 1$) to afford the desired product $\mathbf{1 c}$ in 57% yield (699 mg) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.91-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.47(\mathrm{~m}, 2 \mathrm{H})$, 7.38-7.34 (m, 2H), 7.27-7.23 (m, 2H), $6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 166.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=256.3 \mathrm{~Hz}\right), 160.0,140.3,134.1,134.0,133.6,131.5\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}\right.$ $=2.4 \mathrm{~Hz}), 131.4,131.3,129.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=6.9 \mathrm{~Hz}\right), 116.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.6 \mathrm{~Hz}\right), 115.1,113.9,113.4$, 112.4, 79.8, 71.4, 55.2. ${ }^{13}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-101.5--101.6$ (m). IR (neat): 3108, 2843, 2235, 1604, 1590, 1511, 1491, 1447, 1407, 1378, 1336, 1291, 1247, 1177, 1155, 1106, 1086, 1026, 959, 913, 832, 771, 711, 698, $670 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{FSNa} 429.0680$, found 429.0675 .

Synthesis of
N-(2-cyanophenyl)-4-methoxy- N-((4methoxyphenyl)ethynyl)benzenesulfonamide (1d).

To solution of 2-aminobenzonitrile ($2.36 \mathrm{~g}, 20 \mathrm{mmol}$) in pyridine (20 mL) was cooled to $0^{\circ} \mathrm{C}$ and 4-methoxybenzenesulfonyl chloride ($4.12 \mathrm{~g}, 20 \mathrm{mmol}$) was added under argon. The
reaction mixture was warmed up to room temperature and stirred for 18 h until the reaction was completed as monitored by TLC. The reaction mixture was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with DCM, washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and the solvent was evaporated under the reduced pressure, then the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $/ \mathrm{DCM}=10 / 2 / 1$) to afford SS-1d in 67% yield $(3.89 \mathrm{~g})$ as white solid. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.76(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.49((\mathrm{dd}$, $J=8.0 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.6,139.3,134.1,132.7,129.7,129.5,125.1,121.7,115.7,114.4,104.3$, 55.6. IR (neat): $3202,2838,2233,1596,1577,1495,1457,1425,1330,1315,1267,1155,1093$, 1029, 912, 833, 755, 716, $664 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{SNa} 311.0461$, found 311.0453 .

To a solution of SS-1d ($1.44 \mathrm{~g}, 5 \mathrm{mmol}$) in N, N-dimethylformamide (10 mL) was added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(2.12 \mathrm{~g}, 6.5 \mathrm{mmol})$. The solution was stirred at room temperature for 30 min , then phenyl((trimethylsilyl)ethynyl)iodonium triflate ($2.92 \mathrm{~g}, 6.5 \mathrm{mmol}$) in dichloromethane (5 mL) was added to the mixture and stirred 3 h until the reaction was completed as monitored by TLC. The reaction mixture was quenched by water and extracted with ethyl acetate, washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and the solvent was evaporated under the reduced pressure, then the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=5 / 1$) to afford the desired product S-1d in 66% yield $(1.03 \mathrm{~g})$ as a white solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79-7.77$ (m, 2H), 7.70 (dd, $J=7.6 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{td}, J=8.0 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=8.0$ $\mathrm{Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-7.01(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~s}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.5,139.8,134.1,133.6,130.9,129.6,129.4,126.8$, 115.2, 114.5, 113.0, 75.1, 59.9, 55.7. IR (neat): $3275,2838,2228,2128,1593,1577,1497,1488$, $1443,1369,1311,1263,1192,1163,1115,1087,1026,923,882,829,804,779,756,714,678$, $655 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{SNa} 335.0461$, found 335.0452.

To solution of $\mathbf{S}-\mathbf{- 1 d}(1.25 \mathrm{~g}, 4 \mathrm{mmol})$ in THF (15 mL) was cooled to $-40^{\circ} \mathrm{C}$ and LiHMDS
($4.62 \mathrm{~mL}, 6 \mathrm{mmol}, 1.3 \mathrm{M}$ in THF) was added dropwise under argon. After stirring at the same temperature for $40 \mathrm{~min}, \mathrm{ZnBr}_{2}(990.9 \mathrm{mg}, 4.4 \mathrm{~mol})$ in THF (4 mL) was added and stirred for another 20 min at $-40^{\circ} \mathrm{C}$. Then the mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(183.1 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{PPh}_{3}(209.8 \mathrm{mg}$, $0.8 \mathrm{mmol})$ and 4-iodoanisole ($1.40 \mathrm{~g}, 6 \mathrm{mmol}$) in THF (3 mL) was added dropwise. The reaction mixture was warmed up to $30^{\circ} \mathrm{C}$ (oil bath) and stirred for 24 h until the reaction was completed as monitored by TLC, then quenched by brine and extracted with ethyl acetate. The combined organic layers were washed with brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and the solvent was evaporated under the reduced pressure, and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=5 / 1$ to $4 / 1$) to afford the desired product $\mathbf{1 d}$ in 42% yield (695 mg) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.82-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{dd}, J=7.6 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{td}, J=8.0 \mathrm{~Hz}, 0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $3.90(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.5,159.9,140.9,134.1,134.0$, $133.5,131.0,129.7,129.1,127.1,115.3,114.4,113.9,112.7,80.4,71.2,55.7,55.3$. IR (neat): 3079, 2995, 2841, 2231, 1605, 1593, 1574, 1513, 1497, 1488, 1443, 1363, 1329, 1249, 1164, 1089, 1030, 1016, 895, 845, 836, 814, 804, 782, 763, 697, $671 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{4} \mathrm{~N}_{2} \mathrm{SNa} 441.0880$, found 441.0869.

Synthesis the N-(2-Cyanobenzyl)-4-methyl- N-(phenylethynyl)benzenesulfonamide (5).

To a 100 mL Schlenk tube was added 2-(bromomethyl)benzonitrile ($1.96 \mathrm{~g}, 10 \mathrm{mmol}$), BocTsNH ($2.71 \mathrm{~g}, 10 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(2.76 \mathrm{~g}, 20 \mathrm{mmol})$ and $\mathrm{MeCN}(50 \mathrm{~mL})$ under argon. The
mixture was heated at $60^{\circ} \mathrm{C}$ (oil bath) for 8 h , then removed the solvent under the reduced pressure. The residue was extracted with ethyl acetate and the combined organic layers were washed with water and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and the solvent was evaporated under the reduced pressure, and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=5 / 1$) to afford the desired product SS-5 in 89% yield (3.43 g) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{td}, J=7.6 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $5.25(\mathrm{~s}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.5,144.7,141.5$, 136.4, 133.2, 132.6, 129.3, 128.0, 127.6, 126.9, 117.1, 110.6, 85.0, 48.6, 27.7, 21.6. IR (neat): 3001, 2967, 2925, 1719, 1664, 1597, 1462, 1337, 1283, 1219, 1163, 1086, 1027, 880, 812, 777, 734, 705, $673 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ 404.1639; Found 404.1637.

To a solution of SS-5 (3.43 g, 8.9 mmol$)$ in DCM $(89 \mathrm{~mL})$ was cooled to $0^{\circ} \mathrm{C}$ and TFA $(10.1 \mathrm{~g}, 89 \mathrm{mmol})$ was added dropwise under air. The reaction mixture was warmed up to room temperature and stirred 4 h , then removed the solvent under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=$ $3 / 1$ to MeOH) to afford the crude product. The residue was dissolved with DCM and washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution for three times, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and the solvent was evaporated under the reduced pressure. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=3 / 1$ to petroleum ether/ethyl acetate/dichloromethane = 2/1/1) to afford the desired product S-5 in 59\% yield with two steps $(1.68 \mathrm{~g})$ as a white solid. Alternatively, the following work-up procedure is also suitable for isolation of S-5: after the reaction was complete, the solvent was removed under the reduced pressure. The residue was dissolved in DCM and washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and the solvent was evaporated under the reduced pressure. The residue was purified by column chromatography on silica gel. M.p. 120-122 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.99(\mathrm{br}, 1 \mathrm{H})$, $7.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.51(\mathrm{td}, J=7.2 \mathrm{~Hz}, 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.27$ $(\mathrm{m}, 3 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.8(\mathrm{~m}), 145.0,138.1$,
$134.8,132.4,132.1,130.0,128.5,127.1,123.6,122.7,51.9,21.5$. IR (neat): 3318, 1659, 1597, $1468,1439,1350,1304,1241,1209,1169,1158,1150,1107,1086,1062,1017,947,875,814$, 807, 779, 741, 726, 703, $665 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{~S}$ 287.0849; Found 287.0853.

To a solution of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(50.0 \mathrm{mg}, 0.2 \mathrm{mmol}), 1,10-\mathrm{Phen}(72.1 \mathrm{mg}, 0.4 \mathrm{mmol})$, $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($691.1 \mathrm{mg}, 5 \mathrm{mmol}$), $\mathbf{S}-5(572.7 \mathrm{mg}, 2 \mathrm{mmol})$ and toluene $(6 \mathrm{~mL})$ was added (bromoethynyl)benzene ($434.5 \mathrm{mg}, 2.4 \mathrm{mmol}$). The reaction mixture was heated to $80^{\circ} \mathrm{C}$ (oil bath) for 18 h until the reaction was completed as monitored by TLC. Then petroleum ether was added and stirred for 10 min . The mixture was filtered over a celite pad, and the solvent was evaporated under the reduced pressure. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=5 / 1$) to afford the desired product 5 in 93% yield (716.2 mg) as a yellow solid. M.p. $96-98{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.37(\mathrm{~m}$, $3 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 5 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 145.2,138.3$, 134.0, 133.2, 132.7, 131.2, 130.0, 129.5, 128.7, 128.2, 127.9, 127.7, 122.2, 117.0, 112.2, 81.8, 71.5, 53.2, 21.6. IR (neat): $3016,2242,1594,1365,1327,1230,1187,1172,1110,1086,1044$, 1021, 1012, 936, 814, 799, 785, 758, 738, 705, 692, $682 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: [M + $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{SNa} 409.0981$; Found 409.0978.

Optimization studies for the formation of 3a.

General procedure for optimization studies.

The reaction was conducted in an oven-dried screw-cap vial (volume: 4 mL) equipped with a magnetic stir bar. In a nitrogen-filled glove box, $\mathrm{NiCl}_{2}(\mathrm{dppp})(5.4 \mathrm{mg}, 0.01 \mathrm{mmol})$ [or other $\mathrm{Ni}(\mathrm{II})$ salts], Zn powder ($13.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) [or other reductants], $\mathrm{Zn}(\mathrm{OTf})_{2}(14.5 \mathrm{mg}$, 0.04 mmol) [or other Lewis acid], ynamide $\mathbf{1 a}(74.5 \mathrm{mg}, 0.2 \mathrm{mmol}), 1,4$-dioxane (2 mL) or
other solvents and 4-fluoroaniline ($26.7 \mathrm{mg}, 0.24 \mathrm{mmol}$) were added sequentially to a screwcap vial (If the aniline was solid, it was added before dioxane). The vial cap was securely fitted and taken outside the glove box, and sealed with electrical tape. After the reaction mixture was stirred in an oil bath preheated at $80^{\circ} \mathrm{C}$ for 12 h , the mixture was quenched with brine and extracted with ethyl acetate. The combined organic layers were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and the solvent was evaporated under the reduced pressure. The residue was purified by column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=3 / 1$ as the eluent to afford the crude product mainly containing 3a and the starting material 1a. The solvent was evaporated under the reduced pressure and the residue was dissolved in d_{6}-DMSO. The NMR yields were obtained by ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixture using 1,3,5-trimethoxybenzene ($33.6 \mathrm{mg}, 0.2 \mathrm{mmol}$) as an internal standard.

Table S1. The effect of the ligands

 entry 1 2 3 4 5 6 7		 (1.2 equiv)	$10 \mathrm{~mol} \% \mathrm{NiCl}_{2}$ (DME) $\mathrm{n} \mathrm{mol} \%$ ligand $20 \mathrm{~mol} \% \mathrm{Zn}(\mathrm{OTf})_{2}$ 1.0 equiv Zn dioxane, $80^{\circ} \mathrm{C}, 12 \mathrm{~h}$ Lewis acid (mol\%)		
	catalyst (mol\%)	ligand (mol\%)			
	NiCl_{2} (DME)	dppp (10)	$\mathrm{Zn}(\mathrm{OTf})_{2}$	dioxane	$77^{\text {b }}$
	NiCl_{2} (DME)	dppp (10)	-	dioxane	38 (6)
	NiCl_{2} (DME)	$\mathrm{PMePh}_{2}(20)$	$\mathrm{Zn}(\mathrm{OTf})_{2}$	dioxane	20 (7)
	NiCl_{2} (DME)	$\mathrm{Pcy}_{3}(20)$	$\mathrm{Zn}(\mathrm{OTf})_{2}$	dioxane	3 (54)
	$\mathrm{NiCl}_{2}(\mathrm{DME})$	dppe (10)	$\mathrm{Zn}(\mathrm{OTf})_{2}$	dioxane	4 (73)
	NiCl_{2} (DME)	Xantphos (10)	$\mathrm{Zn}(\mathrm{OTf})_{2}$	dioxane	- (72)
	$\mathrm{NiCl}_{2}(\mathrm{DME})$	dtbbpy (10)	$\mathrm{Zn}(\mathrm{OTf})_{2}$	dioxane	- (85)

${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR using 1,3,5-trimethoxybenzene as an internal standard. The yields of the unreacted 1a are shown in parentheses. ${ }^{b}$ Isolated yield.

Table S2. The effect of the catalysts

	2a	 equiv)	$10 \mathrm{~mol} \%$ catalyst $10 \mathrm{~mol} \% \mathrm{dppp}$ $20 \mathrm{~mol} \% \mathrm{Zn}(\mathrm{OTf})_{2}$ 1.0 equiv Zn		
entry	catalyst (mol\%)	ligand (mol\%)	Lewis acid (mol\%)	solvent	yield $^{\text {a }}$ (\%)
1	NiBr_{2} (DME)	dppp	$\mathrm{Zn}(\mathrm{OTf})_{2}$	dioxane	11 (50)
2	Nil_{2}	dppp	$\mathrm{Zn}(\mathrm{OTf})_{2}$	dioxane	77 (-)
3	$\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	dppp	$\mathrm{Zn}(\mathrm{OTf})_{2}$	dioxane	38 (6)
4	NiCl_{2} (dppp)	-	$\mathrm{Zn}(\mathrm{OTf})_{2}$	dioxane	78, $77^{\text {b }}$

${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR using 1,3,5-trimethoxybenzene as an internal standard. The yields of the unreacted 1a are shown in parentheses. ${ }^{b}$ Isolated yield.

Table S3. The effect of the additives

entry	catalyst (mol\%)	Lewis acid (mol\%)	solvent	temp.	time (h)	yield ${ }^{\text {a }}$ (\%)
1	NiCl_{2} (dppp)	$\mathrm{Sc}(\mathrm{OTf})_{3}(20)$	dioxane	80	12	63 (3)
2	$\mathrm{NiCl}_{2}(\mathrm{dppp})$	$\mathrm{Al}(\mathrm{OTf})_{3}(20)$	dioxane	80	12	48 (7)
3	$\mathrm{NiCl}_{2}(\mathrm{dppp})$	$\mathrm{Fe}(\mathrm{OTf})_{3}(20)$	dioxane	80	12	7 (54)
4	$\mathrm{NiCl}_{2}(\mathrm{dppp})$	$\mathrm{ZnCl}_{2}(20)$	dioxane	80	12	73 (2)
5	$\mathrm{NiCl}_{2}(\mathrm{dppp})$	$\mathrm{BPh}_{3}(20)$	dioxane	80	12	16 (11)
6	NiCl_{2} (dppp)	$\mathrm{Zn}(\mathrm{OTf})_{2}(50)$	dioxane	80	12	73 (2)
7	$\mathrm{NiCl}_{2}(\mathrm{dppp})$	$\mathrm{Zn}(\mathrm{OTf})_{2}(100)$	dioxane	80	12	78 (-)

${ }^{\text {a D Determined by }}{ }^{1} \mathrm{H}$ NMR using 1,3,5-trimethoxybenzene as an internal standard. The yields of the unreacted 1a are shown in parentheses.

Table S4. The effect of the solvent

${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR using 1,3,5-trimethoxybenzene as an internal standard. The yields of the unreacted 1a are shown in parentheses. ${ }^{b}$ Isolated yield.

Table S5. The effect of the temperature and the amount of Zn powder

	2a	 . 2 equiv)	$5 \mathrm{~mol} \% \mathrm{NiCl}_{2}$ (dppp) $20 \mathrm{~mol} \% \mathrm{Zn}(\mathrm{OTf})_{2}$ m equiv Zn dioxane, Temp, 12 h			
entry	catalyst (mol\%)	Lewis acid (mol\%)	solvent	temp. $\left({ }^{\circ} \mathrm{C}\right)$	time (h)	yield ${ }^{\text {a }}$ (\%)
1	NiCl_{2} (dppp)	$\mathrm{Zn}(\mathrm{OTf})_{2}$	dioxane	50	12	68 (12)
2	NiCl_{2} (dppp)	$\mathrm{Zn}(\mathrm{OTf})_{2}$	dioxane	rt	12	40 (29)
$3^{\text {b }}$	NiCl_{2} (dppp)	$\mathrm{Zn}(\mathrm{OTf})_{2}$	dioxane	80	12	35 (37)
$4^{\text {c }}$	NiCl_{2} (dppp)	$\mathrm{Zn}(\mathrm{OTf})_{2}$	dioxane	80	12	7 (38)

${ }^{\text {a D Determined by }}{ }^{1} \mathrm{H}$ NMR using 1,3,5-trimethoxybenzene as an internal standard. The yields of the unreacted 1a are shown in parentheses. ${ }^{b} 50 \mathrm{~mol} \% \mathrm{Zn}$ powder was used (Alfa 100 mesh). ${ }^{c} 20$ $\mathrm{mol} \% \mathrm{Zn}$ powder was used (Alfa 100 mesh).

Table S6. Control experiments

		 2a (1.2 equiv)	$5 \mathrm{~mol} \% \mathrm{NiCl}_{2}$ (dppp) $20 \mathrm{~mol} \% \mathrm{Zn}(\mathrm{OTf})_{2}$ 1.0 equiv Zn dioxane, $80^{\circ} \mathrm{C}, 12 \mathrm{~h}$				
entry	catalyst (mol\%)	ligand (mol\%)	Lewis acid (mol\%)	solvent	temp. $\left({ }^{\circ}\right.$	time (h)	yield $^{\text {a }}$ (\%)
1	-	dppp (5)	$\mathrm{Zn}(\mathrm{OTf})_{2}(20)$	dioxane	80	12	- (70)
2	NiCl_{2} (DME) (5)	-	$\mathrm{Zn}(\mathrm{OTf})_{2}(20)$	dioxane	80	12	- (81)
3	NiCl ${ }_{2}$ (dppp) (5)	-	-	dioxane	80	12	25 (35)
$4^{\text {b }}$	$\mathrm{NiCl}_{2}(\mathrm{dppp})(5)$	-	$\mathrm{Zn}(\mathrm{OTf})_{2}(20)$	dioxane	80	12	- (61)
5^{c}	$\mathrm{NiCl}_{2}(\mathrm{dppp})(10)$	-	$\mathrm{Zn}(\mathrm{OTf})_{2}(20)$	dioxane	80	12	31 (25)
$6^{\text {c }}$	$\mathrm{NiCl}_{2}(\mathrm{dppp})(10)$	-	$\mathrm{Zn}(\mathrm{OTf})_{2}(100)$	dioxane	80	12	78

${ }^{\text {a }}$ Determined by ${ }^{1} \mathrm{H}$ NMR using 1,3,5-trimethoxybenzene as an internal standard. The yields of the unreacted 1a are shown in parentheses. ${ }^{b}$ Without Zn powder (Alfa 100 mesh). ${ }^{c} 1.0$ equiv Zinc powder (Adamas 325 mesh) was used.

Synthesis of (E)-2-(((4-Fluorophenyl)imino)(phenyl)methyl)-1H-indol-3-amine (3a).

The reaction was conducted in an oven-dried screw-cap vial (volume: 8 mL) equipped with a magnetic stir bar. In a nitrogen-filled glove box, $\mathrm{NiCl}_{2}(\mathrm{dppp})(8.1 \mathrm{mg}, 0.015 \mathrm{mmol}), \mathrm{Zn}$ powder $(19.6 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{Zn}(\mathrm{OTf})_{2}(21.8 \mathrm{mg}, 0.06 \mathrm{mmol})$, ynamide $\mathbf{1 a}(111.7 \mathrm{mg}, 0.3$ mmol), 1,4-dioxane (3 mL) and 4-fluoroaniline ($40.0 \mathrm{mg}, 0.36 \mathrm{mmol}$) were added sequentially to a screw-cap vial. The vial cap was securely fitted and taken outside the glove box, and sealed with electrical tape. After the reaction mixture was stirred in an oil bath preheated at $80^{\circ} \mathrm{C}$ for 12 h , the mixture was quenched with brine and extracted with ethyl acetate. The combined organic layers were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and the solvent was evaporated under the reduced pressure. The residue was purified by column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=3 / 1$ as the eluent to afford the desired product 3a in 77% yield $(75.6 \mathrm{mg})$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.52-7.35 (br, 1H), 7.35-7.34 (m, 3H), 7.22-7.21
(m, 3H), 7.13-7.11 (m, 1H), $7.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.67-6.63(\mathrm{~m}, 2 \mathrm{H})$, 5.05 (br, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.9(\mathrm{~m}), 158.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=239.9 \mathrm{~Hz}\right), 146.5(\mathrm{~d}$, $\left.{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.3 \mathrm{~Hz}\right), 136.0,135.5,132.0,129.0,128.8,128.6,125.7,123.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.6 \mathrm{~Hz}\right), 120.5$, 118.9, 118.7, 117.3, $114.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.8 \mathrm{~Hz}\right), 111.4 .{ }^{13} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-121.3$. IR (neat): 3405, 3382, 3257, 3058, 1604, 1593, 1569, 1519, 1494, 1446, 1361, 1327, 1289, 1269, 1214, 1197, 1152, 1091, 1008, 981, 923, 890, 837, 805, 785, 757, 739, $702 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{~F} 330.1401$; Found 330.1394. Note: high purity of the starting material is important for reproducibility.

Typical procedure for the synthesis of (E)-2-(((2-Fluorophenyl)imino)(phenyl)methyl)-

1 H -indol-3-amine (3b).

$\mathrm{NiCl}_{2}(\mathrm{dppp})(16.3 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{Zn}$ powder ($\left.19.6 \mathrm{mg}, 0.3 \mathrm{mmol}\right), \mathrm{Zn}(\mathrm{OTf})_{2}(21.8 \mathrm{mg}$, 0.06 mmol), ynamide $\mathbf{1 a}(111.7 \mathrm{mg}, 0.3 \mathrm{mmol}), 1,4$-dioxane (3 mL) and 2-fluoroaniline (40.4 $\mathrm{mg}, 0.36 \mathrm{mmol}$) were added sequentially to a 8 mL screw-cap vial. The vial cap was securely fitted and taken outside the glove box, and sealed with electrical tape. After the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h , the mixture was quenched with brine and extracted with ethyl acetate. The combined organic layers were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and the solvent was evaporated under the reduced pressure. The residue was purified by column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=5 / 1$ as the eluent to afford the desired product $\mathbf{3 b}$ in 50% yield $(49.7 \mathrm{mg})$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.32$ (br, 1H), 7.32-7.30 (m, 5H), 7.25-7.21 (m, 1H), 7.14-7.12 (m, 1H), 7.02 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.90-6.82 (m, 3H), 6.73-6.70 (m, 1H), $5.10(\mathrm{br}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.7$, $153.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=242.6 \mathrm{~Hz}\right), 138.8\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=12.5 \mathrm{~Hz}\right), 136.2,135.7,132.7,129.1,128.6,128.0$,
125.9, $123.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.3 \mathrm{~Hz}\right), 123.7,123.6\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.7 \mathrm{~Hz}\right), 120.4,119.0,118.6,117.1$, $115.4\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=20.2 \mathrm{~Hz}\right.$), 111.5. ${ }^{13} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-124.7$. IR (neat): 3396,3241 , $3058,3045,2222,1604,1568,1513,1490,1444,1357,1328,1287,1271,1248,1208,1172$, 1152, 1103, 1008, 980, 890, 858, 843, 791, 779, 734, $703 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{~F}$ 330.1401; Found 330.1401.

(E)-2-(((4-Chlorophenyl)imino)(phenyl)methyl)-1H-indol-3-amine
$\mathrm{NiCl}_{2}(\mathrm{dppp})(16.3 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{Zn}$ powder $(19.6 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{Zn}(\mathrm{OTf})_{2}(21.8 \mathrm{mg}, 0.06$ mmol), ynamide 1a ($111.7 \mathrm{mg}, 0.3 \mathrm{mmol}$), 4-chloroaniline ($45.9 \mathrm{mg}, 0.36 \mathrm{mmol}$) and $1,4-$ dioxane (3 mL) were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=3 / 1$ as the eluent afforded the desired product 3c in 35% yield (35.9 mg) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.53-7.36(\mathrm{br}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 3 \mathrm{H}), 7.24(\mathrm{~s}, 3 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 3 \mathrm{H}), 6.64$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 5.08 (br, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.9,149.0,136.1,135.3$, 132.4, 129.1, 128.8, 128.6, 128.3, 127.9, 125.9, 123.4, 120.4, 118.9, 118.7, 117.2, 111.4. IR (neat): $3414,3390,3267,3058,3021,1615,1602,1594,1568,1514,1486,1475,1445,1359$, $1325,1287,1262,1246,1197,1154,1091,1009,981,889,842,831,788,744,734,716,699$ cm^{-1}. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{Cl}$ 346.1106; Found 346.1105.

(E)-(4-(((3-Amino-1H-indol-2-yl)(phenyl)methylene)amino)phenyl)(phenyl)methanone
(3d). NiCl_{2} (dppp) ($16.3 \mathrm{mg}, 0.03 \mathrm{mmol}$), Zn powder ($19.6 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(21.8 \mathrm{mg}$, 0.06 mmol), ynamide $\mathbf{1 a}(111.7 \mathrm{mg}, 0.3 \mathrm{mmol}), 4$-aminobenzophenone ($71.0 \mathrm{mg}, 0.36 \mathrm{mmol}$) and 1,4-dioxane (3 mL) were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=3 / 1$ as the eluent afforded the desired product 3d in 54% yield (67.3 mg) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70-7.13$ $(\mathrm{m}, 16 \mathrm{H}), 7.03(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.24(\mathrm{br}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 195.9,161.8(\mathrm{~m}), 155.1,138.2,136.4,135.1,133.1,131.8,131.5,131.1,129.7,129.2$, $128.8,128.5,128.0,126.1,121.9,120.2,119.0,118.7,117.1,111.5$. IR (neat): $3427,3368,3241$, 3055, 2239, 1635, 1593, 1567, 1508, 1444, 1412, 1359, 1329, 1315, 1307, 1296, 1270, 1208, 1172, 1160, 1141, 1103, 979, 937, 917, 890, 861, 850, 788, 749, 741, 726, $699 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O} 416.1757$; Found 416.1753.

Ethyl (E)-4-(((3-amino-1H-indol-2-yl)(phenyl)methylene)amino)benzoate (3e).
$\mathrm{NiCl}_{2}(\mathrm{dppp})(16.3 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{Zn}$ powder $(19.6 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{Zn}(\mathrm{OTf})_{2}(21.8 \mathrm{mg}, 0.06$ mmol), ynamide $\mathbf{1 a}$ ($111.7 \mathrm{mg}, 0.3 \mathrm{mmol}$), ethyl aminobenzoate ($59.5 \mathrm{mg}, 0.36 \mathrm{mmol}$) and $1,4-$ dioxane (3 mL) were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=3 / 1$ as the eluent afforded the desired product 3e in 49% yield (55.8 mg) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.34(\mathrm{br}, 1 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.15-$ $7.13(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.18(\mathrm{br}, 2 \mathrm{H}), 4.29(\mathrm{q}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 1.33(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.6,161.8(\mathrm{~m}), 155.1$, $136.3,135.1,132.9,130.0,129.1,128.8,128.5,126.1,124.5,121.9,120.2,119.0,118.7,117.1$, 111.5, 60.6, 14.3. IR (neat): $3443,3335,3055,2979,2956,1673,1606,1567,1505,1485,1444$, $1363,1326,1308,1290,1270,1252,1164,1146,1103,1010,977,896,867,792,780,757$,

744, 712, 702, $687 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{2}$ 384.1707; Found 384.1701.

(\boldsymbol{E})-4-(((3-Amino-1 \boldsymbol{H}-indol-2-yl)(phenyl)methylene)amino)benzonitrile (3f). NiCl_{2} (dppp) $(16.3 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{Zn}$ powder ($19.6 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{Zn}(\mathrm{OTf})_{2}(21.8 \mathrm{mg}, 0.06 \mathrm{mmol})$, ynamide $1 \mathbf{a}(111.7 \mathrm{mg}, 0.3 \mathrm{mmol})$, 4 -aminobenzonitrile ($42.5 \mathrm{mg}, 0.36 \mathrm{mmol}$) and 1,4-dioxane $(3 \mathrm{~mL})$ were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=3 / 1$ as the eluent afforded the desired product $\mathbf{3 f}$ in 38% yield (38.5 mg) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.55-7.37(\mathrm{br}, 1 \mathrm{H}), 7.37-7.36(\mathrm{~m}, 5 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.29(\mathrm{br}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.3$, $155.0,136.6,134.8,132.5,129.4,128.9,128.5,126.4,122.8,120.0,119.5,119.1,118.8,111.5$, 105.4. IR (neat): $3388,3257,3207,3058,2958,2919,2851,1615,1595,1577,1569,1518$, $1489,1444,1363,1325,1290,1248,1226,1189,1161,1101,1030,983,919,890,847,804$, 781, 760, 735, 714, $699 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{4}$ 337.1448; Found 337.1440 .

3 g
(\boldsymbol{E})-2-(Phenyl(phenylimino)methyl)-1 \boldsymbol{H}-indol-3-amine (3g). NiCl_{2} (dppp) ($16.3 \mathrm{mg}, 0.03$ $\mathrm{mmol}), \mathrm{Zn}$ powder ($19.6 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{Zn}(\mathrm{OTf})_{2}(21.8 \mathrm{mg}, 0.06 \mathrm{mmol})$, ynamide 1 a (111.7 $\mathrm{mg}, 0.3 \mathrm{mmol}$), 1,4 -dioxane (3 mL) and aniline ($33.5 \mathrm{mg}, 0.36 \mathrm{mmol}$) were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum
ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=3 / 1$ as the eluent afforded the desired product $\mathbf{3 g}$ in 76% yield $(71.0 \mathrm{mg})$ as a yellow solid. m.p. $=189-19{ }^{\circ}{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.32$ (br, 1H), 7.32-7.31(m, 3H), 7.26-7.20(m, 3H), 7.13-7.07 (m, 3H), 7.02 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.98(\mathrm{br}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.4,150.5,136.0,135.6,131.9,128.8,128.7,128.6,128.2,125.6,122.7,122.1,120.6$, 118.8, 118.6, 117.4, 111.4. IR (neat): $3386,3254,3202,3060,3011,1615,1604,1595,1570$, $1522,1488,1445,1363,1324,1290,1272,1247,1201,1157,1070,984,901,847,806,785$, 772, 755, 740, 728, $695 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{3} 312.1495$; Found 312.1493.

3h
(\boldsymbol{E})-2-(Phenyl(p-tolylimino)methyl)-1H-indol-3-amine (3h). NiCl_{2} (dppp) ($10.8 \mathrm{mg}, 0.02$ $\mathrm{mmol}), \mathrm{Zn}$ powder ($13.1 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(14.5 \mathrm{mg}, 0.04 \mathrm{mmol})$, ynamide $\mathbf{1 a}$ (74.5 $\mathrm{mg}, 0.2 \mathrm{mmol})$, p-toluidine ($25.7 \mathrm{mg}, 0.24 \mathrm{mmol}$) and 1,4-dioxane (2 mL) were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=3 / 1$ as the eluent afforded the desired product $\mathbf{3 h}$ in 77% yield (50.2 mg) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.34$ (br, 1H), 7.34-7.33 (m, 3H), 7.27-7.19 (m, 3H), 7.13-7.11 (m, 1H), 7.02 (t, J=7.6 Hz, 1H), 6.90 $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{br}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 161.2(\mathrm{~m}), 147.7,135.80,135.78,132.1,131.5,128.9,128.8,128.7,128.6,125.4$, 122.0, 120.6, 118.8, 118.6, 117.6, 111.3, 20.8. IR (neat): 3394, 3249, 3220, 3058, 3016, 2917, $2854,1615,1606,1596,1571,1522,1505,1444,1359,1325,1287,1270,1248,1156,1100$, 983, 917, 888, 827, 816, 779, 756, 735, $700 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{3}$ 326.1652; Found 326.1655.

$3 i$
(E)-2-(((4-Methoxyphenyl)imino)(phenyl)methyl)-1H-indol-3-amine (3i). NiCl_{2} (dppp) ($10.8 \mathrm{mg}, 0.02 \mathrm{mmol}$), Zn powder ($13.1 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(14.5 \mathrm{mg}, 0.04 \mathrm{mmol})$, ynamide 1a ($74.5 \mathrm{mg}, 0.2 \mathrm{mmol}$), p-anisidine ($29.6 \mathrm{mg}, 0.24 \mathrm{mmol}$) and 1,4-dioxane (2 mL) were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=2 / 1$ as the eluent afforded the desired product $\mathbf{3 i}$ in 76% yield (51.8 mg) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.52(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-$ 7.36 (br, 1H), 7.36-7.34 (m, 3H), 7.27-7.19 (m, 3H), 7.13-7.11 (m, 1H), 7.02 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.66 (s, 4H), 5.03 (br, 2H), $3.69(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.0,155.4,143.5$, $135.9,135.8,131.4,128.8,128.7,125.4,123.3,120.6,118.8,118.5,117.7,113.6,111.3,55.2$. IR (neat): $3419,3370,3291,3055,2992,2958,2833,1608,1596,1560,1513,1505,1494$, $1465,1452,1440,1355,1321,1276,1247,1230,1179,1170,1104,1025,982,888,828,811$, 777, 740, 724, $702 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}$ 342.1601; Found 342.1596.

3j
(E)-2-(((4-(tert-Butyl)phenyl)imino)(phenyl)methyl)-1H-indol-3-amine (3j). NiCl_{2} (dppp) ($10.8 \mathrm{mg}, 0.02 \mathrm{mmol}$), Zn powder ($13.1 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(14.5 \mathrm{mg}, 0.04 \mathrm{mmol})$, ynamide 1a ($74.5 \mathrm{mg}, 0.2 \mathrm{mmol}$), 1,4-dioxane (2 mL) and 4-tert-butylaniline ($35.8 \mathrm{mg}, 0.24$ mmol) were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=3 / 1$ as the eluent afforded the desired product $\mathbf{3} \mathbf{j}$
in 81% yield $(59.6 \mathrm{mg})$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 1 H), 7.52-7.33 (br, 1H), 7.33-7.18 (m, 6H), 7.12-7.09 (m, 3H), $7.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{br}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.0(\mathrm{~m}), 147.5$, 145.5, 135.77, 135.76, 131.6, 128.8, 128.7, 128.6, 125.4, 125.1, 121.8, 120.6, 118.8, 118.5, 117.6, 111.3, 34.1, 31.3. IR (neat): $3443,3055,2960,2901,2862,1606,1568,1507,1492,1444$, 1360, 1322, 1283, 1267, 1246, 1200, 1150, 1106, 980, 888, 838, 787, 741, $703 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{3}$ 368.2121; Found 368.2115.

(E)-2-(((4-(Dimethylamino)phenyl)imino)(phenyl)methyl)-1H-indol-3-amine (3k). $\mathrm{NiCl}_{2}(\mathrm{dppp})(16.3 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{Zn}$ powder $(19.6 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{Zn}(\mathrm{OTf})_{2}(21.8 \mathrm{mg}, 0.06$ mmol), ynamide $1 \mathbf{1 a}(111.7 \mathrm{mg}, 0.3 \mathrm{mmol}), N, N$-dimethyl-1,4-phenylenediamine ($49.0 \mathrm{mg}, 0.36$ mmol) and 1,4-dioxane (3 mL) were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Twice column chromatography on silica gel (which was treated with $\mathrm{NEt}_{3}:$ petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=3 / 1$ as the eluent afforded the desired product $\mathbf{3 k}$ in 28% yield $(29.3 \mathrm{mg})$ as a brown solid. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.39(\mathrm{br}, 1 \mathrm{H}), 7.39-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.13(\mathrm{~m}$, $2 \mathrm{H}), 7.02(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{br}, 2 \mathrm{H})$, $2.84(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.4,147.0,139.9,136.4,135.6,130.9,128.9$, 128.7, 125.1, 123.7, 120.9, 118.6, 118.5, 118.1, 112.7, 111.3, 40.9. IR (neat): 3424, 3259, 3205, 3053, 2791, 1606, 1593, 1569, 1509, 1441, 1324, 1284, 1272, 1245, 1222, 1164, 1058, 980, 948, 920, 889, 819, 789, 756, 740, 718, $699 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{4}$ 355.1917; Found 355.1908.

31
(\boldsymbol{E})-2-(((3,5-Dimethylphenyl)imino)(phenyl)methyl)-1 \boldsymbol{H}-indol-3-amine (31). NiCl_{2} (dppp) $(16.3 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{Zn}$ powder ($19.6 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{Zn}(\mathrm{OTf})_{2}(21.8 \mathrm{mg}, 0.06 \mathrm{mmol})$, ynamide $\mathbf{1 a}$ ($111.7 \mathrm{mg}, 0.3 \mathrm{mmol}$), 3,5-dimethylaniline ($43.6 \mathrm{mg}, 0.36 \mathrm{mmol}$) and 1,4-dioxane $(3 \mathrm{~mL})$ were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=3 / 1$ as the eluent afforded the desired product 31 in 40% yield $(40.6 \mathrm{mg})$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.54-7.35$ (br, 1H), 7.35-7.22 (m, 6H), 7.14-7.12 (m, 1H), 7.02 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.53$ (s, $1 \mathrm{H}), 6.35(\mathrm{~s}, 2 \mathrm{H}), 4.96(\mathrm{br}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.1(\mathrm{~m}), 150.3$, 137.7, 135.83, 135.75, 131.6, 128.7, 128.6, 125.4, 124.5, 120.6, 119.9, 118.8, 118.6, 117.5, 111.4, 21.2. IR (neat): $3416,3267,3202,2911,2859,1618,1604,1576,1522,1448,1363,1328$, 1292, $1245,1173,1138,1105,1019,979,943,891,842,739,714,698,684 \mathrm{~cm}^{-1}$. HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{3} 340.1808$; Found 340.1806.

$3 m$
(\boldsymbol{E})-2-(([1,1'-Biphenyl]-4-ylimino)(phenyl)methyl)-1 \boldsymbol{H}-indol-3-amine (3m). NiCl_{2} (dppp) ($16.3 \mathrm{mg}, 0.03 \mathrm{mmol}$), Zn powder ($19.6 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(21.8 \mathrm{mg}, 0.06 \mathrm{mmol})$, ynamide $\mathbf{1 a}(111.7 \mathrm{mg}, 0.3 \mathrm{mmol})$, 4-aminobiphenyl ($60.9 \mathrm{mg}, 0.36 \mathrm{mmol}$) and 1,4-dioxane (3 mL) were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=3 / 1$ as the eluent afforded the desired product $\mathbf{3 m}$ in 45% yield (52.0 mg) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.21$
(m, 11H), 7.14-7.12 (m, 1H), 7.03 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.13$ (br, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.4,149.7,140.7,136.0,135.6,135.4,132.1,128.9,128.8$, $128.7,128.6,126.9,126.7,126.6,125.7,122.6,120.5,118.9,118.6,117.5,111.4$. IR (neat): $3427,3283,3160,3079,3053,3024,1602,1592,1567,1513,1480,1445,1326,1290,1259$, 1248, 1154, 979, 922, 889, 840, 817, 789, 767, 734, 723, $697 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: [M $+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{3}$ 388.1808; Found 388.1808

3n
(\boldsymbol{E})-2-((Naphthalen-1-ylimino)(phenyl)methyl)-1H-indol-3-amine (3h). NiCl_{2} (dppp) (16.3 $\mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{Zn}$ powder ($19.6 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(21.8 \mathrm{mg}, 0.06 \mathrm{mmol})$, ynamide $\mathbf{1 a}(111.7 \mathrm{mg}, 0.3 \mathrm{mmol})$, 1-naphthylamine ($51.5 \mathrm{mg}, 0.36 \mathrm{mmol}$) and 1,4-dioxane (3 mL) were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=5 / 1$ as the eluent afforded the desired product $\mathbf{3 n}$ in 34% yield (37.2 mg) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.32-8.24(\mathrm{~m}, 1 \mathrm{H})$, 7.77-7.75 (m , $1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.03(\mathrm{~m}, 10 \mathrm{H})$, $6.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{br}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.9(\mathrm{~m}), 147.1,136.0$, $135.5,133.8,132.2,128.9,128.6,128.4,128.0,127.7,125.9,125.7,125.5,125.3,124.1,122.7$, $120.5,118.9,118.7,117.5,115.8,111.5$. IR (neat): $3421,3293,3053,1615,1604,1595,1563$, $1510,1488,1443,1389,1362,1323,1281,1248,1140,1107,1071,1038,1012,1001,982$, 912, 885, 806, 791, 774, 735, 725, 714, $699 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{3} 362.1652$; Found 362.1650.

(\boldsymbol{E})-2-(Phenyl(thiazol-2-ylimino)methyl)-1H-indol-3-amine (30). NiCl_{2} (dppp) (16.3 mg , $0.03 \mathrm{mmol}), \mathrm{Zn}$ powder ($19.6 \mathrm{mg}, 0.3 \mathrm{mmol}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(21.8 \mathrm{mg}, 0.06 \mathrm{mmol})$, ynamide $\mathbf{1 a}$ ($111.7 \mathrm{mg}, 0.3 \mathrm{mmol}$), 2-aminothiazole ($36.1 \mathrm{mg}, 0.36 \mathrm{mmol}$) and 1,4-dioxane (3 mL) were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with $\mathrm{NEt}_{3}:$ petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate/acetone $=1 / 3 / 1$ as the eluent afforded the desired product $\mathbf{3 o}$ in 54% yield (51.9 mg) as a red solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO): $\delta 9.57$ (br, 1H), 7.82 (d, J $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 3 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.103-7.095(\mathrm{~m}, 1 \mathrm{H}), 6.92-$ $6.90(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, d_{6}$-DMSO): $\delta 170.0,163.6(\mathrm{~m}), 139.4,139.1$, 138.2, 134.8, 130.2, 129.8, 128.6, 127.3, 121.1, 118.5, 118.0, 116.8, 116.6, 112.6. IR (neat): $3385,3358,3263,2252,1612,1560,1521,1502,1473,1433,1356,1329,1312,1293,1248$, 1128, 1114, 1101, 1046, 1023, 995, 883, 821, 789, 753, 708, $695 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{~S}$ 319.1012; Found 319.1014

3a, EWG = Ms
(\boldsymbol{E})-2-(((4-Fluorophenyl)imino)(phenyl)methyl)-1 \boldsymbol{H}-indol-3-amine (3a). This compound was synthesized from ynamide $\mathbf{1 b} . \mathrm{NiCl}_{2}(\mathrm{dppp})(10.8 \mathrm{mg}, 0.02 \mathrm{mmol})$, Zn powder (13.1 mg , $0.2 \mathrm{mmol}), \mathrm{Zn}(\mathrm{OTf})_{2}(72.7 \mathrm{mg}, 0.2 \mathrm{mmol})$, ynamide $\mathbf{1 b}$ ($59.3 \mathrm{mg}, 0.2 \mathrm{mmol}$), 1,4-dioxane (2 mL) and 4-fluoroaniline ($26.7 \mathrm{mg}, 0.24 \mathrm{mmol}$) were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=3 / 1$ as the eluent afforded the desired product $\mathbf{3 a}$ in 58% yield (38.4 mg) as a yellow solid. The
spectroscopic data are in agreement with that obtained from 1a.

3p, EWG $=\mathrm{SO}_{2}\left(p-\mathrm{FC}_{6} \mathrm{H}_{4}\right)$
(E)-2-(((4-Fluorophenyl)imino)(4-methoxyphenyl)methyl)-1H-indol-3-amine
$\mathrm{NiCl}_{2}(\mathrm{dppp})(10.8 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{Zn}$ powder ($13.1 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(72.7 \mathrm{mg}, 0.2$ mmol), ynamide $1 \mathbf{c}(81.3 \mathrm{mg}, 0.2 \mathrm{mmol})$, 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg , 0.24 mmol) in 4 mL screw-cap vial were stirred at $80{ }^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=3 / 1$ as the eluent afforded the desired product $\mathbf{3 p}$ in 59% yield $(42.3 \mathrm{mg})$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.27(\mathrm{br}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.16(\mathrm{~m}$, $3 \mathrm{H}), 7.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.81(\mathrm{~m}, 4 \mathrm{H}), 6.70-6.66(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{br}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.7(\mathrm{~m}), 159.8,158.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=240.3 \mathrm{~Hz}\right), 146.7\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ $2.8 \mathrm{~Hz}), 135.9,131.8,130.2,127.5,125.6,123.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.6 \mathrm{~Hz}\right), 120.6,118.8,118.6,117.7$, $115.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.2 \mathrm{~Hz}\right), 114.1,111.4,55.2 .{ }^{13} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-121.4. IR (neat): $3440,3381,1607,1569,1512,1500,1488,1444,1354,1323,1281,1250,1215,1199,1176$, $1155,1089,1027,983,888,838,811,789,749,735 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{OF}$ $[\mathrm{M}+\mathrm{H}]^{+}: 360.1507$, found 360.1504 .

3p, EWG $=\mathrm{SO}_{2}\left(p-\mathrm{OMeC}_{6} \mathrm{H}_{4}\right)$
(E)-2-(((4-Fluorophenyl)imino)(4-methoxyphenyl)methyl)-1H-indol-3-amine (3p). This compound was synthesized from ynamide $\mathbf{1 d}$. $\mathrm{NiCl}_{2}(\mathrm{dppp})(10.8 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{Zn}$ powder
($13.1 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(72.7 \mathrm{mg}, 0.2 \mathrm{mmol})$, ynamide $\mathbf{1 d}(83.7 \mathrm{mg}, 0.2 \mathrm{mmol}), 1,4-$ dioxane (2 mL) and 4-fluoroaniline ($26.7 \mathrm{mg}, 0.24 \mathrm{mmol}$) in 4 mL screw-cap vial were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=3 / 1$ as the eluent afforded the desired product $\mathbf{3 p}$ in 58% yield $(41.9 \mathrm{mg})$ as a yellow solid. The spectroscopic data are in agreement with that obtained from 1 c .

(\boldsymbol{E})-2-(((4-Fluorophenyl)imino)(p-tolyl)methyl)-1 \boldsymbol{H}-indol-3-amine (3q). NiCl_{2} (dppp) (10.8 $\mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{Zn}$ powder ($13.1 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(72.7 \mathrm{mg}, 0.2 \mathrm{mmol})$, ynamide $\mathbf{1 e}$ ($77.3 \mathrm{mg}, 0.2 \mathrm{mmol}$), 1,4-dioxane (2 mL) and 4-fluoroaniline ($26.7 \mathrm{mg}, 0.24 \mathrm{mmol}$) in 4 mL screw-cap vial were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=5 / 1$ as the eluent afforded the desired product $\mathbf{3 q}$ in 66% yield $(45.5 \mathrm{mg})$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.53-7.25(\mathrm{br}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 5 \mathrm{H}), 7.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.80(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.68-6.65(\mathrm{~m}, 2 \mathrm{H}), 5.02(\mathrm{br}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 162.1(\mathrm{~m}), 158.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=239.8 \mathrm{~Hz}\right), 146.7\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 139.0,135.9,132.5$, $131.8,129.5,128.6,125.6,123.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.7 \mathrm{~Hz}\right), 120.6,118.8,118.6,117.5,114.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}\right.$ $=21.8 \mathrm{~Hz}$), 111.4, 21.3. ${ }^{13} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-121.4$. IR (neat): $3453,3304,3249$, $3058,3021,2917,1598,1570,1514,1493,1446,1357,1328,1285,1266,1221,1213,1194$, 1181, 1151, 1088, 980, 834, 825, 789, 761, 742, 735, $703 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{~F} 344.1558$; Found 344.1565 .

(E)-2-(((4-Fluorophenyl)imino)(4-methoxyphenyl)methyl)-1H-indol-3-amine (3p). This compound was synthesized from ynamide 1f. $\mathrm{NiCl}_{2}(\mathrm{dppp})(10.8 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{Zn}$ powder ($13.1 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(72.7 \mathrm{mg}, 0.2 \mathrm{mmol})$, ynamide $\mathbf{1 f}(80.5 \mathrm{mg}, 0.2 \mathrm{mmol}), 1,4-$ dioxane (2 mL) and 4-fluoroaniline ($26.7 \mathrm{mg}, 0.24 \mathrm{mmol}$) in 4 mL screw-cap vial were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=5 / 1$ as the eluent afforded the desired product $\mathbf{3 p}$ in 58% yield $(41.8 \mathrm{mg})$ as a yellow solid. The spectroscopic data are in agreement with that obtained from 1 c.

(E)-2-((3,5-Dimethylphenyl)((4-fluorophenyl)imino)methyl)-1H-indol-3-amine
$\mathrm{NiCl}_{2}(\mathrm{dppp})(10.8 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{Zn}$ powder ($\left.13.1 \mathrm{mg}, 0.2 \mathrm{mmol}\right), \mathrm{Zn}(\mathrm{OTf})_{2}(72.7 \mathrm{mg}, 0.2$ mmol), ynamide $\mathbf{1 g}(80.1 \mathrm{mg}, 0.2 \mathrm{mmol})$, 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg , 0.24 mmol) in 4 mL screw-cap vial were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=5 / 1$ as the eluent afforded the desired product $\mathbf{3 r}$ in 67% yield $(48.1 \mathrm{mg})$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.52(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.23(\mathrm{br}, 1 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.12(\mathrm{~m}$, $1 \mathrm{H}), 7.01(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.83-6.77(\mathrm{~m}, 4 \mathrm{H}), 6.69-6.65(\mathrm{~m}, 2 \mathrm{H}), 4.99(\mathrm{br}, 2 \mathrm{H})$, $2.25(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.2(\mathrm{~m}), 158.9\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=239.8 \mathrm{~Hz}\right.$), $146.6(\mathrm{~d}$, $\left.{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 138.4,135.9,135.4,131.7,130.6,126.1,125.5,123.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.1 \mathrm{~Hz}\right), 120.6$,
$118.8,118.6,117.6,114.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.2 \mathrm{~Hz}\right), 111.4,21.2 .{ }^{13} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-$ 121.4. IR (neat): $3432,3286,3199,2914,2856,1731,1615,1592,1570,1518,1496,1447$, $1359,1326,1305,1223,1192,1149,1090,1035,1006,919,850,824,789,759,741,730,697$ cm^{-1}. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{~F} 358.1714$; Found 358.1710.

(E)-2-((4-Chlorophenyl)((4-fluorophenyl)imino)methyl)-1H-indol-3-amine
NiCl_{2} (dppp) ($10.8 \mathrm{mg}, 0.02 \mathrm{mmol}$), Zn powder ($13.1 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(72.7 \mathrm{mg}, 0.2$ mmol), ynamide $\mathbf{1 h}(81.4 \mathrm{mg}, 0.2 \mathrm{mmol})$, 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg , 0.24 mmol) in 4 mL screw-cap vial were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=5 / 1$ as the eluent afforded the desired product 3 s in 39% yield $(28.4 \mathrm{mg})$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.36(\mathrm{br}, 1 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{td}, J=$ $6.8 \mathrm{~Hz}, 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.66-6.63(\mathrm{~m}$, 2 H), $5.14(\mathrm{br}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 160.7(\mathrm{~m}), 159.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=240.6 \mathrm{~Hz}\right.$), 146.3 $\left(\mathrm{d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 136.2,135.1,133.8,132.4,130.1,129.1,126.0,123.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.1 \mathrm{~Hz}\right)$, $120.4,118.94,118.85,116.9,115.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.2 \mathrm{~Hz}\right), 111.5 .{ }^{13} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ -120.85--120.86 (m). IR (neat): 3424, 3259, 3045, 2919, 1599, 1572, 1517, 1493, 1447, 1328, 1285, 1261, 1216, 1196, 1152, 1085, 1015, 982, 832, 805, 754, 744, $731 \mathrm{~cm}^{-1}$. HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{FCl} 364.1011$; Found 364.1006.

3t
$\mathrm{NiCl}_{2}(\mathrm{dppp})(10.8 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{Zn}$ powder $(13.1 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{Zn}(\mathrm{OTf})_{2}(72.7 \mathrm{mg}, 0.2$ mmol), ynamide 1 i ($78.1 \mathrm{mg}, 0.2 \mathrm{mmol}$), 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg , 0.24 mmol) in 4 mL screw-cap vial were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=5 / 1$ as the eluent afforded the desired product $\mathbf{3 t}$ in 56% yield (38.6 mg) as a yellow solid. The product contains small amount of ethyl acetate and $\mathrm{NEt}_{3} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.55(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.39(\mathrm{br}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.08-$ $7.02(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.70(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{br}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=240.3 \mathrm{~Hz}\right), 158.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=247.5 \mathrm{~Hz}\right), 156.4(\mathrm{~m}), 146.7\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.4 \mathrm{~Hz}\right)$, $136.3,132.3,131.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.6 \mathrm{~Hz}\right), 130.1\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=4.0 \mathrm{~Hz}\right), 125.9,124.6\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}\right)$, $123.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=18.1 \mathrm{~Hz}\right), 122.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.1 \mathrm{~Hz}\right), 120.5,118.9,118.8,117.1,116.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}\right.$ $=21.4 \mathrm{~Hz}), 114.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.2 \mathrm{~Hz}\right), 111.5 .{ }^{13} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-111.4--111.5(\mathrm{~m})$, -120.9. IR (neat): 3396, 3207, 3058, 1616, 1597, 1572, 1524, 1495, 1448, 1362, 1325, 1293, $1248,1223,1195,1161,1149,1088,1011,987,892,839,822,800,766,753,733,704 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: [M + H] Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{~F}_{2}$ 348.1307; Found 348.1304.

(E)-2-((4-Fluorophenyl)((4-fluorophenyl)imino)methyl)-1 \boldsymbol{H}-indol-3-amine
NiCl_{2} (dppp) ($10.8 \mathrm{mg}, 0.02 \mathrm{mmol}$), Zn powder ($13.1 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(72.7 \mathrm{mg}, 0.2$ mmol), ynamide $\mathbf{1 j}(78.1 \mathrm{mg}, 0.2 \mathrm{mmol})$, 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg , 0.24 mmol) in 4 mL screw-cap vial were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=5 / 1$ as the eluent afforded the desired product $\mathbf{3 u}$ in 68% yield $(46.9 \mathrm{mg})$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (400
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{br}, 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 1 \mathrm{H})$, 7.07-7.03 (m, 3H), $6.81(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.65-6.61(\mathrm{~m}, 2 \mathrm{H}), 5.08(\mathrm{br}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 162.7\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=248.7 \mathrm{~Hz}\right), 160.9(\mathrm{~m}), 158.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=240.3 \mathrm{~Hz}\right), 146.4(\mathrm{~d}$, $\left.{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 136.1,132.3,131.3\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.2 \mathrm{~Hz}\right), 130.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}\right), 125.9,123.2$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.7 \mathrm{~Hz}\right), 120.4,118.9,118.8,117.1,116.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.4 \mathrm{~Hz}\right), 115.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.2\right.$ Hz), 111.5. ${ }^{13} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-110.8,-121.0$. IR (neat): $3430,3416,3257,3058$, $1603,1571,1518,1494,1449,1362,1330,1285,1268,1226,1212,1198,1153,1093,1008$, 985, 922, 836, 816, 797, 743, 735, $704 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{~F}_{2}$ 348.1307; Found 348.1301.

$3 v$
Ethyl (E)-4-((3-amino-1H-indol-2-yl)((4-fluorophenyl)imino)methyl)benzoate (3v). $\mathrm{NiCl}_{2}(\mathrm{dppp})(10.8 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{Zn}$ powder $(13.1 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{Zn}(\mathrm{OTf})_{2}(72.7 \mathrm{mg}, 0.2$ mmol), ynamide $\mathbf{1 k}$ ($88.9 \mathrm{mg}, 0.2 \mathrm{mmol}$), 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg , 0.24 mmol) in 4 mL screw-cap vial were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with $\mathrm{NEt}_{3}:$ petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=5 / 1$ as the eluent afforded the desired product $\mathbf{3 v}$ in 61% yield (48.8 mg) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.32(\mathrm{br}, 1 \mathrm{H}), 7.31(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{t}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.65-6.62(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{br}, 2 \mathrm{H}), 4.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.8,161.0(\mathrm{~m}), 159.0\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=240.6 \mathrm{~Hz}\right), 146.3(\mathrm{~d}$, $\left.{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 140.0,136.3,132.6,130.8,129.9,128.7,125.9,123.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.7 \mathrm{~Hz}\right), 120.3$, $118.9,118.8,116.8,115.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.2 \mathrm{~Hz}\right), 111.5,61.3,14.2 .{ }^{13} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-120.82--120.83(\mathrm{~m})$. IR (neat): $3458,3440,3357,3060,2987,1712,1703,1695,1617,1601$, $1572,1513,1499,1490,1448,1403,1365,1327,1289,1278,1216,1179,1152,1131,1104$,

1090, 1021, 983, 856, 840, 804, 782, 740, 727, $706 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~F} 402.1612$; Found 402.1613.

(Z)-2-((Phenylimino)(thiophen-2-yl)methyl)-1 \boldsymbol{H}-indol-3-amine (3w). $\mathrm{NiCl}_{2}(\mathrm{dppp})(10.8 \mathrm{mg}$, $0.02 \mathrm{mmol}), \mathrm{Zn}$ powder ($13.1 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(72.7 \mathrm{mg}, 0.2 \mathrm{mmol})$, ynamide $\mathbf{1 1}$ (75.7 $\mathrm{mg}, 0.2 \mathrm{mmol}$), 1,4-dioxane (2 mL) and 4-fluoroaniline ($26.7 \mathrm{mg}, 0.24 \mathrm{mmol}$) in 4 mL screwcap vial were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=5 / 1$ as the eluent afforded the desired product $\mathbf{3 w}$ in 58% yield (39.1 mg) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.66(\mathrm{bs}, 1 \mathrm{H}), 7.55$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.09(\mathrm{~m}$, $1 \mathrm{H}), 7.06-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.70(\mathrm{~m}, 2 \mathrm{H}), 5.17(\mathrm{br}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=240.6 \mathrm{~Hz}\right), 154.8,146.9\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 136.0,134.8$, 132.4, 129.6, 128.3, 126.9, 125.9, $122.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.7 \mathrm{~Hz}\right), 120.4,119.0,118.8,117.3,115.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}\right.$ $=22.2 \mathrm{~Hz}$), 111.5. ${ }^{13} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-120.8--120.9$ (m). IR (neat): 3398, 3207, $3063,1590,1569,1519,1495,1447,1424,1362,1346,1325,1281,1270,1249,1223,1192$, 1145, 1089, 1040, 965, 888, 853, 828, 800, 736, $699 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{FS} 336.0965$; Found 336.0956 .

(\boldsymbol{E})-2-(1-((4-Fluorophenyl)imino)ethyl)-1 \boldsymbol{H}-indol-3-amine (3x). NiCl_{2} (dppp) ($27.1 \mathrm{mg}, 0.05$ $\mathrm{mmol}), \mathrm{Zn}$ powder ($32.7 \mathrm{mg}, 0.5 \mathrm{mmol}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(181.8 \mathrm{mg}, 0.5 \mathrm{mmol})$, ynamide 1 m 310.37 ($155.2 \mathrm{mg}, 0.5 \mathrm{mmol}$), 1,4-dioxane (5 mL) and 4-fluoroaniline ($66.7 \mathrm{mg}, 0.6 \mathrm{mmol}$) in 12 mL
screw-cap vial were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=5 / 1$ as the eluent afforded the desired product $\mathbf{3 x}$ in 21% yield (28.0 mg) as a yellow solid, and product $\mathbf{4}$ in 35% yield $(54.8 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d_{6}$-DMSO): $\delta 10.34(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-$ $7.13(\mathrm{~m}, 3 \mathrm{H}), 6.92-6.85(\mathrm{~m}, 3 \mathrm{H}), 6.17(\mathrm{br}, 2 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, d_{6}$-DMSO): $\delta 161.1,158.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=236.5 \mathrm{~Hz}\right), 147.6\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.3 \mathrm{~Hz}\right), 136.1,132.0,124.6,122.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}}\right.$ $\mathrm{F}=7.4 \mathrm{~Hz}), 120.0,119.6,117.3,117.0,115.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.3 \mathrm{~Hz}\right), 111.6,17.4 .{ }^{13} \mathrm{~F}$ NMR (376 MHz, d_{6}-DMSO): $\delta-121.9--122.0(\mathrm{~m})$. IR (neat): $3427,3398,3327,3246,3173,3058,1600$, $1574,1533,1496,1370,1317,1246,1223,1210,1194,1092,1006,853,760,743,714 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{~F}$ 268.1245; Found 268.1247 .

4
N-(2-Cyanophenyl)-N-(3,4-dimethyl-5-tosyl-5H-pyrido[3,2-b]indol-2-yl)-4-
methylbenzenesulfonamide (4). M.p. $182-184{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.17(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 3 \mathrm{H})$, $7.33(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 149.7,145.5,144.6,144.0,142.9,141.8,141.6,135.3,134.5,134.1,132.8$, $132.7,131.5,130.9,129.6,129.0,128.8,128.65,128.56,128.5,127.0,126.0,120.0,119.6$, $117.5,115.8,21.7,21.4,19.5,15.8$. IR (neat): 2959, 2920, 2852, 2234, 1730, 1595, 1448, 1362, 1187, 1165, 1097, 1088, 1070, 875, 816, 790, 761, 719, 700, 681, $664 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}$ 621.1625; Found 621.1625.
Typical procedure for the synthesis of 3-(()4-

$\mathrm{NiCl}_{2}(\mathrm{dppp})(10.8 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{Zn}$ powder ($\left.13.1 \mathrm{mg}, 0.2 \mathrm{mmol}\right), \mathrm{Zn}(\mathrm{OTf})_{2}(72.7 \mathrm{mg}$, 0.2 mmol), ynamide $5(77.3 \mathrm{mg}, 0.2 \mathrm{mmol})$, 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg , 0.24 mmol) were added sequentially to a 4 mL screw-cap vial. The vial cap was then securely fitted and taken outside the glove box. After the reaction mixture was stirred at $100^{\circ} \mathrm{C}$ (oil bath) for 11 h , the mixture was quenched with brine and extracted with ethyl acetate. The combined organic layers were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and the solvent was evaporated under the reduced pressure, and the residue was purified by column chromatography on silica gel (which was treated with $\mathrm{NEt}_{3}:$ petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=5 / 1$ as the eluent to afford the desired product $\mathbf{6}$ in 57% yield $(39.3 \mathrm{mg})$ as a yellow solid. M.p. $=$ $143-145^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.76(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H})$, $6.82(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.66-6.63(\mathrm{~m}, 2 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{br}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 156.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=234.0 \mathrm{~Hz}\right), 143.6\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=1.7 \mathrm{~Hz}\right), 142.1,141.4,135.7$, $134.0,129.2,128.8,128.1,127.9,127.6,127.5,126.8,126.7,119.7,115.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.2 \mathrm{~Hz}\right)$, $114.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=7.6 \mathrm{~Hz}\right), 61.8 .{ }^{13} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-127.27--127.3$ (m). IR (neat): $3474,3399,3358,3076,3055,2919,2846,1843,1622,1507,1470,1443,1401,1309,1219$, 1188, 1091, 951, 894, 817, 784, 770, 750, 736, $699 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{~F} 344.1558$; Found 344.1549.

Mechanistic studies.

The reaction was conducted in an oven-dried screw-cap vial (volume: 4 mL) equipped with a magnetic stir bar. In a nitrogen-filled glove box, $\mathrm{Ni}(\operatorname{cod})_{2}(5.5 \mathrm{mg}, 0.02 \mathrm{mmol}), \mathrm{dppp}$ ($8.2 \mathrm{mg}, 0.02 \mathrm{mmol}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(14.5 \mathrm{mg}, 0.04 \mathrm{mmol})$, ynamide $\mathbf{1 a}(74.5 \mathrm{mg}, 0.2 \mathrm{mmol}), 1,4-$ dioxane (2 mL) and 4-fluoroaniline ($26.7 \mathrm{mg}, 0.24 \mathrm{mmol}$) were added sequentially to a screwcap vial. The vial cap was then securely fitted and taken outside the glove box. After the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h , trace amount of $\mathbf{3 a}$ was observed according to TLC analysis.

When $\mathrm{Ni}(\operatorname{cod})_{2}(5.5 \mathrm{mg}, 0.02 \mathrm{mmol})$, dppp ($8.2 \mathrm{mg}, 0.02 \mathrm{mmol}$), Zn powder $(13.1 \mathrm{mg}, 0.2$ $\mathrm{mmol}), \mathrm{Zn}(\mathrm{OTf})_{2}(14.5 \mathrm{mg}, 0.04 \mathrm{mmol})$, ynamide $\mathbf{1 a}(74.5 \mathrm{mg}, 0.2 \mathrm{mmol}), 1,4$-dioxane (2 mL) and 4-fluoroaniline ($26.7 \mathrm{mg}, 0.24 \mathrm{mmol}$) were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=3 / 1$ as the eluent to afford the main product 3a and starting material 1a mixture. The solvent was evaporated under the reduced pressure and the residue was dissolved in d_{6}-DMSO. The NMR yields were obtained by ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixture using 1,3,5-trimethoxybenzene $(33.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ as an internal standard. The NMR yield of $\mathbf{3 a}$ was 21% and the NMR yield of the unreacted $\mathbf{1 a}$ was 24%.

When $\mathrm{Ni}(\operatorname{cod})_{2}(55.0 \mathrm{mg}, 0.2 \mathrm{mmol})$, dppp ($82.5 \mathrm{mg}, 0.2 \mathrm{mmol}$), ynamide $\mathbf{1 a}(74.5 \mathrm{mg}$, $0.2 \mathrm{mmol}), 1,4$-dioxane (2 mL) and 4-fluoroaniline ($26.7 \mathrm{mg}, 0.24 \mathrm{mmol}$) were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 1 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=3 / 1$ as the eluent afforded the desired product $\mathbf{3 a}$ in 50% yield $(33.1 \mathrm{mg})$ as a yellow solid.

When $\mathrm{Ni}(\operatorname{cod})_{2}(55.0 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{dppp}(82.5 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{Zn}(\mathrm{OTf})_{2}(72.7 \mathrm{mg}, 0.2$ mmol), ynamide 1 a ($74.5 \mathrm{mg}, 0.2 \mathrm{mmol}$), 1,4-dioxane (2 mL) and 4-fluoroaniline (26.7 mg , 0.24 mmol) were stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 1 h . Column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=3 / 1$ as the eluent afforded the desired product 3a in 60% yield (39.8 mg) as a yellow solid.

The reaction was conducted in an oven-dried screw-cap vial (volume: 4 mL) equipped with a magnetic stir bar. In a nitrogen-filled glove box, ynamide 5 ($77.3 \mathrm{mg}, 0.2 \mathrm{mmol}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(72.7 \mathrm{mg}, 0.2 \mathrm{mmol})$, dioxane (2 mL) and 4-fluoroaniline ($26.7 \mathrm{mg}, 0.24 \mathrm{mmol}$) were added sequentially to a screw-cap vial. The vial cap was then securely fitted and taken outside the glove box. After the reaction mixture was stirred at $100^{\circ} \mathrm{C}$ (oil bath) for 10 h , the mixture was filter with a silica pad and washed with ethyl acetate. The solvent was evaporated under the reduced pressure and and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=10 / 1$) to afford the desired product 7 in 65% yield (64.9 mg) as a white solid. M.p. $119-121^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.52-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.08(\mathrm{~m}, 4 \mathrm{H}), 6.93(\mathrm{t}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.41-6.38(\mathrm{~m}, 2 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}), 2.46(\mathrm{~s}$, $3 \mathrm{H}) . \mathrm{m} . \mathrm{p} .=119-121{ }^{\circ} \mathrm{C} .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 159.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=240.4 \mathrm{~Hz}\right.$), 156.2, 144.7, $143.5\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right), 139.9,134.7,134.3,132.5,132.3,129.8,129.1,129.0,128.5$, 127.7, 127.5, 126.7, $120.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=8.0 \mathrm{~Hz}\right), 117.2,115.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=22.2 \mathrm{~Hz}\right), 111.9,49.2$, 37.1, 21.6. ${ }^{13} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ-120.1. IR (neat): 3061, 3030, 2954, 2922, 2852, $2223,1660,1594,1498,1453,1365,1351,1226,1206,1184,1170,1144,1087,1019,881$, 854, 844, 811, 771, 761, 737, 720, 707, 700, 692, $657 \mathrm{~cm}^{-1}$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{FS} 498.1646$; Found 498.1646 .

The reaction was conducted in an oven-dried screw-cap vial (volume: 4 mL) equipped with a magnetic stir bar. In a nitrogen-filled glove box, ynamide $5(77.3 \mathrm{mg}, 0.2 \mathrm{mmol})$, $\mathrm{Zn}(\mathrm{OTf})_{2}(14.5 \mathrm{mg}, 0.04 \mathrm{mmol})$, toluene (2 mL) and 4-fluoroaniline ($26.7 \mathrm{mg}, 0.24 \mathrm{mmol}$) were added sequentially to a screw-cap vial. The vial cap was then securely fitted and taken outside the glove box. After the reaction mixture was stirred at $100^{\circ} \mathrm{C}$ (oil bath) for 5 h , the mixture was filter with a silica pad and washed with ethyl acetate. The solvent was evaporated under the reduced pressure and and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=10 / 1$) to afford the desired product 7 in 88% yield (87.5 mg) as a white solid.

The reaction was conducted in an oven-dried screw-cap vial (volume: 4 mL) equipped with a magnetic stir bar. In a nitrogen-filled glove box, ynamide 5 ($77.3 \mathrm{mg}, 0.2 \mathrm{mmol}), 1,4-$ dioxane (2 mL) and 4-fluoroaniline ($26.7 \mathrm{mg}, 0.24 \mathrm{mmol}$) were added sequentially to a screwcap vial. The vial cap was then securely fitted and taken outside the glove box. After the reaction mixture was stirred at $100^{\circ} \mathrm{C}$ (oil bath) for 10 h . The mixture was filter with a silica pad and washed with ethyl acetate. The solvent was evaporated under the reduced pressure and the NMR yields were obtained by ${ }^{1} \mathrm{H}$ NMR analysis of the crude mixture using 1,3,5-trimethoxybenzene $(33.6 \mathrm{mg}, 0.2 \mathrm{mmol})$ as an internal standard. No desired product was formed. The NMR yield of 5 was 96%.

$1 \mathbf{m m o l}$ scale reaction of $\mathbf{1 f}$.

(E)-2-(((4-Fluorophenyl)imino)(4-methoxyphenyl)methyl)-1H-indol-3-amine (3p). This compound was synthesized from ynamide $\mathbf{1 f}$. To an oven dried Schlenk tube (25 mL) were added $\mathrm{NiCl}_{2}(\mathrm{dppp})(54.2 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{Zn}$ powder ($65.4 \mathrm{mg}, 1 \mathrm{mmol}$), $\mathrm{Zn}(\mathrm{OTf})_{2}(363.5 \mathrm{mg}$, 1 mmol), ynamide $\mathbf{1 f}(402.5 \mathrm{mg}, 1 \mathrm{mmol})$, 1,4-dioxane (10 mL) and 4-fluoroaniline (133.3 mg , 1.2 mmol) in the glovebox. The Schlenk tube was capped with a rubber septum and take out of the golvebox. The tube cap was then securely fitted and sealed with electrical tape, and the stopcock valve on the sidearm of the Schlenk tube was closed. After the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ (oil bath) for 12 h , the mixture was quenched with brine and extracted with ethyl acetate. The combined organic layers were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The mixture was filtered and the solvent was evaporated under the reduced pressure. The residue was purified by column chromatography on silica gel (which was treated with NEt_{3} :petroleum ether $=1: 20$ and then petroleum ether before loading the sample) using petroleum ether/ethyl acetate $=5 / 1$ as the eluent afforded the desired product $\mathbf{3 p}$ in 62% yield $(222.8 \mathrm{mg})$ as a yellow solid.

References:

(1) Zhang, J.; Guo, M.; Chen, Y.; Zhang, S.; Wang, X.-N.; Chang, J. Org. Lett. 2019, 21, 1331.
(2) (a) Wang, G.; You, X.; Gan, Y.; Liu, Y. Org. Lett. 2017, 19, 110. (b) Kloeckner, U.; Nachtsheim, B. J. Chem. Commun. 2014, 50, 10485.

The single crystal of $\mathbf{3 g}$ was prepared by slow diffusion of its solution in ethyl acetate/hexane. The structure of $\mathbf{3 g}$ was established by X-ray analysis of its crystal (Figure S1). Thermal ellipsoids are set at 30% probability.

Figure S1. X-ray crystal structure of compound $\mathbf{3 g}$

Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

Full-matrix least-squares on F^{2}
2886/0/229
1.151
$\mathrm{R} 1=0.0651, \mathrm{wR} 2=0.1398$
$R 1=0.0904, w R 2=0.1513$
n/a
0.186 and $-0.139 \mathrm{e} . \AA^{-3}$

The single crystal of $\mathbf{4}$ was prepared by slow diffusion of its solution in dichloromethane/ethyl acetate/hexane. The structure of $\mathbf{4}$ was established by X-ray analysis of its crystal (Figure S2). Thermal ellipsoids are set at 30\% probability.

Figure S2. X-ray crystal structure of compound 4

Crystal data and structure refinement for mo_d8v21043_0m_4. (compound 4)
Identification code mo_d8v21043_0m_4
Empirical formula
C34 H28 N4 O4 S2
Formula weight
620.72

Temperature

Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$0.71073 \AA$
Triclinic
P-1
$a=9.4151(8) \AA \quad \alpha=90.241(3)^{\circ}$.
$b=13.3841(12) \AA \quad \beta=94.199(3)^{\circ}$.
$\mathrm{c}=14.0084(13) \AA \quad \gamma=104.514(3)^{\circ}$.
$1703.8(3) \AA^{3}$
2
$1.210 \mathrm{Mg} / \mathrm{m}^{3}$
$0.197 \mathrm{~mm}^{-1}$
648
$0.200 \times 0.150 \times 0.120 \mathrm{~mm}^{3}$
2.766 to 24.996°.
$-16<=\mathrm{h}<=16,-17<=\mathrm{k}<=17,-22<=1<=20$
48588
$5918[\mathrm{R}(\mathrm{int})=0.0583]$
96.1 \%

Semi-empirical from equivalents
0.7456 and 0.6630

Full-matrix least-squares on F^{2}
5918 / 0/401
1.103
$\mathrm{R} 1=0.0802, \mathrm{wR} 2=0.2022$
$R 1=0.0916, w R 2=0.2086$
n / a
0.444 and -0.723 e. \AA^{-3}

The single crystal of S-5 was prepared by slow evaporation of its solution in methyl acetate/petroleum ether. The structure of S-5 was established by X-ray analysis of its crystal (Figure S3). Thermal ellipsoids are set at 30% probability.

Figure S3. X-ray crystal structure of compound S-5

Crystal data and structure refinement for mo_d8v21055_0m (compound S-5).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
mo_d8v21055_0m
C15 H14 N2 O2 S
286.34

193(2) K
0.71073 A

Monoclinic
P 21/c
$a=12.4834(5) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=5.1425(2) \AA \quad \beta=94.4310(10)^{\circ}$.
$\mathrm{c}=20.4041(6) \AA \quad \gamma=90^{\circ}$.
1305.94(8) \AA^{3}

4
$1.456 \mathrm{Mg} / \mathrm{m}^{3}$
$0.250 \mathrm{~mm}^{-1}$
600
$0.200 \times 0.120 \times 0.100 \mathrm{~mm}^{3}$
2.486 to 25.998°.
$-15<=\mathrm{h}<=12,-6<=\mathrm{k}<=6,-25<=1<=25$
10279
$2560[\mathrm{R}(\mathrm{int})=0.0286]$
99.6 \%

Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

Semi-empirical from equivalents
0.7456 and 0.6605

Full-matrix least-squares on F^{2}
2560 / 0 / 186
1.063
$\mathrm{R} 1=0.0352, \mathrm{wR} 2=0.0843$
$R 1=0.0453, w R 2=0.0916$
n/a
0.286 and -0.389 e. \AA^{-3}

The single crystal of 5 was prepared by slow evaporation of its solution in dichloromethane/hexane. The structure of $\mathbf{5}$ was established by X-ray analysis of its crystal (Figure S4). Thermal ellipsoids are set at 30% probability.

Figure S4. X-ray crystal structure of compound 5

Crystal data and structure refinement for d 8 v 21050 (compound 5).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
d8v21050
C23 H18 N2 O2 S
386.45

293(2) K
0.71073 A

Monoclinic
P21/c
$a=10.2238(4) \AA \quad \alpha=90^{\circ}$.

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$\mathrm{b}=22.1909(10) \AA \quad \beta=117.9640(10)^{\circ}$.
$\mathrm{c}=10.0711(4) \AA \quad \gamma=90^{\circ}$.
2018.11(15) \AA^{3}

4
$1.272 \mathrm{Mg} / \mathrm{m}^{3}$
$0.181 \mathrm{~mm}^{-1}$
808
$0.180 \times 0.150 \times 0.100 \mathrm{~mm}^{3}$
2.255 to 25.999°.
$-12<=\mathrm{h}<=11,-23<=\mathrm{k}<=27,-12<=\mathrm{l}<=12$
10038
$3941[\mathrm{R}(\mathrm{int})=0.0283]$
99.3 \%

Semi-empirical from equivalents
0.7456 and 0.6763

Full-matrix least-squares on F^{2}
3941 / 0 / 255
1.051
$\mathrm{R} 1=0.0469, \mathrm{wR} 2=0.1013$
$\mathrm{R} 1=0.0665, \mathrm{wR} 2=0.1157$
0.018(3)
0.183 and -0.277 e.\AA^{-3}

The single crystal of 6 was prepared by slow evaporation of its solution in dichloromethane/petroleum ether. The structure of $\mathbf{6}$ was established by X-ray analysis of its crystal (Figure S5). Thermal ellipsoids are set at 30\% probability.

Figure S5. X-ray crystal structure of compound 6

The single crystal of 7 was prepared by slow evaporation of its solution in dichloromethane/hexane. The structure of 7 was established by X-ray analysis of its crystal (Figure S6). Thermal ellipsoids are set at 30% probability.

Figure S6. X-ray crystal structure of compound 7

Crystal data and structure refinement for mo_d8v20727_0m (compound 7).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
mo_d8v20727_0m
C29 H24 F N3 O2 S
497.57

293(2) K
$0.71073 \AA$
Monoclinic
C 2/c
$\mathrm{a}=30.093(2) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=8.4008(5) \AA \quad \beta=103.592(2)^{\circ}$.
$\mathrm{c}=21.1075(15) \AA \quad \gamma=90^{\circ}$.
5186.7(6) \AA^{3}

8
$1.274 \mathrm{Mg} / \mathrm{m}^{3}$
$0.163 \mathrm{~mm}^{-1}$
2080
$0.180 \times 0.130 \times 0.100 \mathrm{~mm}^{3}$
2.522 to 25.999°.
$-34<=\mathrm{h}<=36,-10<=\mathrm{k}<=10,-26<=\mathrm{l}<=26$
38089

Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole
$5092[\mathrm{R}(\mathrm{int})=0.0659]$
99.8 \%

Semi-empirical from equivalents
0.7456 and 0.6034

Full-matrix least-squares on F^{2}
5092 / 0 / 326
1.055
$\mathrm{R} 1=0.0551, \mathrm{wR} 2=0.1178$
$R 1=0.0931, w R 2=0.1415$
n/a
0.270 and $-0.274 \mathrm{e} . \AA^{-3}$

 以いいしいいいい」い」」」

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

SS－1c
$\mathrm{R}=\mathrm{SO}_{2}\left(p-\mathrm{FC}_{6} \mathrm{H}_{4}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

N

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

S-1c
$\mathrm{R}=\mathrm{SO}_{2}\left(p-\mathrm{FC}_{6} \mathrm{H}_{4}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

S-1c
$\mathrm{R}=\mathrm{SO}_{2}\left(p-\mathrm{FC}_{6} \mathrm{H}_{4}\right)$

LLLLLᄂしいいいいいい」」」ل」ل」」ل」为

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

SS-1d
$\mathrm{R}=\mathrm{SO}_{2}\left(p-\mathrm{OMeC}_{6} \mathrm{H}_{4}\right)$

 N

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

S-1d

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathrm{R}=\mathrm{SO}_{2}\left(p-\mathrm{OMeC}_{6} \mathrm{H}_{4}\right)$
S-1d

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\mathrm{R}=\mathrm{SO}_{2}\left(p-\mathrm{OMeC}_{6} \mathrm{H}_{4}\right)$
1d

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

(1)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

SS-5

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

S-5

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

s-5 NH

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3a

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3a

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3b

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	勧		

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3c

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3d

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	$\stackrel{8}{6}$	さ	\%		
				$\\|$	

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3e

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

3 g

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3 g

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3h

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3h

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$3 i$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$3 i$

	${ }^{\circ}$	$\stackrel{\text { ® }}{ }$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3k

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3k

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13}$ C NMR (100 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3m

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3 m

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$3 n$

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6})

${ }^{3}$ C NMR (400 MHz, DMSO- d_{6})

3o

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3a, $E W G=\mathrm{Ms}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$3 \mathrm{a}, \mathrm{EWG}=\mathrm{Ms}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

3p, $\mathrm{EWG}=\mathrm{SO}_{2}(p-\mathrm{F}) \mathrm{C}_{6} \mathrm{H}_{4}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3p, $\mathrm{EWG}=\mathrm{SO}_{2}(p-\mathrm{F}) \mathrm{C}_{6} \mathrm{H}_{4}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3p, $\mathrm{EWG}=\mathrm{SO}_{2}(p-\mathrm{OMe}) \mathrm{C}_{6} \mathrm{H}_{4}$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3p, $\mathrm{EWG}=\mathrm{SO}_{2}(p-\mathrm{OMe}) \mathrm{C}_{6} \mathrm{H}_{4}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$3 q$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

LLLLLLMM以いいいいいいいいいJUJ」
n
${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

3 s

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3s

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3t

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3t

x
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$3 u$

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$3 v$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$3 v$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$3 w$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$3 w$

${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6})

3 x

${ }^{3} \mathrm{C}$ NMR (400 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

