Supporting Information

An "umpolung relay" Strategy: One-pot, Twice Polarity

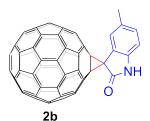
Inversion Cascade Synthesis of Diversified

[60] Fulleroindoles

Xin-Rui Chen, † Ying-Meng Li, † Xiang Li, † Jun Xuan, † Hong-Ping Zhou, † Yu-Peng Tian † and Fei Li *,†

†Department of Chemistry, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230039, PR China lfe@ahu.edu.cn

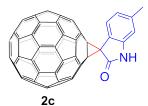
1. Experimental Procedures and Spectral Data of 2a-5lj	S3-S31
¹ H NMR spectrum and ¹³ C NMR spectrum of product 2a	S32-S33
¹ H NMR spectrum and ¹³ C NMR spectrum of product 2b	S33-S34
¹ H NMR spectrum and ¹³ C NMR spectrum of product 2c	S35-S36
¹ H NMR spectrum and ¹³ C NMR spectrum of product 2d	S36-S37
¹ H NMR spectrum and ¹³ C NMR spectrum of product 2e	S38-S39
¹ H NMR spectrum and ¹³ C NMR spectrum of product 3f	S39-S40
¹ H NMR spectrum and ¹³ C NMR spectrum of product 3g	S41-S42
¹ H NMR spectrum and ¹³ C NMR spectrum of product 3h	S42-S43
¹ H NMR spectrum and ¹³ C NMR spectrum of product 3i	S44-S45
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5ga	S45-S46
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5ha	S47-S48
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5ia	S48-S49
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5ja	S50-S51
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5ka	S51-S52
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5la	S53-S54
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5fa	S54-S55
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5aa	S56-S57
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5gb	S57-S58
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5hb	S59-S60
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5ab	S60-S61
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5hc	S62-S63
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5gc	S63-S64
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5gd	S65-S66
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5hd	S67-S68
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5id	S68-S69
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5ld	S69-S70
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5ae	S71-S72
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5ge	S72-S73


¹ H NMR spectrum and ¹³ C NMR spectrum of product 5he	S74-S75	
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5ie	S75-S76	
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5le	S77-S78	
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5gi	S78-S79	
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5gf	S80-S81	
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5gh	S82-S83	
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5gg	S83-S84	
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5ij	S85-S86	
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5hj	S87-S88	
¹ H NMR spectrum and ¹³ C NMR spectrum of product 5lj	S89-S90	
2. Single-Crystal X-Ray Crystallography of 2d, 3g, and 5aa	S91-S95	
3. HPLC Profiles of the reaction mixtures for the synthesis of 2a, 2e, 3g and 5ie		
	S95-S97	
4. Scale-up procedure for synthesis of 5ie	S97-S98	
5. Experimental Procedures of Mechanism Studies	S98-S100	

1. Experimental Procedures and Spectral Data of 2a-5lj

Synthesis of 2a

C₆₀ (36.0 mg, 0.05 mmol), indole (7.2 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (180 µL, 2 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (34 mg, 0.15 mmol) was added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with disulfide/dichloromethane (2:1) as the eluent to give unreacted C₆₀ (6.0 mg, 17%) and 2a (15.1 mg, 35%) as black amorphous solid. ¹H NMR (600 MHz, CS_2/d_6 -DMSO) δ 11.37 (s, N-H, 1H), 8.18 (d, J = 7.8 Hz, 1H), 7.42 (td, J = 7.8, 1.2 Hz, 1H), 7.16 (d, J = 7.8 Hz, 1H), 7.12 (td, J =7.8, 1.2 Hz, 1H); 13 C NMR (150 MHz, CS_2/d_6 -DMSO) (all 2C unless indicated) δ 169.25(1C, carbonyl C), 145.3, 144.9, 144.4, 144.35, 144.29, 144.27, 144.25(1C), 144.2, 144.0, 143.9, 143.81, 143.80, 143.7, 143.6(1C), 143.5, 143.4, 143.0, 142.7, 142.31, 142.28, 142.2, 142.1, 142.0, 141.5, 141.4(4C), 140.9, 140.5, 140.3, 140.0, 138.0(1C, aryl C), 128.8(1C, aryl C), 124.6(1C, aryl C), 122.9(1C, aryl C), 121.0(1C, aryl C), 110.1(1C, aryl C), 75.0(sp^3 -C of C₆₀), 42.2(1C); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for C₆₈H₅NO 851.0371; found 851.0376.


Synthesis of 2b

 C_{60} (36.0 mg, 0.05 mmol), 5-methyindole (8 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF_3SO_3H (180 μ L, 2 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) was added to the mixture and stirred in an oil bath at 100 °C for 60

minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (1:1) as the eluent to give unreacted C_{60} (7.1 mg, 20%) and **2b** (27.8 mg, 64%) as black amorphous solid. ¹H NMR (600 MHz, CS_2/d_6 -DMSO) δ 11.26 (s, N-H, 1H), 7.98 (s, 1H), 7.22 (d, J = 6.0 Hz, 1H), 7.04 (dd, J = 7.8, 3.6 Hz, 1H), 2.50 (s, 3H); ¹³C NMR(150 MHz, CS_2/d_6 -DMSO) (all 2C unless indicated) δ 169.3(1C, carbonyl C), 145.5, 144.9, 144.5, 144.38, 144.35, 144.3(4C), 144.2, 144.1, 143.9, 143.8, 143.8, 143.7, 143.6(1C), 143.5, 143.4, 143.0, 142.8, 142.4(1C), 142.32(1C), 142.27, 142.2, 142.1, 141.6, 141.49, 141.45, 141.0, 140.5, 140.4, 140.0, 139.9(1C), 138.0(1C, aryl C), 129.9(1C, aryl C), 129.3(1C, aryl C), 124.8(1C, aryl C), 123.6(1C, aryl C), 109.9(1C, aryl C), 75.1(sp^3 -C of C_{60}), 42.2(1C), 21.1(1C, -CH₃); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for $C_{69}H_7$ NO 865.0528; found 865.0532.

Synthesis of 2c

C₆₀ (36.0 mg, 0.05 mmol), 6-methyindole (8 μL, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (45 µL, 0.5 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) was added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the eluent to give unreacted C₆₀ (3.3 mg, 9%) and **2c** (10.2 mg, 24%) as black amorphous solid. ¹H NMR (400 MHz, CS₂/ d_6 -DMSO) δ 11.29 (s, N-H, 1H), 8.04 (d, J = 8.0 Hz, 1H), 6.98 (s, 1H), 6.92 (d, J = 8.0 Hz, 1H), 2.50 (s, 3H); 13 C NMR (100 MHz, CS_2/d_6 -DMSO) (all 2C unless indicated) δ 169.6(1C, carbonyl C), 145.6, 144.9, 144.5, 144.4, 144.33, 144.31, 144.30, 144.21, 144.17, 143.9, 143.8(4C), 143.73, 143.66(1C), 143.5, 143.4, 143.0, 142.8, 142.4(1C), 142.4(1C), 142.34(1C), 142.26, 142.2, 142.1, 141.5, 141.5, 141.4, 140.9, 140.5, 140.4, 140.1, 138.7 (1C, aryl C), 138.0(1C, aryl C), 122.7(1C, aryl C), 121.8(1C, aryl C), 121.6(1C, aryl C), 111.0(1C, aryl C), 75.1(sp^3 -C of C₆₀), 42.3(1C), 21.3(1C, -CH₃); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M] calcd for C₆₉H₇NO 865.0528; found 865.0530.

Synthesis of 2d

C₆₀ (36.0 mg, 0.05 mmol), 5-methoxyindole (9 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (180 µL, 2 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) was added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the eluent to give unreacted C₆₀ (8.1 mg, 23%) and 2d (21.1 mg, 48%) as black amorphous solid. ¹H NMR (600 MHz, CS_2/d_6 -DMSO) δ 11.17 (s, N-H, 1H), 7.75 (d, J = 3.0 Hz, 1H), 7.04 (d, J = 8.4 Hz, 1H), 6.95 (dd, J = 8.4 Hz, 1H 8.4, 2.4 Hz, 1H), 3.85 (s, 3H); 13 C NMR (150 MHz, CS_2/d_6 -DMSO) (all 2C unless indicated) δ 169.24(1C, carbonyl C), 154.3(1C, aryl C), 145.3, 144.9, 144.43, 144.39, 144.33, 144.30, 144.29(1C), 144.2, 144.0, 143.89, 143.86, 143.8, 143.7, 143.6(1C), 143.5, 143.4, 143.0, 142.8, 142.4 (1C), 142.32(1C), 142.27, 142.2, 142.0, 141.6, 141.5, 141.4, 140.9, 140.5, 140.4, 140.0, 137.9, 135.6(1C, aryl C), 125.7 (1C, aryl C), 112.7(1C, aryl C), 111.3(1C, aryl C), 110.1(1C, aryl C), 75.0(sp^3 -C of C₆₀), 54.9(1C, -OCH₃), 42.3(1C); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M] calcd for C₆₉H₇NO₂ 881.0477; found 881.0481.

Synthesis of 2e

C₆₀ (36.0 mg, 0.05 mmol), 6-benzyloxyindole (14 mg, 0.06 mmol), KO^tBu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (180 μL, 2 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56

mg, 0.25 mmol) was added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (1:1) as the eluent to give unreacted C₆₀ (12.3 mg, 34%) and 2e (23.1 mg, 48%) as black amorphous solid. ¹H NMR (400 MHz, CS₂/d₆-DMSO) δ 11.31 (s, N-H, 1H), 8.04 (d, J = 8.4 Hz, 1H), 7.47 (d, J = 7.2 Hz, 2H), 7.39 (t, J =7.2 Hz, 2H), 7.33 (d, J = 7.2 Hz, 1H), 6.80 (d, J = 2.0 Hz, 1H), 6.68 (dd, J = 8.8, 2.4 Hz, 1H), 5.17 (s, 2H); 13 C NMR(100 MHz, CS₂/ d_6 -DMSO) (all 2C unless indicated) δ 169.8(1C, carbonyl C), 159.4(1C, aryl C), 145.7, 145.0(1C, aryl C), 144.5, 144.4, 144.32(4C), 144.27, 144.2(4C), 143.9, 143.8(4C), 143.7, 143.7(1C), 143.6(1C), 143.5, 143.4, 143.0, 142.8, 142.33(1C), 142.32(1C), 142.2, 142.1, 142.0, 141.4(4C), 141.4, 140.9, 140.5, 140.4, 140.1, 137.9, 136.1(1C, aryl C), 127.8(aryl C), 127.2(1C, aryl C), 126.7(aryl C), 123.7(1C, aryl C), 116.8(1C, aryl C), 107.0(1C, aryl C), 97.9(1C, aryl C), $75.2(sp^3-C \text{ of } C_{60})$, $69.2(1C, -OCH_2-)$, 42.3(1C); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M] calcd for C₇₅H₁₁O₂N 957.0790; found 957.0793.

Synthesis of 3f

C₆₀ (36.0 mg, 0.05 mmol), 5-chloroindole (9 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (180 µL, 2 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and H₂O (36 μL, 2 mmol) were added to the mixture and stirred in an oil bath at 110 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (1:1) as the eluent to give unreacted C₆₀ (5 mg, 14%) and 3f (17.9 mg, 41%) as black amorphous solid. ¹H NMR (400 MHz, CS_2/d_6 -DMSO) δ 11.42 (s, N-H, 1H), 8.62 (s, 1H), 7.83.-7.82 (m, 2H), 7.52 (d, J =8.8 Hz, 1H), 7.20 (dd, J = 8.8, 1.6 Hz, 1H); ¹³C NMR(100 MHz, CS₂/ d_6 -DMSO) (all 2C unless indicated) δ 156.0, 153.8, 147.7(1C), 147.1(1C), 145.8, 145.7, 145.4(4C), 145.2(4C), 145.0(4C), 144.63, 144.62, 144.5, 144.20, 144.18, 142.3, 141.9, 141.82, 141.77, 141.62, 141.58, 141.4, 141.0, 140.6, 139.2, 138.7, 135.4, 134.9, 129.5(1C, aryl C), 126.4(1C, aryl C), 124.40(1C, aryl C), 124.36(1C, aryl C), 121.3(1C, aryl C), 119.9(1C, aryl C), 115.0(1C, aryl C), 112.5(1C, aryl C), 86.1(1C, sp^3 -C of C₆₀), 65.0(1C, sp^3 -C of C₆₀); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for C₆₈H₆ClNO 887.0138; found 887.0142.

Synthesis of 3g

C₆₀ (36.0 mg, 0.05 mmol), 5-bromoindole (12 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (180 µL, 2 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and H₂O (36 µL, 2 mmol) were added to the mixture and stirred in an oil bath at 110 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (1:1) as the eluent to give unreacted C_{60} (13 mg, 36%) and 3g (23.2 mg, 50%) as black amorphous solid. ¹H NMR (400 MHz, CS_2/d_6 -DMSO) δ 11.43 (s, N-H, 1H), 8.76 (s, 1H), 7.82 (s, 1H), 7.81 (d, J = 2.4 Hz, 1H), 7.48 (d, J = 8.8 Hz, 1H), 7.32 (dd, J = 8.4, 1.6 Hz, 1H); ¹³C NMR(100 MHz, CS_2/d_6 -DMSO) (all 2C unless indicated) δ 156.0, 153.8, 147.8(1C), 147.1(1C), 145.8, 145.7, 145.4(4C), 145.2(4C), 145.0(4C), 144.64, 144.62, 144.5, 144.20, 144.18, 142.3, 141.9, 141.82, 141.77, 141.62, 141.59, 141.4, 141.0, 140.6, 139.2, 138.7, 135.4, 135.2, 134.7(1C, aryl C), 130.2(1C, aryl C), 126.3(1C, aryl C), 123.8(1C, aryl C), 122.9(1C, aryl C), 114.9(1C, aryl C), 113.0(1C, aryl C), 112.5(1C, aryl C), 86.1(1C, sp^3 -C of C_{60}), 65.0(1C, sp^3 -C of C_{60}); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for C₆₈H₆BrNO 930.9633; found 930.9637.

Synthesis of 3h

C₆₀ (36.0 mg, 0.05 mmol), indole-5-carbonitrile (8.6 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30

minutes, CF₃SO₃H (180 μL, 2 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and H_2O (36 μ L, 2 mmol) were added to the mixture and stirred in an oil bath at 110 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane/ethyl acetate(6:2:1) as the eluent to give unreacted C₆₀ (13.3 mg, 37%) and **3h** (16 mg, 36%) as black amorphous solid. H NMR (400 MHz, CS_2/d_6 -DMSO) δ 11.81 (s, N-H, 1H), 9.00 (s, 1H), 8.00 (d, J = 2.0Hz, 1H), 7.94 (d, J = 2.0 Hz, 1H), 7.69 (d, J = 8.4 Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H); 13 C NMR (100 MHz, CS₂/d₆-DMSO)(all 2C unless indicated) δ 155.7, 147.7(1C), 147.1(1C), 145.8, 145.7, 145.4(4C), 145.2(4C), 144.9, 144.9(4C), 144.6(4C), 144.5, 144.18, 144.15, 142.2, 141.9, 141.84(4C), 141.76, 141.62, 141.56, 141.4, 141.1, 140.6, 139.2, 138.7, 138.2, 135.3(1C, aryl C), 128.3(1C, aryl C), 127.1(1C, aryl C), 126.1(1C, aryl C), 123.7(1C, aryl C), 119.8(-CN), 116.5(1C, aryl C), 112.6(1C, aryl C), 101.9(1C, aryl C), 86.2(1C, sp^3 -C of C₆₀), 64.8(1C, sp^3 -C of C₆₀); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M] calcd for C₆₉H₆N₂O 878.0480; found 878.0485.

Synthesis of 3i

C₆₀ (36.0 mg, 0.05 mmol), 7-bromoindole (12 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (180 µL, 2 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and H₂O (36 µL, 2 mmol) were added to the mixture and stirred in an oil bath at 110 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the eluent to give unreacted C_{60} (10 mg, 28%) and 3i (27 mg, 58%) as black amorphous solid. ¹H NMR (400 MHz, CS_2/d_6 -DMSO) δ 11.38 (s, N-H, 1H), 8.73 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 1.2 Hz, 1H), 7.77 (s, 1H), 7.43 (d, J = 7.6 Hz, 1H), 7.20 (t, J = 7.8 Hz, 1H); ¹³C NMR (100 MHz, CS_2/d_6 -DMSO) (all 2C unless indicated) δ 156.0, 153.9, 147.7(1C), 147.1(1C), 145.8, 145.7, 145.4(4C), 145.2(4C), 145.03, 145.00, 144.63, 144.61, 144.5, 144.20, 144.18, 142.3, 141.84, 141.82, 141.7, 141.61, 141.59, 141.3, 141.0, 140.6, 139.2, 138.7, 135.4, 134.8, 134.8(1C, aryl C), 130.2(1C, aryl C), 126.2(1C, aryl C),

123.7(1C, aryl C), 120.3(1C, aryl C), 120.0(1C, aryl C), 116.4(1C, aryl C), 104.5(1C, aryl C), 86.2(1C, sp^3 -C of C₆₀), 65.2(1C, sp^3 -C of C₆₀); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M] calcd for C₆₈H₆BrNO 930.9633; found 930.9637.

Synthesis of 5ga

C₆₀ (36.0 mg, 0.05 mmol), 5-bromoindole (12 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 µL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and CH₃OH (40 µL, 1 mmol) were added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the eluent to give unreacted C₆₀ (2.1 mg, 6 %) and **5ga** (18.9 mg, 40 %) as black amorphous solid. ¹H NMR (400 MHz, CS_2/d_6 -DMSO) δ 11.59 (s, N-H, 1H), 8.59 (d, J = 7.6 Hz, 1H), 7.85 (d, J = 2.0Hz, 1H), 7.46 (d, J = 8.4 Hz, 1H), 7.30 (d, J = 8.4 Hz, 1H), 4.19 (s, 3H); ¹³C NMR (100 MHz, CS_2/d_6 -DMSO) (all 1C unless indicated) δ 154.5, 154.0, 152.0, 149.0, 148.2, 147.6, 147.1, 146.9, 146.4, 146.24(2C), 146.18(2C), 146.1, 145.9, 145.80, 145.77, 145.0(2C), 144.8, 144.20, 144.18, 143.9, 143.8(2C), 143.7, 143.6, 143.50, 143.47(4C), 143.4, 143.2, 143.0, 142.7, 142.63, 142.58, 142.56, 142.55, 142.4(2C), 142.18(2C), 142.16, 142.03, 142.00, 141.82, 141.80, 141.6, 141.5, 140.3, 140.0, 139.6, 139.1, 138.8, 136.74, 136.67, 135.3(aryl C), 126.7(aryl C), 125.5(aryl C), 124.3(aryl C), 121.8(aryl C), 113.8(aryl C), 113.4(aryl C), 112.9(aryl C), 80.5(sp^3 -C of C₆₀), $55.4(sp^3-C \text{ of } C_{60})$, $54.0(-OCH_3)$; HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for C₆₉H₈BrNO 944.9789; found 944.9794.

Synthesis of 5ha

C₆₀ (36.0 mg, 0.05 mmol), indole-5-carbonitrile (8.6 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 μL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and CH₃OH (40 μL, 1 mmol) were added to the mixture and stirred in an oil bath at 110 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (1:1) as the eluent to give unreacted C₆₀ (10 mg, 28%) and **5ha** (26 mg, 58%) as black amorphous solid. ¹H NMR (400 MHz, CS_2/d_6 -DMSO) δ 11.99 (s, N-H, 1H), 8.94 (s, 1H), 8.00 (d, J = 2.0 Hz, 1H), 7.68 (d, J = 8.8 Hz, 1H), 7.48 (d, J = 8.8 Hz, 1H), 4.23 (s, 3H); ¹³C NMR (100 MHz, CS_2/d_6 -DMSO) (all 1C unless indicated) δ 153.8, 153.4, 151.4, 148.6, 147.9, 147.4, 146.8, 146.5, 146.2, 146.01, 145.96, 145.94, 145.89, 145.8, 145.7, 145.53, 145.50, 144.7(2C), 144.6, 144.0, 143.9, 143.6, 143.5, 143.4(2C), 143.3(2C), 143.23, 143.19(3C), 143.1, 143.0, 142.6, 142.5, 142.4, 142.3(3C), 142.14, 142.08, 142.0(2C), 141.9, 141.8, 141.7, 141.6, 141.5, 141.3, 141.2, 140.1, 139.8, 139.5, 138.8, 138.4, 138.0, 136.6, 136.5(aryl C), 126.5(aryl C), 124.6(aryl C), 124.5(aryl C), 123.8(aryl C), 119.0(-CN), 114.8(aryl C), 112.7(aryl C), 102.3(aryl C), 80.2(sp^3 -C of C₆₀), $54.8(sp^3-C \text{ of } C_{60})$, $53.6(-OCH_3)$; HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for $C_{70}H_8N_2O$ 892.0637; found 892.0639.

Synthesis of 5ia

 C_{60} (36.0 mg, 0.05 mmol), 7-bromoindole (12 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF_3SO_3H (90 μ L, 1 mmol) was added to the mixture and the color changed

from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and CH₃OH (40 μ L, 1 mmol) were added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide as the eluent to give unreacted C₆₀ (8.4 mg, 23%) and **5ia** (17.7 mg, 37%) as black amorphous solid. ¹H NMR (400 MHz, CS_2/d_6 -DMSO) δ 11.55 (s, N-H, 1H), 8.38 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 1.6 Hz, 1H), 7.39 (d, J = 7.6Hz, 1H), 7.08 (t, J = 7.6 Hz, 1H), 4.12 (s, 3H); ¹³C NMR (100 MHz, CS_2/d_6 -DMSO) (all 1C unless indicated) δ 154.5, 153.8, 152.0, 149.2, 148.1, 147.6, 147.1, 146.9, 146.4, 146.3, 146.23, 146.17, 146.14, 146.10, 145.9, 145.81, 145.75, 144.9(2C), 144.8, 144.2(2C), 143.9, 143.80, 143.78, 143.7, 143.51, 143.50, 143.45(3C), 143.41, 143.38, 143.3, 143.1, 142.7, 142.63, 142.57, 142.55, 142.5, 142.40, 142.38, 142.21, 142.17(2C), 142.0(2C), 141.79, 141.75, 141.6, 141.5, 140.3, 140.0, 139.7, 139.0, 138.7, 136.82, 136.75, 135.0(aryl C), 126.8(aryl C), 125.4(aryl C), 124.1(aryl C), 120.3(aryl C), 119.0(aryl C), 115.2(aryl C), 105.2(aryl C), 80.5(sp^3 -C of C₆₀), $55.5(sp^3-C \text{ of } C_{60})$, $54.2(-OCH_3)$; HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for C₆₉H₈BrNO 944.9789; found 944.9792.

Synthesis of 5ja

C₆₀ (36.0 mg, 0.05 mmol), 5-nitroindole (9.8 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 μL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and CH₃OH (40 μL, 1 mmol) were added to the mixture and stirred in an oil bath at 110 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (1:1) as the eluent to give unreacted C₆₀ (10.5 mg, 29%) and **5ja** (15.5 mg, 34%) as black amorphous solid. ¹H NMR (400 MHz, CS₂/d₆-DMSO) δ 12.13 (s, N-H, 1H), 9.54 (s, 1H), 8.13 (dd, J = 8.8, 1.6 Hz, 1H), 8.05 (d, J = 2.0 Hz, 1H), 7.67 (d, J = 8.8 Hz, 1H), 4.24 (s, 3H); ¹³C NMR (100 MHz, CS₂/d₆-DMSO) (all 1C unless indicated) δ 154.0, 153.4, 151.5, 148.9, 148.2,

147.7, 147.1, 146.8, 146.4, 146.3, 146.23, 146.20(2C), 146.1, 145.9, 145.81, 145.77, 145.0(2C), 144.8, 144.3, 144.2, 143.81, 143.78, 143.69, 143.67, 143.6, 143.53, 143.50, 143.5(2C), 143.4, 143.2, 142.9, 142.74, 142.65, 142.61, 142.58, 142.56, 142.42, 142.35, 142.3, 142.24, 142.18, 142.03, 141.95, 141.82, 141.81, 141.6, 141.5, 141.1(2C), 140.3, 140.04, 139.98, 139.7(2C), 139.1, 138.6(aryl C), 136.9(aryl C), 136.7(aryl C), 127.8(aryl C), 124.2(aryl C), 116.9(aryl C), 116.7(aryl C), 111.9(aryl C), 80.5(sp^3 -C of C₆₀), 55,0 sp^3 -C of C₆₀), 54.1(-oCH₃); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for C₆₉H₈N₂O₃ 912.0535; found 912.0538.

Synthesis of 5ka

C₆₀ (36.0 mg, 0.05 mmol), 5-nitroindole (9.8 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 µL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDO (56 mg, 0.25 mmol) and CH₃OH (40 µL, 1 mmol) were added to the mixture and stirred in an oil bath at 110 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (1:1) as the eluent to give unreacted C₆₀ (11 mg, 31%) and **5ka** (16.4 mg, 36%) as black amorphous solid. ¹H NMR (400 MHz, CS_2/d_6 -DMSO) δ 12.32 (s, N-H, 1H), 8.94 (d, J = 8.0 Hz, 1H), 8.23 (d, J = 8.0Hz, 1H), 8.05 (d, J = 2.0 Hz, 1H), 7.36 (t, J = 8.0 Hz, 1H), 4.15 (s, 3H); ¹³C NMR (100 MHz, CS_2/d_6 -DMSO) (all 1C unless indicated) δ 154.0, 153.4, 151.5, 148.9, 148.2, 147.7, 147.1, 146.8, 146.4, 146.3, 146.20(2C), 146.16, 146.1, 145.9, 145.79, 145.76, 144.98, 144.96, 144.8, 144.3, 144.2, 143.81, 143.75, 143.71, 143.66, 143.49, 143.47(3C), 143.41(2C), 143.3, 143.2, 143.0, 142.72, 142.66, 142.6(2C), 142.5, 142.44, 142.38, 142.3, 142.2(2C), 141.96, 141.93, 141.81, 141.77, 141.6, 141.5, 140.3, 140.0(2C), 139.0, 138.6, 136.9, 136.8, 132.8(aryl C), 129.4(aryl C), 129.2(aryl C), 127.9(aryl C), 127.5(aryl C), 118.7(aryl C), 118.5(aryl C), 115.7(aryl C), 80.5(sp³-C of C_{60}), 54.8(sp^3 -C of C_{60}), 54.1(-OCH₃); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for C₆₉H₈N₂O₃ 912.0535; found 912.0540.

Synthesis of 5la

C₆₀ (36.0 mg, 0.05 mmol), methyl indole-5-carboxylate (10.2 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 µL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (34 mg, 0.15 mmol) and CH₃OH (40 µL, 1 mmol) were added to the mixture and stirred in an oil bath at 120 °C for 30 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (1:1) as the eluent to give unreacted C₆₀ (4 mg, 11%) and **5la** (16.6 mg, 36%) as black amorphous solid. ¹H NMR (400 MHz, CS_2/d_6 -DMSO) δ 11.75 (s, N-H, 1H), 9.14 (s, 1H), 7.93 (d, J = 2.4 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.56 (d, J = 8.8 Hz, 1H), 4.18 (s, 3H), 3.89 (s, 3H); ¹³C NMR (150 MHz, CS₂/d₆-DMSO) (all 1C unless indicated) δ 166.0(acyl C), 154.6, 154.0, 152.0, 149.1, 148.2, 147.6(2C), 147.1, 146.9, 146.4, 146.3, 146.24, 146.16(5C), 145.9, 145.84, 145.77, 144.9(3C), 144.8, 144.2, 144.0, 143.8(2C), 143.7, 143.6, 143.5(4C), 143.4, 143.2, 143.1, 142.7, 142.6, 142.58, 142.55, 142.4, 142.37, 142.2, 142.18, 142.17, 142.0, 141.8, 141.6, 141.5, 141.1, 140.3, 140.0 139.7, 139.2, 139.1, 138.8, 136.8, 136.7(aryl C), 125.7(aryl C), 124.6(aryl C), 122.8(aryl C), 122.5(aryl C), 121.2(aryl C), 115.6(aryl C), 111.4(aryl C), 80.5(sp³-C of C₆₀), 55.4(sp³-C of C₆₀), 54.1(-OCH₃), 50.7(-CH₃); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for $C_{71}H_{11}NO_3$ 925.0739; found 925.0743.

Synthesis of 5fa

 C_{60} (36.0 mg, 0.05 mmol), 5-chloroindole (9 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF_3SO_3H (90 μ L, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and CH_3OH (40 μ L, 1 mmol) were added to the mixture and stirred

in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the eluent to give unreacted C₆₀ (3 mg, 8%) and **5fa** (18.7 mg, 42%) as black amorphous solid. ¹H NMR (400 MHz, CS_2/d_6 -DMSO) δ 11.58 (s, N-H, 1H), 8.41 (d, J = 1.6 Hz, 1H), 7.87 (d, J = 2.4Hz, 1H), 7.50 (d, J = 8.8 Hz, 1H), 7.17 (dd, J = 8.8, 2.0 Hz, 1H), 4.18 (s, 3H); ¹³C NMR (100 MHz, CS_2/d_6 -DMSO) (all 1C unless indicated) δ 154.5, 154.0, 152.0, 149.0, 148.2, 147.6, 147.1, 146.9, 146.4, 146.27, 146.25, 146.2(2C), 146.1, 145.9, 145.82, 145.77, 145.00(2C), 144.8, 144.2, 144.2, 144.0, 143.82, 143.80, 143.7, 143.6, 143.49(3C), 143.48(2C), 143.4, 143.2, 143.1, 142.7, 142.64, 142.58(3C), 142.4(2C), 142.2(3C), 142.04, 142.01, 141.82, 141.81, 141.6, 141.5, 140.3, 140.0, 139.6, 139.1, 138.8, 136.8, 136.7, 135.1(aryl C), 126.1(aryl C), 125.7(aryl C), 124.9(aryl C), 121.7(aryl C), 118.8(aryl C), 113.8(aryl C), 113.0(aryl C), 80.5(sp^3 -C of C₆₀), $55.4(sp^3-C \text{ of } C_{60})$, $54.0(-OCH_3)$; HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for C₆₉H₈ClNO 901.0294; found 901.0298.

Synthesis of 5aa

C₆₀ (36.0 mg, 0.05 mmol), indole (7.2 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 μL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and CH₃OH (40 μL, 1 mmol) were added to the mixture and stirred in an oil bath at 110 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the eluent to give unreacted C₆₀ (5.5 mg, 15%) and 5aa (14 mg, 32%) as black amorphous solid. ¹H NMR (400 MHz, CS_2/d_6 -DMSO) δ 11.36 (s, N-H, 1H), 8.34 (d, J = 7.6 Hz, 1H), 7.82 (d, J = 2.4 Hz, 1H), 7.50 (d, J = 8.0 Hz, 1H), 7.20 (d, J = 7.6 Hz, 1H), 7.12 (t, J = 7.6 Hz, 1H), 4.12 (s, 3H); 13 C NMR(100 MHz, CS₂/ d_6 -DMSO) (all 1C unless indicated) δ 155.0, 154.3, 152.5, 149.3, 148.1, 147.6, 147.2, 147.0, 146.4, 146.4, 146.22, 146.16, 146.1(2C), 145.9(2C), 145.7, 144.93, 144.92, 144.8, 144.22, 144.15, 144.0, 143.9, 143.8, 143.7, 143.6, 143.53, 143.49, 143.48, 143.43, 143.40(2C), 143.3, 143.2, 142.7, 142.63, 142.56, 142.55, 142.5, 142.4, 142.3, 142.2(2C), 142.1, 142.03, 142.00, 141.79, 141.77, 141.6, 141.5, 140.3, 139.9, 139.5, 139.0, 138.9, 136.73, 136.66, 136.6(aryl C), 125.2(aryl C), 123.9(aryl C), 121.5(aryl C), 119.6(aryl C), 119.2(aryl C), 114.1(aryl C), 111.8(aryl C), 80.6(sp^3 -C of C₆₀), 55.8(sp^3 -C of C₆₀), 54.2(-OCH₃); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for C₆₉H₉NO 867.0684; found 867.0686.

Synthesis of 5gb

C₆₀ (36.0 mg, 0.05 mmol), 5-bromoindole (12 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 µL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and CH₃CH₂OH (58 µL, 1 mmol) were added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the eluent to give unreacted C₆₀ (1.1 mg, 3%) and **5gb** (27.4 mg, 57%) as black amorphous solid. ¹H NMR (400 MHz, CS_2/d_6 -DMSO) δ 11.59 (s, N-H, 1H), 8.53 (s, 1H), 7.86 (d, J = 2.0 Hz, 1H), 7.45 (d, J = 8.4 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 4.52 (q, J = 6.8 Hz, 2H), 1.60 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CS_2/d_6 -DMSO) (all 1C unless indicated) δ 154.5, 153.7, 151.6, 149.6, 148.1, 147.6, 147.1, 146.9, 146.5, 146.4, 146.3, 146.2, 146.17(2C), 145.9, 145.8, 145.75, 144.9(2C), 144.8, 144.2, 144.17, 144.0, 143.8, 143.76, 143.7, 143.6, 143.5(5C), 143.4, 143.2, 143.0, 142.7, 142.6, 142.59(2C), 142.5, 142.4(2C), 142.2, 142.15(2C), 142.04, 142.0, 141.8(2C), 141.6, 141.5, 140.3, 140.1, 139.92, 138.9, 138.7, 136.8, 136.7, 135.3(aryl C), 126.8(aryl C), 125.6(aryl C), 124.3(aryl C), 121.9(aryl C), 113.6(aryl C), 113.4(aryl C), 112.9(aryl C), 79.9(sp³-C of C_{60}), 62.5(-OCH₂-), 55.3(sp^3 -C of C_{60}), 15.7(-CH₃); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for C₇₀H₁₀BrNO 958.9946; found 958.9949.

Synthesis of 5hb

C₆₀ (36.0 mg, 0.05 mmol), indole-5-carbonitrile (8.6 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 μL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and CH₃CH₂OH (58 µL, 1 mmol) were added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the eluent to give unreacted C₆₀ (5.2 mg, 14%) and **5hb** (18.1 mg, 40%) as black amorphous solid. ¹H NMR (400 MHz, CS_2/d_6 -DMSO) δ 12.00 (s, N-H, 1H), 8.96 (s, 1H), 8.01 (s, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.49 (d, J = 8.4 Hz, 1H), 4.58 (q, J = 6.8 Hz, 2H), 1.65 (t, J =6.8 Hz, 3H); ¹³C NMR (100 MHz, CS₂/d₆-DMSO) (all 1C unless indicated) δ 154.1, 153.4, 151.2, 149.4, 148.2, 147.7, 147.0, 146.8, 146.5, 146.4, 146.3, 146.24, 146.21, 146.2, 145.9, 145.8, 145.75, 145.0, 144.9, 144.8, 144.3, 144.2, 143.9, 143.8, 143.7, 143.7, 143.6, 143.5(2C), 143.47, 143.4(2C), 143.37, 143.2, 142.9, 142.7, 142.67, 142.62, 142.6, 142.5, 142.4, 142.3, 142.25, 142.2, 142.17, 142.1, 142.0, 141.8(2C), 141.6, 141.5, 140.3, 140.2, 140.0, 139.0, 138.7, 138.2(2C), 136.8(aryl C), 136.7(aryl C), 126.8(aryl C), 124.8(aryl C), 124.1(aryl C), 119.2(-CN), 115.0(aryl C), 112.9(aryl C), 102.6(aryl C), $79.9(sp^3-C \text{ of } C_{60})$, $62.5(-OCH_2-)$, $55.0(sp^3-C \text{ of } C_{60})$, $15.6(-CH_3)$; HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M] calcd for C₇₁H₁₀N₂O 906.0793; found 906.0797.

Synthesis of 5ab

C₆₀ (36.0 mg, 0.05 mmol), indole (7.2 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90

μL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and CH₃CH₂OH (58 µL, 1 mmol) were added to the mixture and stirred in an oil bath at 110 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the eluent to give unreacted C₆₀ (4.5 mg, 13%) and 5ab (13.8 mg, 31%) as black amorphous solid. ¹H NMR (400 MHz, CS_2/d_6 -DMSO) δ 11.31 (s, N-H, 1H), 8.43 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 2.4 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.21 (t, J = 7.6 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 4.49 (qd, J = 7.2, 3.6 Hz, 2H), 1.58 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CS_2/d_6 -DMSO) (all 1C unless indicated) δ 155.0, 154.2, 152.1, 149.7, 148.1, 147.6, 147.1, 147.0, 146.54, 146.46, 146.4, 146.21, 146.17, 146.1, 145.9, 145.8, 145.7, 144.9(2C), 144.8, 144.21, 144.16, 144.1, 143.9, 143.8, 143.64, 143.58, 143.48(2C), 143.46(2C), 143.41, 143.37, 143.3, 143.2, 142.7, 142.62, 142.61, 142.6, 142.5, 142.4, 142.3, 142.14(3C), 142.05(2C), 141.8, 141.75, 141.6, 141.5, 140.3, 139.9, 139.86, 138.8(2C), 136.7, 136.67, 136.6(aryl C), 125.2(aryl C), 124.0(aryl C), 121.5(aryl C), 119.7(aryl C), 119.1(aryl C), 114.0(aryl C), 111.7(aryl C), $80.0(sp^3-C)$ of C_{60} , $62.5(-OCH_2-)$, $55.8(sp^3-C \text{ of } C_{60})$, $15.6(-CH_3)$; HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for C₇₀H₁₁NO 881.0841; found 881.0845.

Synthesis of 5hc

C₆₀ (36.0 mg, 0.05 mmol), indole-5-carbonitrile (8.6 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 μ L, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and CH₃CHOHCH₃ (76 μ L, 1 mmol) were added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the eluent to give unreacted C₆₀ (6.7 mg, 19%) and **5hc** (13.9 mg, 30%) as black amorphous solid. ¹H NMR (400 MHz, CS₂/d₆-DMSO) δ 11.97 (s, N-H, 1H), 9.04 (s, 1H), 8.00 (s, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.48 (d, J = 8.4 Hz, 1H), 5.14-5.08 (m, 1H), 1.63 (d, J = 6.0 Hz, 6H); ¹³C NMR (100 MHz, CS₂/d₆-DMSO) (all 1C unless indicated) δ 154.1,

153.2, 150.8, 149.8, 148.1, 147.7, 147.2, 146.9, 146.8, 146.5, 146.3, 146.2, 145.9, 145.8, 145.6, 145.0, 144.9, 144.8, 144.3, 144.2, 143.9, 143.8, 143.7, 143.6, 143.59, 143.5, 143.45, 143.4(5C), 143.2, 143.0, 142.7(2C), 142.67(2C), 142.5, 142.4, 142.35, 142.3, 142.24, 142.2, 142.1, 142.0, 141.8(2C), 141.6, 141.5, 140.7, 140.3, 140.0, 138.8, 138.6, 138.2(2C), 136.9, 136.9(aryl C), 126.9(aryl C), 125.1(aryl C), 124.7(aryl C), 124.1(aryl C), 119.3(-CN), 114.9(aryl C), 112.8(aryl C), 102.5(aryl C), 79.2(sp^3 -C of C₆₀), 69.6(-oCH-), 55.0(sp^3 -C of C₆₀), 24.1(2C ,-CH₃); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for C₇₂H₁₂N₂O 920.0950; found 920.0955.

Synthesis of 5gc

C₆₀ (36.0 mg, 0.05 mmol), 5-bromoindole (12 mg, 0.06 mmol), KO^tBu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 µL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and CH₃CHOHCH₃ (76 µL, 1 mmol) were added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the eluent to give unreacted C_{60} (3.5 mg, 10%) and **5gc** (18.6 mg, 38%) as black amorphous solid. ¹H NMR (400 MHz, CS_2/d_6 -DMSO) δ 11.58 (s, 1H), 8.57 (s, 1H), 7.87 (s, 1H), 7.45 (d, J = 8.4 Hz, 1H, 7.29 (d, J = 8.4 Hz, 1H), 5.08-5.03 (m, 1H), 1.59 (d, J = 5.6 Hz, 1Hz)6H). ¹³C NMR (100 MHz, CS_2/d_6 -DMSO) (all 1C unless indicated) δ 154.3, 153.5, 151.1, 150.0, 148.1, 147.6, 147.1, 146.9, 146.8, 146.4, 146.37, 146.2, 146.1(2C), 145.8, 145.7, 145.6, 144.9, 144.8, 144.76, 144.2, 144.1, 143.9, 143.8, 143.7, 143.6, 143.5, 143.4(4C), 143.38, 143.3, 143.14, 143.1, 142.6(4C), 142.5, 142.34, 142.32, 142.14(3C), 142.06, 142.0, 141.8(2C), 141.5, 141.4, 140.5, 140.3, 139.9, 138.7, 138.6, 136.8(2C), 135.3(aryl C), 126.6(aryl C), 125.5(aryl C), 124.3(aryl C), 122.0aryl C), 113.6(aryl C), 113.2(aryl C), 112.9(aryl C), 79.2(sp³-C of C₆₀), 69.3(-OCH-), 55.3(sp³-C of C₆₀), 24.1(2C, -CH₃).; HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for $C_{71}H_{12}BrNO 973.0102$; found 973.0105.

Synthesis of 5gd

C₆₀ (36.0 mg, 0.05 mmol), 5-bromoindole (12 mg, 0.06 mmol), KO^tBu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 µL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and CH₃CH₂CH₂CH₂OH (92 µL, 1 mmol) were added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the eluent to give unreacted C₆₀ (2.9 mg, 8%) and **5gd** (24.3 mg, 49%) as black amorphous solid. ¹H NMR (400 MHz, CS_2/d_6 -DMSO) δ 11.60 (s, N-H, 1H), 8.48 (s, 1H), 7.85 (s, 1H), 7.45 (d, J = 8.8 Hz, 1H), 7.28 (d, J = 8.8 Hz, 1H), 4.44 (t, J = 6.4 Hz, 2H), 1.97-1.90 (m, 2H), 1.62-1.55 (m, 2H), 1.03 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CS₂/ d_6 -DMSO) (all 1C unless indicated) δ 154.4, 153.8, 151.6, 149.6, 148.1, 147.6, 147.1, 146.9, 146.6, 146.4, 146.3, 146.2, 146.2, 146.17, 145.9, 145.8, 145.76, 144.9(2C), 144.8, 144.2, 144.18, 144.0, 143.8(2C), 143.7, 143.6, 143.5(2C), 143.46(3C), 143.4, 143.2, 143.1, 142.7, 142.6, 142.6, 142.59, 142.5, 142.4, 142.35, 142.2, 142.16(2C), 142.1, 142.0, 141.8(2C), 141.6, 141.5, 140.3, 140.1, 140.0, 138.9, 138.7, 136.8, 136.76, 135.3(aryl C), 126.7(aryl C), 125.6(aryl C), 124.3(aryl C), 121.9(aryl C), 113.58(aryl C), 113.37(aryl C), 112.90(aryl C), 79.98(sp^3 -C of C₆₀), 66.66(-OCH₂-), 55.3(sp³-C of C₆₀), 32.0(-CH₂-), 19.3(-CH₂-), 13.7(-CH₃); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for C₇₂H₁₄BrNO 987.0259; found 987.0263.

Synthesis of 5hd

C₆₀ (36.0 mg, 0.05 mmol), indole-5-carbonitrile (8.6 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30

minutes, CF₃SO₃H (90 μL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and CH₃CH₂CH₂CH₂OH (92 µL, 1 mmol) were added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (1:1) as the eluent to give unreacted C₆₀ (6.4 mg, 18%) and **5hd** (16.5 mg, 35%) as black amorphous solid. ¹H NMR (400 MHz, CS_2/d_6 -DMSO) δ 12.02 (s, N-H, 1H), 8.87 (s, 1H), 8.01 (s, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.47 (d, J = 8.4 Hz, 1H), 4.48 (t, J = 6.0 Hz, 2H), 1.97 (t, J =7.2 Hz, 2H), 1.59 (q, J = 7.2 Hz, 2H), 1.04 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CS_2/d_6 -DMSO) (all 1C unless indicated) δ 154.0, 153.4, 151.2, 149.4, 148.1, 147.7, 147.0, 146.7, 146.5, 146.4, 146.2, 146.2, 146.17(2C), 145.9, 145.8(2C), 144.9, 144.91, 144.8, 144.2, 144.1, 143.9, 143.8, 143.7(2C), 143.5, 143.47(2C), 143.4(3C), 143.3, 143.2, 142.9, 142.7, 142.6, 142.58(2C), 142.5, 142.4, 142.3, 142.2, 142.17, 142.15, 142.0, 141.95, 141.8(2C), 141.6, 141.5, 140.3, 140.2, 140.0, 139.0, 138.6, 138.2, 136.8, 136.8(aryl C), 126.8(aryl C), 124.8(2C, aryl C), 124.1(aryl C), 119.2(-CN), 114.9(aryl C), 112.8(aryl C), 102.6(aryl C), 79.9(sp^3 -C of C₆₀), 66.6(-OCH₂-), $55.0(sp^3-C \text{ of } C_{60}), 31.9(-CH_2-), 19.3(-CH_2-), 13.7(-CH_3); HRMS (MALDI-TOF-MS,$ DCTB as matrix, negative mode): m/z [M]⁻ calcd for C₇₃H₁₄N₂O 934.1106; found 934.1109.

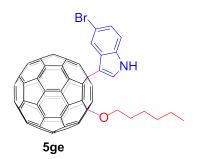
Synthesis of 5id

C₆₀ (36.0 mg, 0.05 mmol), 7-bromoindole (12 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 μ L, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and CH₃CH₂CH₂CH₂OH (92 μ L, 1 mmol) were added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide as the eluent to give unreacted C₆₀ (6.1 mg, 17%) and **5id** (21.3 mg, 43%) as black amorphous solid. ¹H NMR (400 MHz, CS₂/d₆-DMSO) δ 11.51 (s, N-H, 1H), 8.43 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 2.8 Hz, 1H), 7.39 (d, J = 7.2 Hz, 1H), 7.07 (t, J = 7.6 Hz, 1H), 4.42 (td, J = 6.4, 2.4 Hz, 2H),

1.96-1.89 (m, 2H), 1.64-1.55 (m, 2H), 1.04 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CS₂/ d_6 -DMSO) (all 1C unless indicated) δ 154.4, 153.7, 151.6, 149.6, 148.1, 147.6, 147.1, 146.9, 146.5, 146.4, 146.38, 146.2, 146.16, 146.15, 145.9, 145.8, 145.7, 144.9(2C), 144.8, 144.2, 144.17, 144.0, 143.8, 143.7, 143.65, 143.5, 143.45(2C), 143.4(2C), 143.37(2C), 143.2, 143.1, 142.7, 142.6(2C), 142.5, 142.5, 142.4, 142.35, 142.2, 142.1(2C), 142.0(2C), 141.8, 141.7, 141.6, 141.4, 140.3, 140.2, 139.9, 138.9, 138.7, 136.8(2C), 135.0(aryl C), 126.8(aryl C), 125.5(aryl C), 124.1(aryl C), 120.2(aryl C), 119.1(aryl C), 115.1(aryl C), 105.1(aryl C), 80.0(sp^3 -C of C₆₀), 66.6(-OCH₂-), 55.5(sp^3 -C of C₆₀), 32.0(-CH₂-), 19.3(-CH₂-), 13.7(-CH₃); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for C₇₂H₁₄BrNO 987.0259; found 987.0261.

Synthesis of 5ld

C₆₀ (36.0 mg, 0.05 mmol), methyl indole-5-carboxylate (10.2 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 µL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (34 mg, 0.15 mmol) and CH₃CH₂CH₂CH₂OH (92 µL, 1 mmol) were added to the mixture and stirred in an oil bath at 120 °C for 30 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (1:1) as the eluent to give unreacted C₆₀ (7.5 mg, 21%) and **5ld** (19.5 mg, 40%) as black amorphous solid. ¹H NMR (400 MHz, CS_2/d_6 -DMSO) δ 11.71 (s, N-H, 1H), 9.02 (s, 1H), 7.93 (d, J = 2.4Hz, 1H), 7.88 (dd, J = 8.4, 1.2 Hz, 1H), 7.55 (d, J = 8.4 Hz, 1H), 4.44-4.40 (m, 2H), 3.87 (s, 3H), 1.92-1.85 (m, 2H), 1.60-1.51 (m, 2H), 1.01 (t, J = 7.6 Hz, 3H); ¹³C NMR (100MHz, CS_2/d_6 -DMSO) (all 1C unless indicated) δ 165.8(acyl C), 154.4, 153.7, 151.6, 149.6, 148.1(2C), 147.6, 147.0, 146.9, 146.5, 146.4, 146.38, 146.2, 146.15, 146.1, 145.8(2C), 145.7, 144.9(2C), 144.8, 144.2, 144.15, 144.0, 143.8(3C), 143.6(2C), 143.5, 143.49, 143.45, 143.4(2C), 143.38(3C), 143.2, 143.1, 142.6, 142.60(2C), 142.2, 142.14, 142.1, 142.0(2C), 141.8(2C), 141.5, 141.4, 140.3, 140.2, 139.9, 139.1, 138.9, 138.7, 136.9, 136.8(aryl C), 125.5(aryl C), 124.6(aryl C), 122.7(aryl C), 122.5(aryl C), 121.1(aryl C), 115.4(aryl C), 111.3(aryl C), 80.0(sp³-C of C_{60}), $66.6(-OCH_2-)$, $55.3(sp^3-C)$ of C_{60}), $50.6(-CH_3)$, $31.9(-CH_2-)$, $19.2(-CH_2-)$,


13.6(-CH₃); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for C₇₄H₁₇NO₃ 967.1208; found 967.1213.

Synthesis of 5ae

C₆₀ (36.0 mg, 0.05 mmol), indole(7.2 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 μL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and CH₃(CH₂)₅OH (126 μL, 1 mmol) were added to the mixture and stirred in an oil bath at 110 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the eluent to give unreacted C₆₀ (7.8 mg, 22%) and **5ae** (19 mg, 41%) as black amorphous solid. ¹H NMR (400 MHz, CS_2/d_6 -DMSO) δ 11.27 (s, N-H, 1H), 8.40 (d, J = 7.6 Hz, 1H), 7.78 (t, J = 0.8 Hz, 1H), 7.49 (d, J = 8.0 Hz, 1H), 7.20 (t, J = 7.6 Hz, 1H), 7.13 (t, J = 7.6 Hz, 1H), 4.42-4.38 (m, 2H), 1.95-1.88 (m, 2H), 1.53 (t, J = 6.0 Hz, 2H), 1.39 (t, J = 3.6 Hz, 4H), 0.97 (t, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CS_2/d_6 -DMSO) (all 1C unless indicated) δ 155.0, 154.2, 152.0, 149.8, 148.1, 147.6, 147.1, 147.0, 146.6, 146.5, 146.4, 146.2, 146.15, 146.1, 145.8(2C), 145.7, 144.9(2C), 144.7, 144.2, 144.1, 144.0, 143.8, 143.79, 143.6, 143.56, 143.5(2C), 143.44(2C), 143.4, 143.3, 143.23, 143.2, 142.7, 142.6(2C), 142.54, 142.5, 142.4, 142.3, 142.1(3C), 142.0(2C), 141.8, 141.7, 141.6, 141.5, 140.3, 140.0, 139.8, 138.8, 138.78, 136.7, 136.66, 136.6(aryl C), 125.1(aryl C), 123.9(aryl C), 121.5(aryl C), 119.7(aryl C), 119.1(aryl C), 114.0(aryl C), 111.7(aryl C), 80.0(sp^3 -C of C₆₀), 67.0(-OCH₂-), 55.7(sp^3 -C of C₆₀), 31.3(-CH₂-), 29.9(-CH₂-), 25.6(-CH₂-), 22.5(-CH₂-), 13.9(-CH₃); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M] calcd for C₇₄H₁₉NO 937.1467; found 937.1471.

Synthesis of 5ge

C₆₀ (36.0 mg, 0.05 mmol), 5-bromoindole(12 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 μL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and CH₃(CH₂)₅OH (126 µL, 1 mmol) were added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the eluent to give unreacted C₆₀ (3.2 mg, 9%) and **5ge** (24 mg, 47%) as black amorphous solid. ¹H NMR (400 MHz, CS_2/d_6 -DMSO) δ 11.59 (s, N-H, 1H), 8.49 (s, 1H), 7.85 (d, J = 2.4Hz, 1H), 7.45 (d, J = 8.8 Hz, 1H), 7.29 (d, J = 8.4 Hz, 1H), 4.42 (t, J = 6.8 Hz, 2H), 1.98-1.91 (m, 2H), 1.56-1.49 (m, 2H), 1.38 (t, J = 3.2 Hz, 4H), 0.96 (t, J = 6.8 Hz, 3H); 13 C NMR (100 MHz, CS₂/ d_6 -DMSO) (all 1C unless indicated) δ 154.5, 153.7, 151.6, 149.6, 148.1, 147.6, 147.1, 146.9, 146.6, 146.4, 146.29, 146.2, 146.18, 146.16, 145.9, 145.8, 145.75, 144.9(2C), 144.8, 144.2, 144.19, 144.0, 143.8(2C), 143.7, 143.6, 143.5(2C), 143.46(2C), 143.4, 143.39, 143.2, 143.1, 142.7, 142.6, 142.61, 142.6, 142.5, 142.4, 142.35, 142.2, 142.16(2C), 142.1, 142.0, 141.8(2C), 141.6, 141.5, 140.3, 140.1, 139.9, 138.9, 138.7, 136.8, 136.7, 135.3(aryl C), 126.7(aryl C), 125.5(aryl C), 124.3(aryl C), 121.9(aryl C), 113.6(aryl C), 113.3(aryl C), 112.9(aryl C), $80.0(sp^3-C)$ of C_{60}), $67.0(-OCH_{2-})$, $55.3(sp^3-C)$ of C_{60}), $31.3(-CH_{2-})$, $30.0(-CH_{2-})$, $25.6(-CH_{2-})$, 22.5(-CH₂-), 13.9(-CH₃); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for C₇₄H₁₈BrNO 1015.0572; found 1015.0574.

Synthesis of 5he

5he

C₆₀ (36.0 mg, 0.05 mmol), indole-5-carbonitrile (8.6 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the

solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 μL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and CH₃(CH₂)₅OH (126 µL, 1 mmol) were added to the mixture and stirred in an oil bath at 110 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (1:1) as the eluent to give unreacted C₆₀ (8 mg, 22%) and **5he** (19.9 mg, 41%) as black amorphous solid. ¹H NMR (400 MHz, CS_2/d_6 -DMSO) δ 11.99 (s, N-H, 1H), 8.89 (s, 1H), 8.00 (d, J = 2.4Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.47 (dd, J = 8.8, 1.6 Hz, 1H), 4.47 (t, J = 6.4 Hz, 2H), 2.02-1.95 (m, 2H), 1.58-1.50 (m, 2H), 1.41-1.37 (m, 4H), 0.96 (t, J = 6.8 Hz, 3H); 13 C NMR (100 MHz, CS₂/ d_6 -DMSO) (all 1C unless indicated) δ 154.1, 153.4, 151.2, 149.4, 148.2, 147.7, 147.0, 146.8, 146.6, 146.4, 146.3, 146.22, 146.2, 146.18, 145.9, 145.8, 145.78, 145.0, 144.9, 144.8, 144.3, 144.2, 143.9, 143.8, 143.7, 143.68, 143.6, 143.51, 143.5, 143.4(3C), 143.38, 143.2, 142.9, 142.7, 142.66, 142.6(2C), 142.5, 142.4, 142.35, 142.3, 142.2, 142.18, 142.1, 142.0, 141.8(2C), 141.6, 141.5, 140.3, 140.26, 140.0, 139.0, 138.7, 138.3(2C), 136.9(aryl C), 136.8(aryl C), 126.8(aryl C), 124.8(aryl C), 124.1(aryl C), 119.3(-CN), 114.9(aryl C), 112.9(aryl C), 102.6(aryl C), 79.9(sp^3 -C of C₆₀), 67.0(-OCH₂-), 55.0(sp^3 -C of C₆₀), 31.23(-CH₂-), 29.9(-CH₂-), 25.6(-CH₂-), 22.5(-CH₂-), 13.9(-CH₃); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M] calcd for C₇₅H₁₈N₂O 962.1419; found 962.1424.

Synthesis of 5ie

C₆₀ (36.0 mg, 0.05 mmol), 7-bromoindole(12 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 μ L, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and CH₃(CH₂)₅OH (126 μ L, 1 mmol) were added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the eluent to give unreacted C₆₀ (7.1 mg, 20%) and **5ie** (29.4 mg, 58%) as black amorphous solid. ¹H NMR (400 MHz, CS₂/d₆-DMSO) δ 11.49 (s, N-H, 1H), 8.44 (d, J = 8.0 Hz, 1H), 7.88

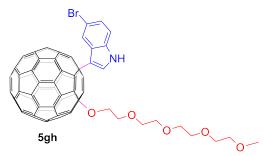
(d, J = 2.4 Hz, 1H), 7.38 (d, J = 7.6 Hz, 1H), 7.07 (d, J = 7.6 Hz, 1H), 4.40 (td, J = 6.8, 2.8 Hz, 2H), 1.95-1.88 (m, 2H), 1.56-1.49 (m, 2H), 1.39-1.35 (m, 4H), 0.96 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CS₂/ d_6 -DMSO) (all 1C unless indicated) δ 154.5, 153.7, 151.6, 149.6, 148.1, 147.6, 147.1, 146.9, 146.6, 146.4, 146.3, 146.2, 146.16, 146.1, 145.9, 145.8, 145.7, 144.9(2C), 144.8, 144.2, 144.17, 143.9, 143.8, 143.7, 143.65, 143.5, 143.44(3C), 143.4, 143.36(2C), 143.2, 143.1, 142.7, 142.6(2C), 142.52, 142.5, 142.4, 142.35, 142.2, 142.1(2C), 142.0(2C), 141.8, 141.7, 141.5, 141.4, 140.3, 140.16, 139.9, 138.8, 138.7, 136.8, 136.8, 135.0(aryl C), 126.8(aryl C), 125.5(aryl C), 124.1(aryl C), 120.2(aryl C), 119.1(aryl C), 115.1(aryl C), 105.1(aryl C), 80.0(sp^3 -C of C₆₀), 67.0(-OCH₂-), 55.4(sp^3 -C of C₆₀), 31.3(-CH₂-), 29.9(-CH₂-), 25.6(-CH₂-), 22.5(-CH₂-), 13.9(-CH₃); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for C74H18BrNO 1015.0572; found 1015.0576.

Synthesis of 5le

C₆₀ (36.0 mg, 0.05 mmol), methyl indole-5-carboxylate (10.2 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 µL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (34 mg, 0.15 mmol) and CH₃(CH₂)₅OH (126 µL, 1 mmol) were added to the mixture and stirred in an oil bath at 120 °C for 30 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (1:1) as the eluent to give unreacted C₆₀ (5.1 mg, 14%) and **5le** (20 mg, 40%) as black amorphous solid. ¹H NMR (400 MHz, CS_2/d_6 -DMSO) δ 11.75 (s, N-H, 1H), 9.03 (s, 1H), 7.93 (s, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.56 (d, J = 8.0 Hz, 1H), 4.42-4.38 (m, 2H), 3.87 (s, 3H), 1.91-1.95 (m, 2H), 1.50 (t, J = 7.6 Hz, 2H), 1.35 (s, 4H), 0.95 (t, J = 5.8 Hz, 3H); ¹³C NMR (100 MHz, CS_2/d_6 -DMSO) (all 1C unless indicated) δ 165.9(acyl C), 154.5, 153.7, 151.6, 149.7, 148.1, 147.6, 147.1, 146.9, 146.6, 146.4, 146.38, 146.2, 146.18, 146.1, 145.9(2C), 145.8, 144.9(2C), 144.8(2C), 144.2, 144.19(2C), 144.0, 143.8(2C), 143.7, 143.6, 143.5, 143.47(3C), 143.4(2C), 143.2, 143.1, 142.6(2C), 142.58, 142.5, 142.4, 142.36, 142.2, 142.17(2C), 142.0(2C), 141.8(2C), 141.6, 141.5, 140.3, 140.2, 140.0, 139.2, 138.9, 138.7, 136.8(aryl C), 125.5(aryl C), 124.6(aryl C), 122.7(aryl C), 122.5(aryl C), 121.1(aryl C), 115.4(aryl C), 111.4(aryl C), $80.0(sp^3-C)$ of C_{60} , $67.0(-OCH_2-)$, $55.3(sp^3-C ext{ of } C_{60})$, $50.7(-OCH_3)$, $32.7(-CH_2-)$, $31.3(-CH_2-)$,

25.6(-CH₂-), 22.5(-CH₂-), 13.9(-CH₃); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for $C_{76}H_{21}NO_3$ 995.1521; found 995.1524.

Synthesis of 5gi


C₆₀ (36.0 mg, 0.05 mmol), 5-bromoindole (12 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (4 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 µL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and cyclododecanol (184 mg, 1 mmol) were added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the eluent to give unreacted C₆₀ (4.1mg, 11%) and **5gi** (30 mg, 55%) as black amorphous solid. ¹H NMR (400 MHz, CS₂/Acetone-d₆) δ 10.73 (s, N-H, 1H), 8.61 (s, 1H), 7.91 (s, 1H), 7.42 (d, J = 8.4 Hz, 1H), 7.30 (d, J = 8.8 Hz, 1H), 4.91 (s, 1H), 1.55-1.32 (m, 22H); ¹³C NMR (100 MHz, CS₂/d₆-DMSO) (all 1C unless indicated) δ 154.5, 153.4, 151.0, 150.2, 148.1, 147.6, 147.3, 147.0, 146.8, 146.4, 146.4, 146.2(3C), 145.9, 145.8, 145.6, 144.9, 144.8(2C), 144.2, 144.15, 144.0, 143.8, 143.76, 143.7, 143.6, 143.5, 143.44(2C), 143.4(2C), 143.3, 143.2, 143.15, 142.7(4C), 142.5, 142.4(2C), 142.2, 142.17(2C), 142.1, 142.0, 141.84, 141.8, 141.6, 141.4, 140.7, 140.3, 139.9, 138.7, 138.5, 136.7, 136.7, 135.3(aryl C), 126.7(aryl C), 125.5(aryl C), 124.3(aryl C), 122.0(aryl C), 113.6(aryl C), 113.2(aryl C), 112.9(aryl C), $79.5(sp^3-C)$ of C₆₀), 74.2(-OCH-), $55.3(sp^3-C \text{ of } C_{60}), 31.2, 31.1, 29.7, 29.4, 23.9, 23.9, 23.5, 23.3, 23.2, 21.2, 21.1;$ HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M] calcd for C₈₀H₂₈BrNO 1097.1354; found 1097.1356.

Synthesis of 5gf

C₆₀ (36.0 mg, 0.05 mmol), 5-bromoindole (12 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (4 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 µL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and 2-adamantanol (152 mg, 1 mmol) were added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide as the eluent to give unreacted C₆₀ (3.9 mg, 11%) and **5gf** (19.4 mg, 36%) as black amorphous solid. ¹H NMR (400 MHz, CS_2/d_6 -DMSO) δ 11.70 (s, N-H, 1H), 8.38 (s, 1H), 7.95 (s, 1H), 7.51 (d, J = 8.6 Hz, 1H), 7.33 (d, J = 8.6 Hz, 1H), 4.84 (s, 1H), 2.39 (s, 2H), 1.97-1.87 (m, 6H), 1.67 (t, J= 8.6 Hz, 2H), 1.55 (d, J = 11.6 Hz, 2H), 1.36 (s, 2H); ¹³C NMR (100 MHz, CS_2/d_6 -DMSO) (all 1C unless indicated) δ 154.6, 153.7, 151.1, 150.4, 148.1, 147.6, 147.4, 147.0, 146.9, 146.4, 146.3, 146.2, 146.19, 146.1, 145.9, 145.8, 145.7, 144.9, 144.8(2C), 144.3, 144.2, 143.9(2C), 143.8, 143.7, 143.6, 143.54, 143.5, 143.47, 143.4(2C), 143.3, 143.2, 143.16, 142.8, 142.7, 142.6, 142.55, 142.5, 142.4, 142.38, 142.3, 142.2, 142.17, 142.1, 142.06, 141.83, 141.82, 141.6, 141.4, 140.9, 140.4, 139.9, 138.6, 138.4, 137.1, 136.8, 135.3(aryl C), 126.7(aryl C), 125.3(aryl C), 124.29(aryl C), 121.8(aryl C), 113.8(aryl C), 113.4(aryl C), 113.0(aryl C), 79.5(sp^3 -C of C₆₀), 78.9, $55.2(sp^3-C \text{ of } C_{60}), 37.3, 36.3(2C), 34.1, 34.0, 31.4, 31.4, 27.37, 27.0; HRMS$ (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M] calcd for C₇₈H₂₀BrNO 1065.0728; found 1065.0732.

Synthesis of 5gh

C₆₀ (36.0 mg, 0.05 mmol), 5-bromoindole (12 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar

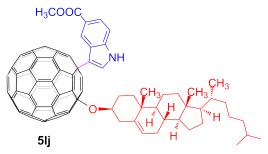
atmosphere. Then DMSO (4 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 μL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and methyl tetraglycol (210 µL, 1 mmol) were added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane/ethyl acetate(6:2:1) as the eluent to give unreacted C_{60} (4.5 mg, 13%) and **5gh** (18 mg, 32%) as black amorphous solid. ¹H NMR (400 MHz, CS₂/Acetone-*d*₆) δ 10.59 (s, N-H, 1H), 8.30 (s, 1H), 8.05 (s, 1H), 7.44 (d, J = 8.8 Hz, 1H), 7.24 (d, J = 8.4 Hz, 1H), 4.59 (s, 2H), 3.98 – 3.89 (m, 2H), 3.74-3.65 (m, 10H), 3.53 (t, J = 4.4 Hz, 2H), 3.28 (s, 3H); ¹³C NMR (100 MHz, $CS_2/Acetone-d_6$) (all 1C unless indicated) δ 155.3, 154.8, 153.2, 150.0, 149.4, 148.9, 148.2, 147.9, 147.7, 147.65, 147.5, 147.42, 147.4, 147.12, 147.1, 147.0, 146.97, 146.2, 146.17, 146.0, 145.6, 145.3, 145.2, 145.1, 145.0, 144.9, 144.8, 144.76, 144.7, 144.69, 144.67(3C), 144.5, 144.3, 143.9, 143.89, 143.8(3C), 143.7, 143.6, 143.4, 143.3(2C), 143.29(2C), 143.0(2C), 142.8, 142.6, 141.5, 141.4, 140.7, 140.6, 140.1, 138.8, 137.9, 136.3(aryl C), 128.0(aryl C), 127.7(aryl C), 125.5(aryl C), 123.1(aryl C), 114.8(aryl C), 114.3(2C, aryl C), 81.1(sp^3 -C of C₆₀), 72.4, 71.5, 71.3, 71.3, 71.1, 71.0(2C), 67.7, 59.0(-CH₃), 56.6(sp³-C of C₆₀); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for C₇₇H₂₄BrNO₅ 1121.0838; found 1121.0842.

Synthesis of 5gg

C₆₀ (36.0 mg, 0.05 mmol), 5-bromoindole (12 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (4 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 μ L, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and citronellol (182 mg, 1 mmol) were added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide as the eluent to give unreacted C₆₀ (4.5 mg, 13%) and **5gg** (18.1 mg, 34%) as black amorphous solid. ¹H NMR (400 MHz, CS₂/Acetone-*d*₆) δ 10.61 (s, N-H, 1H), 8.52 (s, 1H), 7.87 (s, 1H), 7.40 (d, J = 8.4 Hz,

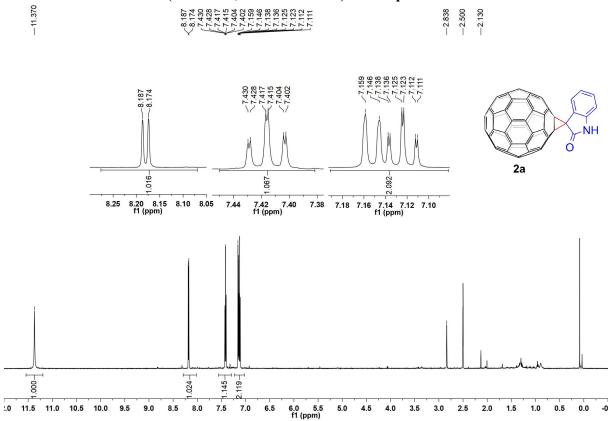
1H), 7.29 (d, J = 8.4 Hz, 1H), 5.04 (s, 1H), 4.46-4.39 (m, 2H), 1.98 – 1.96 (m, 2H), 1.72 (d, J = 8.4 Hz, 2H), 1.67 (s, 3H), 1.60 (s, 3H), 1.39-1.35(m, 1H), 1.27 (m, 2H),0.93 (d, J = 5.6 Hz, 3H); ¹³C NMR (100 MHz, CS₂/Acetone- d_6) (all 1C unless indicated) δ 155.6, 154.8, 152.7, 150.9, 149.5, 149.0, 148.4, 148.2, 147.9, 147.87, 147.8, 147.6, 147.56, 147.5, 147.49, 147.2, 147.1(2C), 146.3, 146.2, 146.1, 145.6, 145.5, 145.3, 145.1, 145.07, 145.0, 144.9, 144.8(2C), 144.76(3C), 144.7, 144.5, 144.4, 144.0, 143.96(2C), 143.9, 143.85, 143.7(2C), 143.6, 143.5(2C), 143.34, 143.3, 143.1(2C), 142.9, 142.8, 141.7, 141.3, 140.2, 140.0, 138.2, 138.1, 136.5(aryl C), 131.1(alkene C), 128.1(aryl C), 126.3(aryl C), 126.0(aryl C), 125.9(alkene C), 123.4(aryl C), 115.8(aryl C), 114.5(aryl C), 114.1(aryl C), 81.3(sp³-C of C₆₀), 66.6, 56.5(sp³-C of C₆₀), 38.0(2C), 30.6, 26.4(2C), 20.2(-CH₃), 18.3(-CH₃); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for C₇₈H₂₄BrNO 1069.1041; found 1069.1045.

Synthesis of 5ij

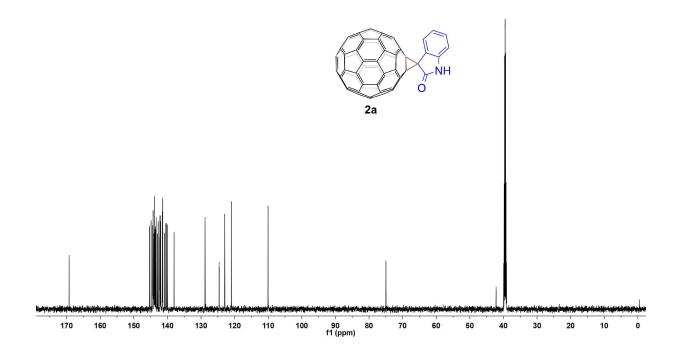

C₆₀ (36.0 mg, 0.05 mmol), 7-bromoindole (12 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (4 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 μL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and cholesterol (386 mg, 1 mmol) were added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the eluent to give unreacted C₆₀ (4.8 mg, 13%) and 5ij (25.4 mg, 39%) as black amorphous solid. ¹H NMR (400 MHz, $CS_2/Acetone-d_6$) δ 10.44 (s, N-H, 1H), 8.28 (dd, J = 7.6, 4.8 Hz, 1H), 7.87 (s, 1H), 7.30 (d, J = 7.6 Hz, 1H), 6.99 (t, J = 7.8 Hz, 1H), 5.04 (s, 1H), 4.32-4.30 (m, 1H), 2.48-2.45 (m, 2H), 1.93-1.90 (m, 2H), 1.76-1.63 (m, 4H), 1.51-1.00 (m, 20H), 0.94 (s, 3H), 0.86 (d, J = 6.4 Hz, 3H), 0.80 (d, J = 6.8 Hz, 6H), 0.60 (s, 3H); 13 C NMR (100 MHz, CS₂/Acetone- d_6) (all 1C unless indicated) δ 156.0, 155.0, 154.8, 152.4, 152.3, 151.7, 149.5, 149.1, 148.8, 148.5, 148.3, 147.8, 147.6(3C), 147.5, 147.3, 147.2, 147.1, 146.3, 146.2(2C), 145.7(2C), 145.2(3C), 144.9(3C), 144.8(3C), 144.6(2C), 144.1, 144.1, 144.0, 143.9(2C), 143.8(2C), 143.7(2C), 143.6, 143.6, 143.4, 143.2, 143.0, 142.8, 142.4, 142.3, 141.8, 141.3, 140.9(alkene C), 140.0, 139.7, 138.6, 138.1, 136.3(aryl C), 127.9(aryl C), 126.1(aryl C), 125.6(aryl C),

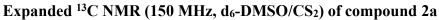
122.6(aryl C), 122.0(alkene C), 120.7(aryl C), 117.5(aryl C), 106.2(aryl C), 80.8(sp^3 -C of C₆₀), 77.9, 57.8, 57.1, 56.6(sp^3 -C of C₆₀), 50.6, 43.0, 42.0, 40.6, 40.4, 38.3, 37.1, 36.7, 32.8, 32.6, 31.7, 29.0(2C), 25.3, 24.9, 23.5, 23.3(2C, -CH₃), 21.9, 20.0(-CH₃), 19.5(-CH₃), 12.6(-CH₃); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for C₉₅H₅₀BrNO 1299.3076; found 1299.3080.

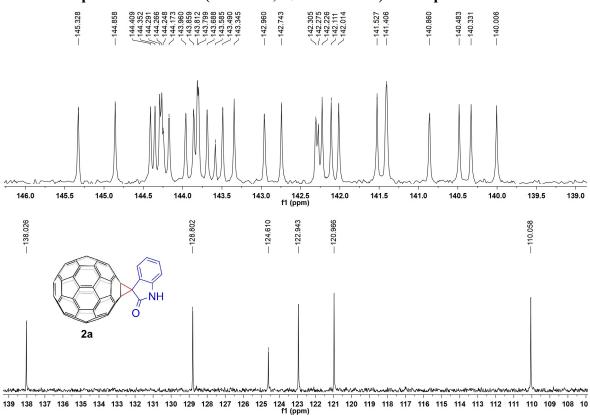
Synthesis of 5hj


C₆₀ (36.0 mg, 0.05 mmol), indole-5-carbonitrile (8.6 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (4 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 µL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and cholesterol (386 mg, 1 mmol) were added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the eluent to give unreacted C₆₀ (7.9 mg, 22%) and **5hj** (27.3 mg, 44%) as black amorphous solid. ¹H NMR (400 MHz, $CS_2/Acetone-d_6$) δ 11.08 (s, N-H, 1H), 9.06 (s, 1H), 8.04 (d, J = 2.0Hz, 1H), 7.65 (d, J = 8.4 Hz, 1H), 7.47 (d, J = 8.4 Hz, 1H), 5.24 (s, 1H), 4.60-4.55 (m, 1H), 2.76–2.62 (m, 2H), 2.21 (m, 1H), 2.04 – 1.85 (m, 5H), 1.55 – 1.14 (m, 17H), 1.10 (s, 3H), 1.06-1.00 (m, 3H), 0.96 (d, J = 6.4 Hz, 3H), 0.91-0.89 (m, 6H), 0.72 (s, 3H); 13 C NMR (100 MHz, CS₂/Acetone- d_6) (all 1C unless indicated) δ 155.3, 154.4, 154.3, 151.9, 151.1, 149.4, 149.0, 148.5, 148.2, 148.1, 147.8, 147.5(2C), 147.4, 147.2, 147.1, 146.9, 146.3, 146.2, 146.15, 145.6, 145.5, 145.0, 144.99, 144.9, 144.8(2C), 144.7(5C), 144.5, 144.2, 144.0, 143.97(2C), 143.9, 143.8, 143.7, 143.6, 143.58, 143.5, 143.4, 143.3, 143.1(2C), 142.9, 142.8, 142.2, 142.2, 141.7, 141.3, 141.1(alkene C), 141.1, 139.9, 139.85, 139.0, 138.4, 138.1(aryl C), 127.7(aryl C), 126.7(aryl C), 126.1(aryl C), 125.7(aryl C), 122.7(aryl C), 120.3(alkene C), 117.1(-CN), 113.7(aryl C), 104.4(aryl C), $80.5(sp^3-C \text{ of } C_{60})$, 78.0, 57.5, 56.9, $56.1(sp^3-C \text{ of } C_{60})$, 50.8, 43.0, 42.1, 42.0, 40.7, 40.3, 38.4, 37.2, 37.1, 36.6, 32.8, 32.5, 31.7, 28.9, 25.3, 24.7, 23.5(-CH₃), 23.3(-CH₃), 21.9, 20.0(-CH₃), 19.3(-CH₃), 12.6(-CH₃); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M] calcd for C₉₆H₅₀N₂O 1246.3923; found 1246.3926.

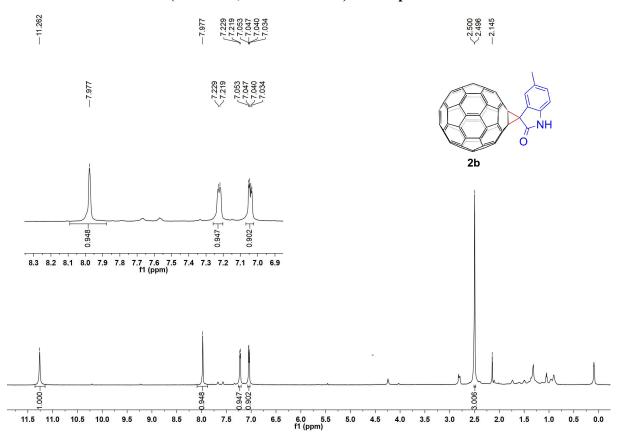
Synthesis of 5lj

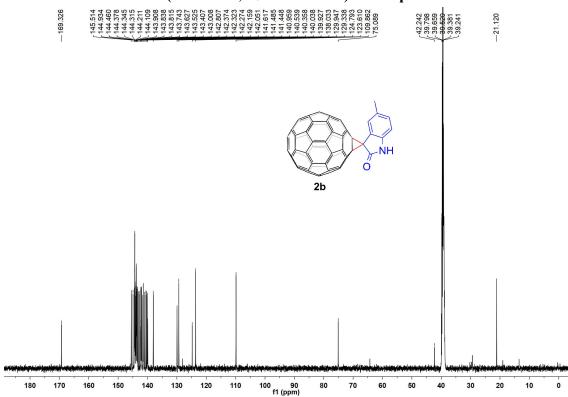

C₆₀ (36.0 mg, 0.05 mmol), 5-bromoindole (12 mg, 0.06 mmol), KO^tBu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (4 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 μL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol) and Cholesterol (386 mg, 1 mmol) were added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the eluent to give unreacted C₆₀ (6.5 mg, 18%) and **5lj** (32.1 mg, 50%) as black amorphous solid. ¹H NMR (400 MHz, $CS_2/Acetone-d_6$) δ 10.89 (s, N-H, 1H), 9.11 (s, 1H), 7.99 (s, 1H), 7.90 (d, J = 8.6 Hz, 1H), 7.54 (d, J = 8.6 Hz, 1H), 5.19 (s, 1H), 4.51-4.50 (m, 1H), 3.86 (s, 3H), 2.61 - 2.58 (m, 2H), 2.41 - 2.36 (m, 2H), 2.17 (m, 1H), 1.90 - 1.79 (m, 4H), 1.60-1.40 (m, 19H), 1.05 (s, 3H), 0.97 (d, J = 6.0 Hz, 3H), 0.92 (d, J = 6.4 Hz, 6H), 0.72(s, 3H); 13 C NMR (100 MHz, CS₂/Acetone- d_6) (all 1C unless indicated) δ 167.21(acyl C), 155.8, 154.9, 154.8, 152.4, 152.3, 151.5, 149.4, 149.0, 148.6, 148.5, 148.4, 148.2, 147.8, 147.7, 147.6, 147.48, 147.2, 147.1, 147.0, 146.2, 146.16(2C), 145.6, 145.55, 145.1(3C), 145.0, 144.9, 144.8, 144.75(2C), 144.6, 144.5, 144.46, 144.1, 144.0, 143.96, 143.9, 143.8, 143.7, 143.6, 143.5, 143.49, 143.4(2C), 143.1(2C), 142.9, 142.8, 142.3, 142.1, 141.7, 141.3, 141.0(alkene C), 140.3, 140.0, 139.8, 138.4, 138.2(aryl C), 126.6(aryl C), 126.0(aryl C), 124.3(aryl C), 124.1(aryl C), 122.9(aryl C), 122.5(alkene C), 117.5(aryl C), 112.4(aryl C), 80.6(sp^3 -C of C₆₀), 77.7, 57.5, 57.0, 56.5, 56.6(sp^3 -C of C₆₀), 51.9(-CH₃), 50.6, 43.0, 42.0 41.9, 40.7, 40.3, 38.2, 38.2, 37.1, 32.8, 32.5, 31.6, 28.9, 25.3, 24.8, 23.5(-CH₃), 23.3(-CH₃), 21.9, 19.9(-CH₃), 19.5(-CH₃), 12.6(-CH₃); HRMS (MALDI-TOF-MS, DCTB as matrix, negative mode): m/z [M]⁻ calcd for C₉₇H₅₃NO₃ 1279.4025; found 1279.4029.

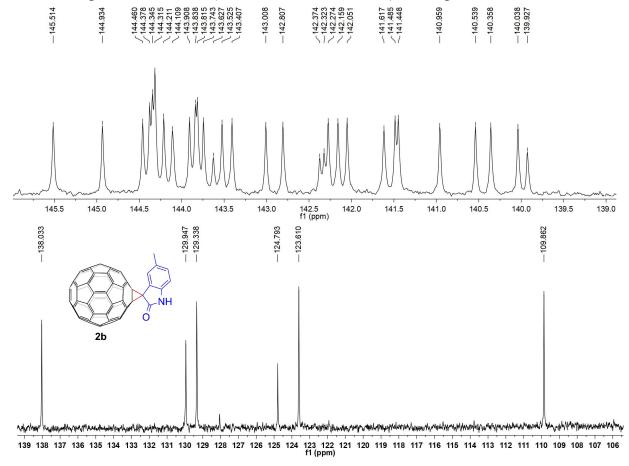

¹H NMR (600 MHz, d₆-DMSO/CS₂) of compound 2a

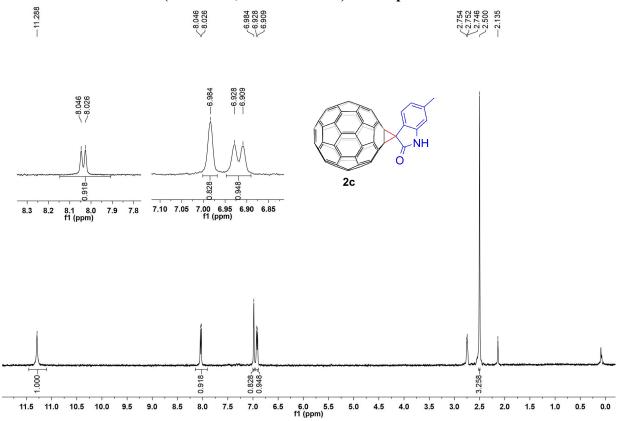


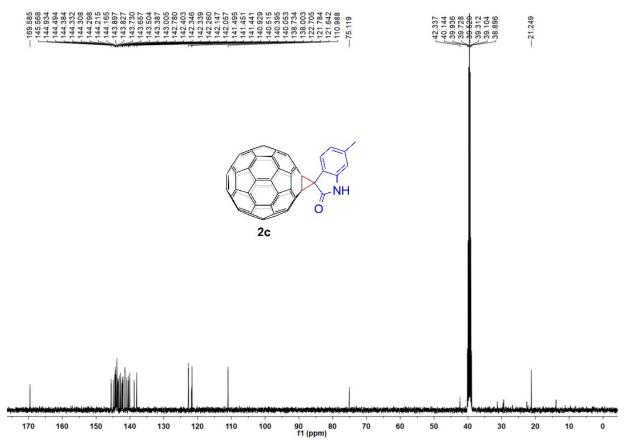
$^{13}C\ NMR\ (150\ MHz,\ d_6\text{-DMSO/CS}_2)$ of compound 2a

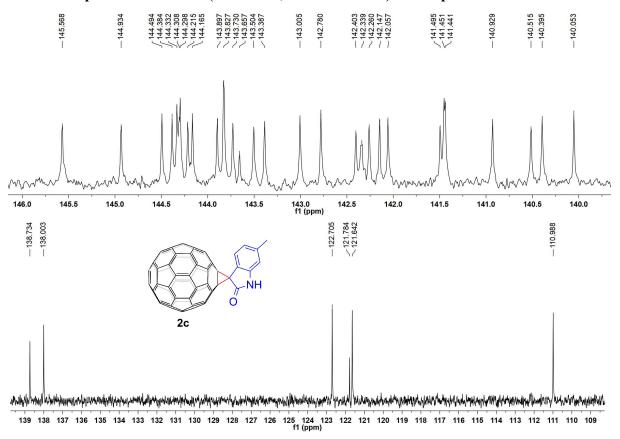


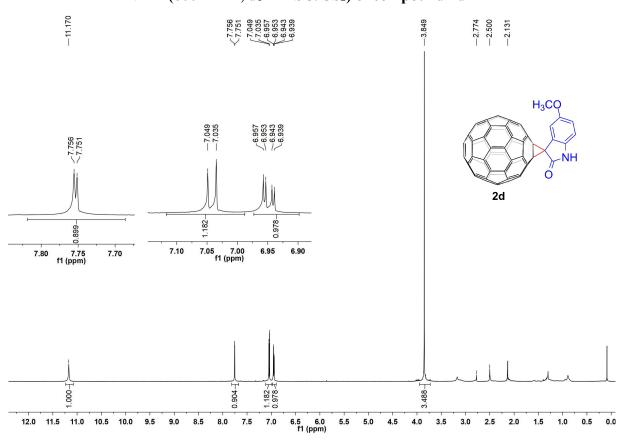



¹H NMR (600 MHz, d₆-DMSO/CS₂) of compound 2b

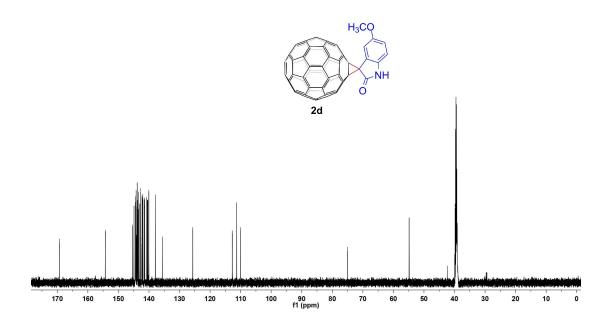



Expanded ¹³C NMR (150 MHz, d₆-DMSO/CS₂) of compound 2b

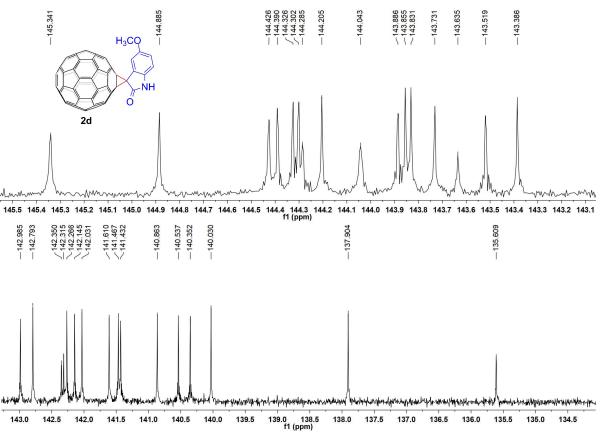

¹H NMR (400 MHz, d₆-DMSO/CS₂) of compound 2c


$^{13}C\ NMR\ (100\ MHz\ ,\ d_6\text{-DMSO/CS}_2)$ of compound 2c

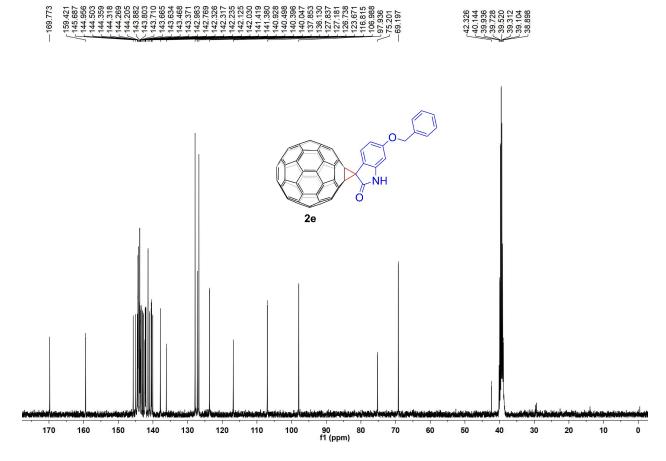
Expanded ¹³C NMR (100 MHz, d₆-DMSO/CS₂) of compound 2c

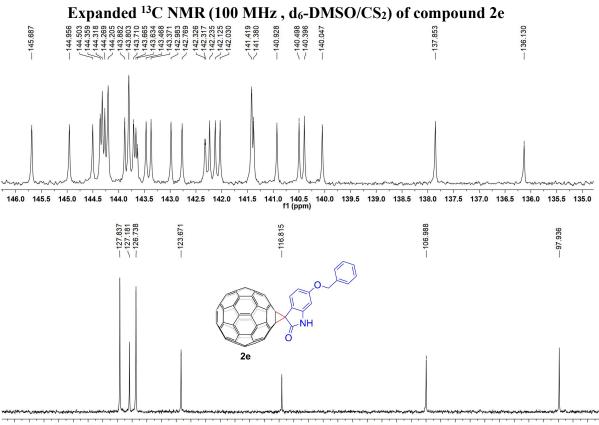


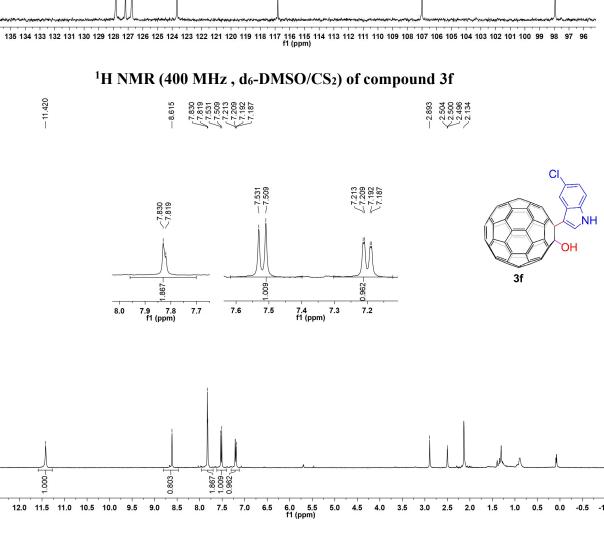
¹H NMR (600 MHz, d6-DMSO/CS₂) of compound 2d



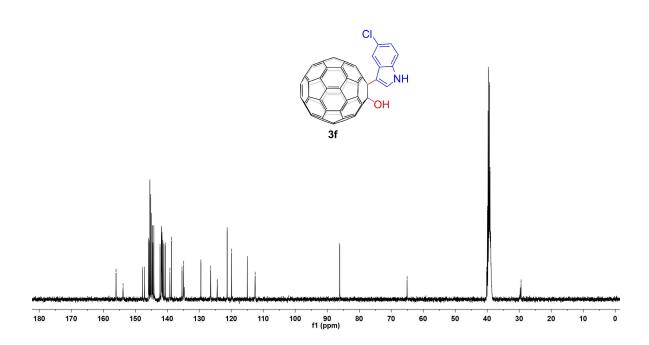
¹³C NMR (150 MHz, d₆-DMSO/CS₂) of compound 2d

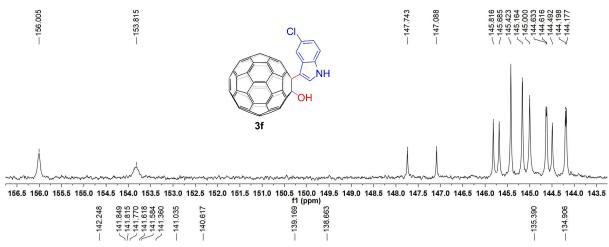

Expanded $^{13}C\ NMR\ (150\ MHz\ ,\ d_{6}\text{-DMSO/CS}_{2})$ of compound 2d

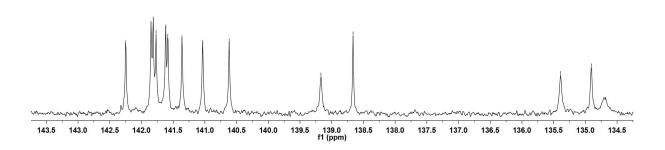


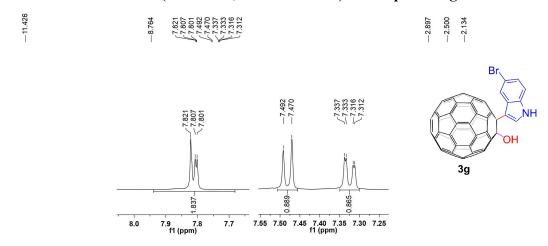

¹H NMR (400 MHz, d₆-DMSO/CS₂) of compound 2e

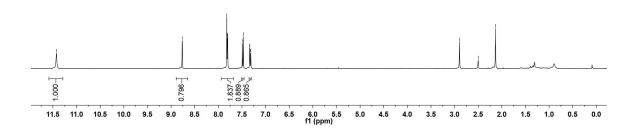
$^{13}C\ NMR\ (100\ MHz\ ,\ d_6\text{-DMSO/CS}_2)$ of compound 2e

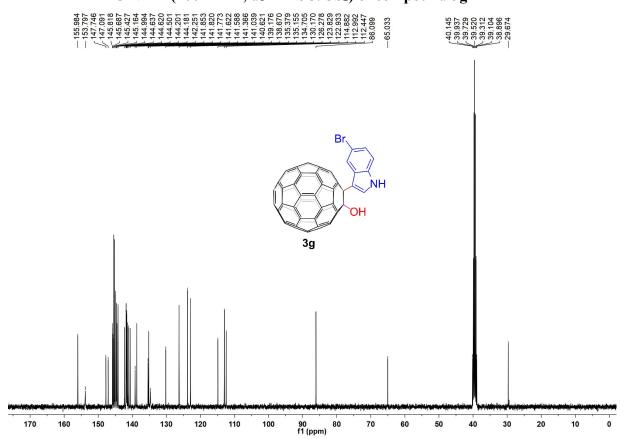




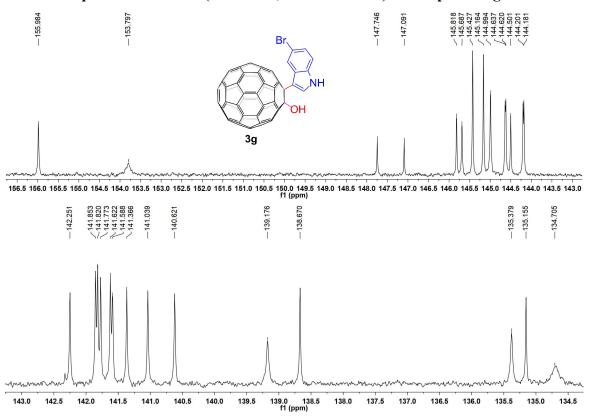

$^{13}C\ NMR\ (100\ MHz\ ,\ d_6\text{-DMSO/CS}_2)$ of compound 3f

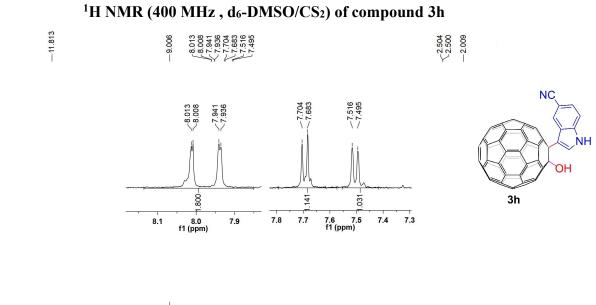


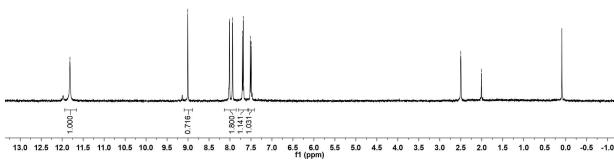

Expanded ¹³C NMR (100 MHz, d₆-DMSO/CS₂) of compound 3f

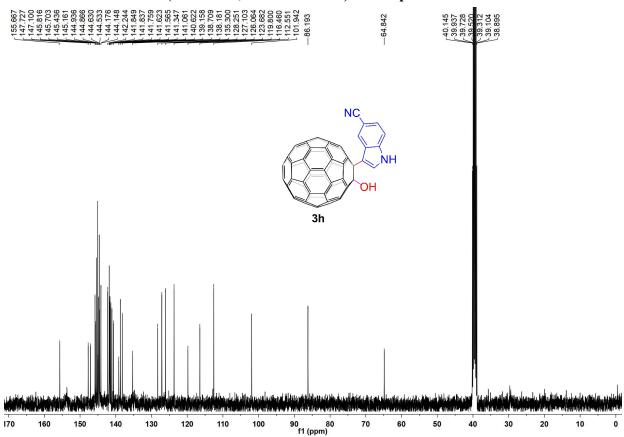


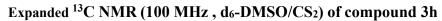
¹H NMR (400 MHz, d₆-DMSO/CS₂) of compound 3g

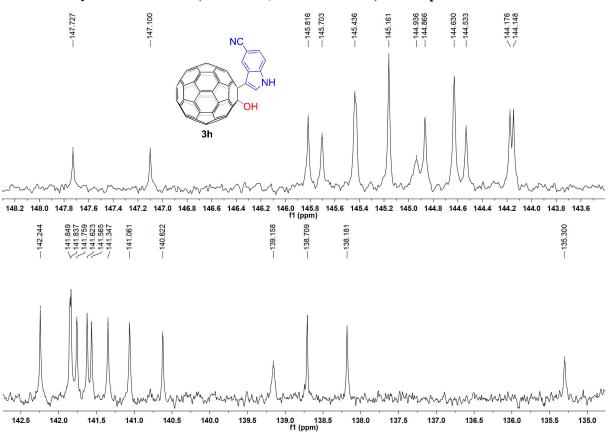


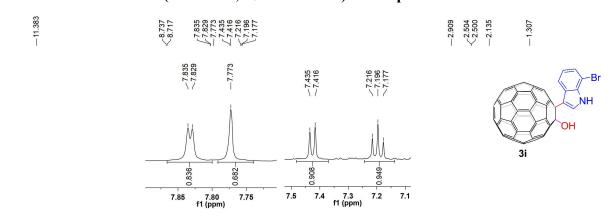


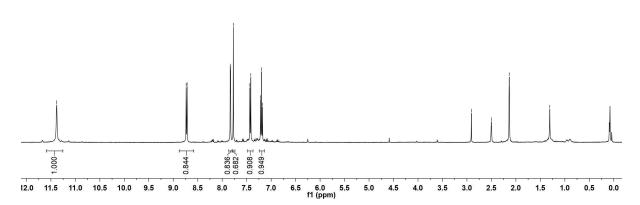

$^{13}C\ NMR\ (100\ MHz\ ,\ d_6\text{-DMSO/CS}_2)$ of compound 3g

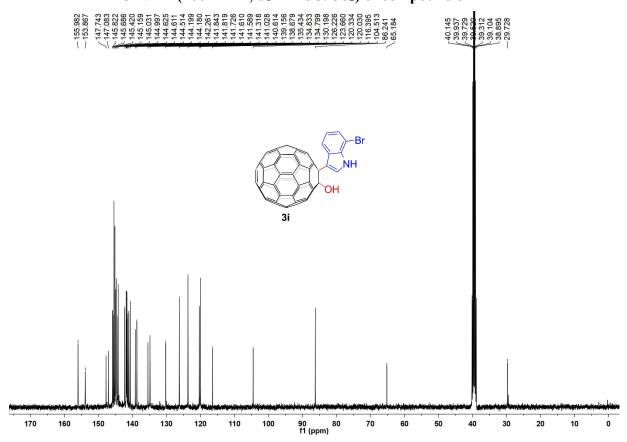

Expanded ¹³C NMR (100 MHz, d₆-DMSO/CS₂) of compound 3g

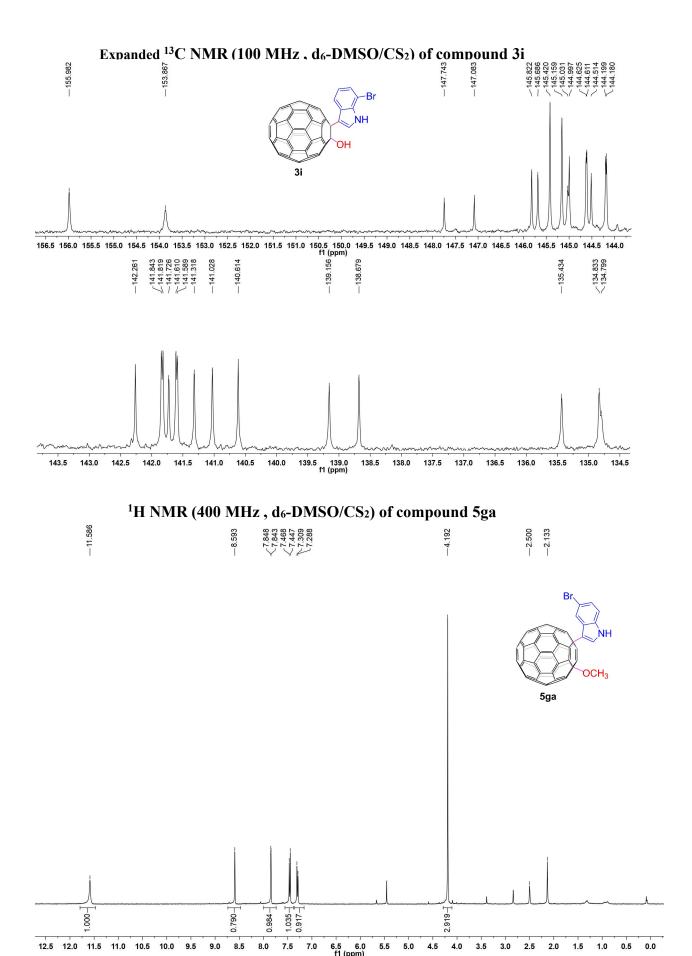


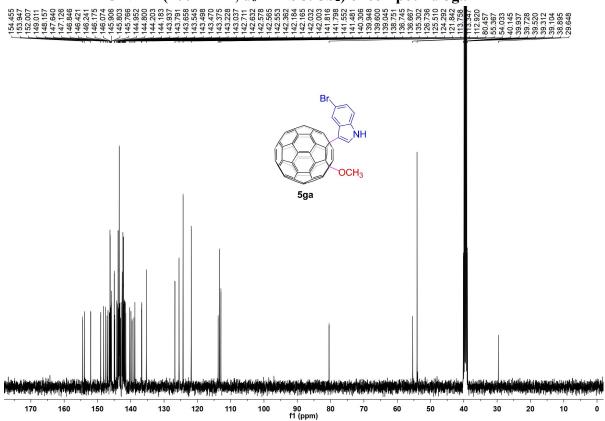


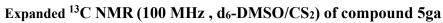

$^{13}C\ NMR\ (100\ MHz\ ,\ d_6\text{-DMSO/CS}_2)$ of compound 3h

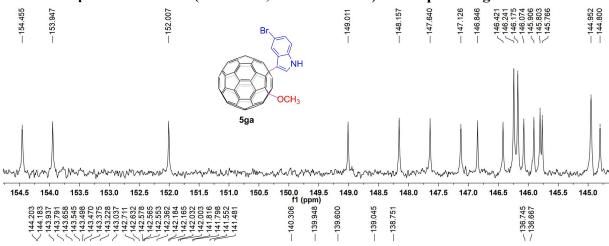


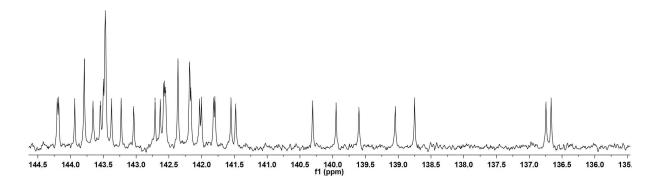



¹H NMR (400 MHz, d₆-DMSO/CS₂) of compound 3i

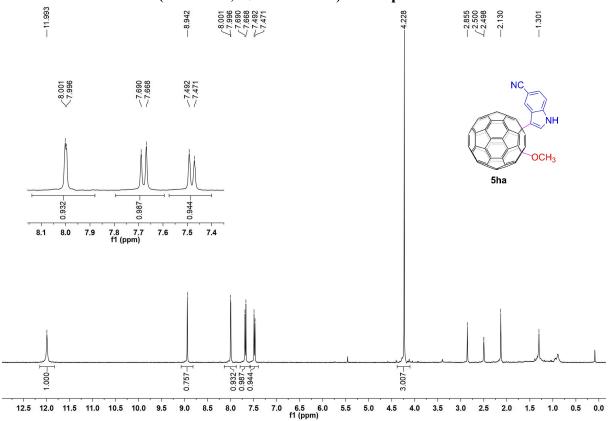


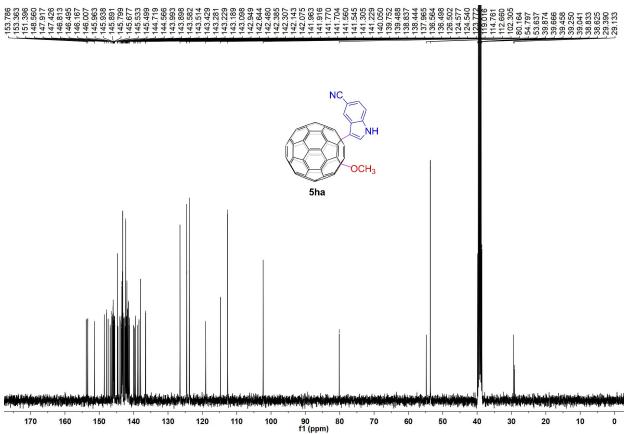

$^{13} C\ NMR\ (100\ MHz\ ,\ d_6\text{-DMSO/CS}_2)$ of compound 3i

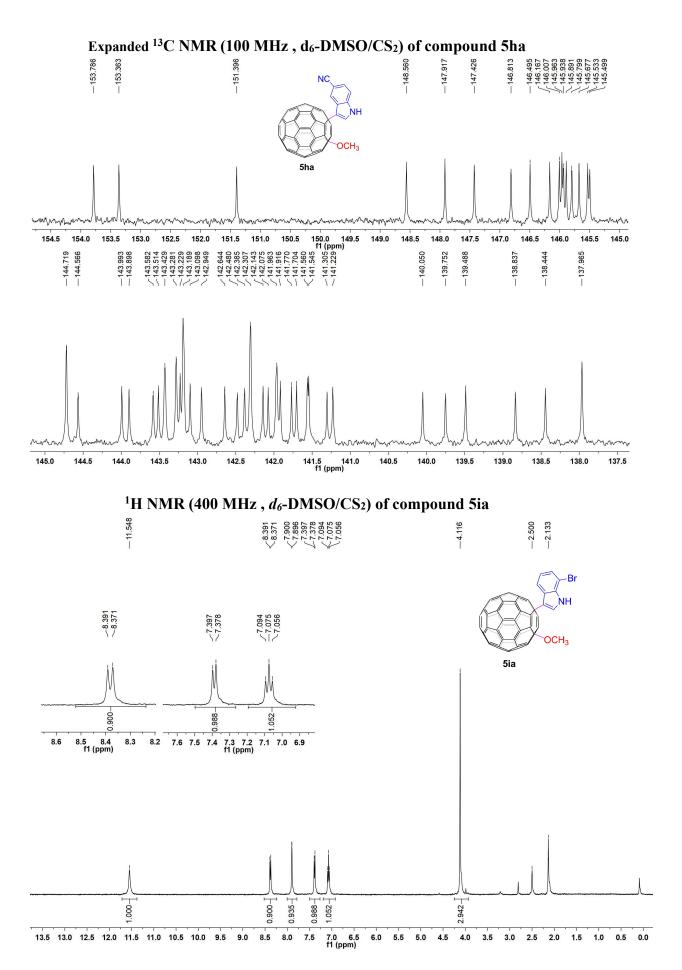




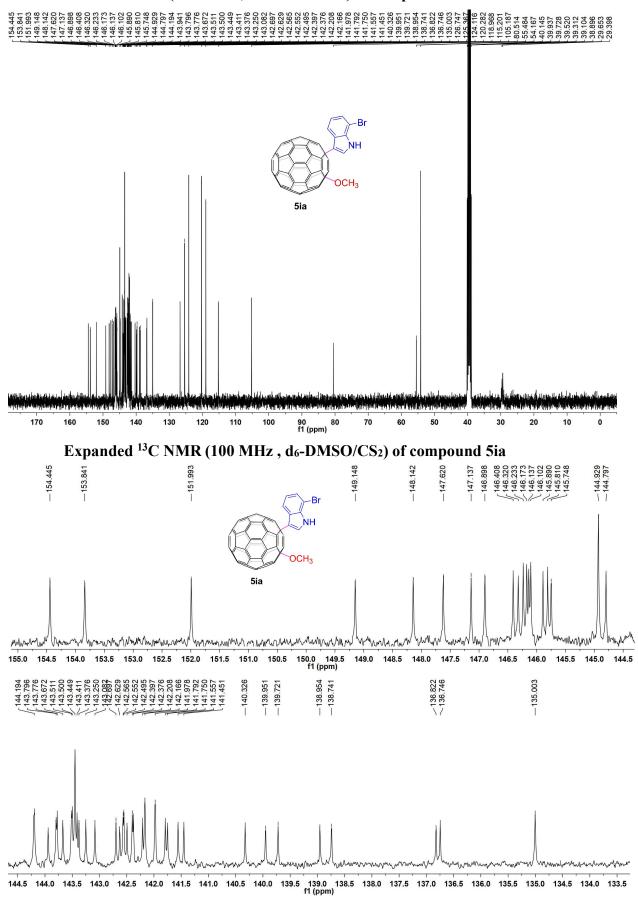
$^{13}C\ NMR\ (100\ MHz\ ,\ d_6\text{-DMSO/CS}_2)$ of compound 5ga



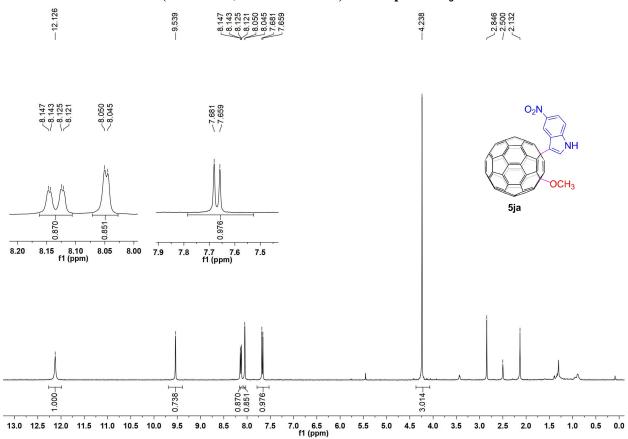


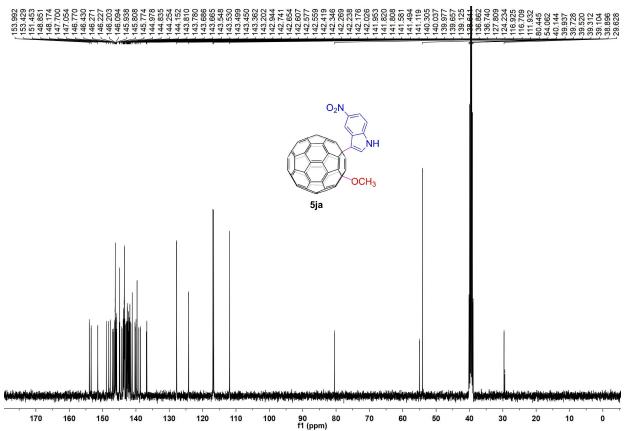


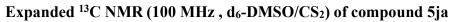
$^{1}H\ NMR\ (400\ MHz\ ,\ d_{6}\text{-DMSO/CS}_{2})$ of compound 5ha

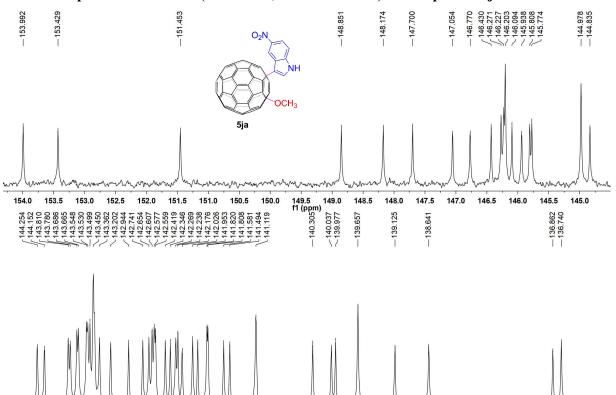


$^{13}C\ NMR\ (100\ MHz\ ,\ d_{6}\text{-DMSO/CS}_{2})$ of compound 5ha




¹³C NMR (100 MHz, d₆-DMSO/CS₂) of compound 5ia




¹H NMR (400 MHz, d₆-DMSO/CS₂) of compound 5ja

$^{13}C\ NMR\ (100\ MHz\ ,\ d_{6}\text{-DMSO/CS}_{2})$ of compound 5ja

¹H NMR (400 MHz, d₆-DMSO/CS₂) of compound 5ka

141.0

144.5

144.0

143.5

143.0

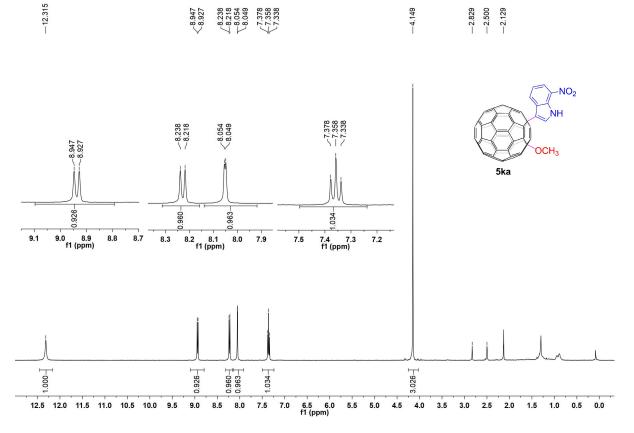
142.5

142.0

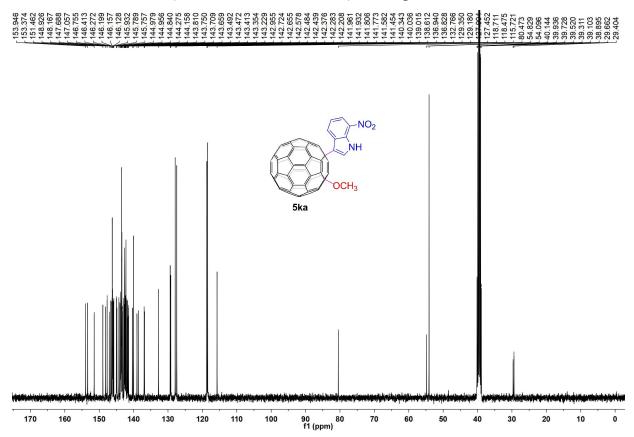
141.5

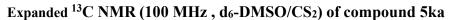
140.5 140.0 f1 (ppm) 139.5

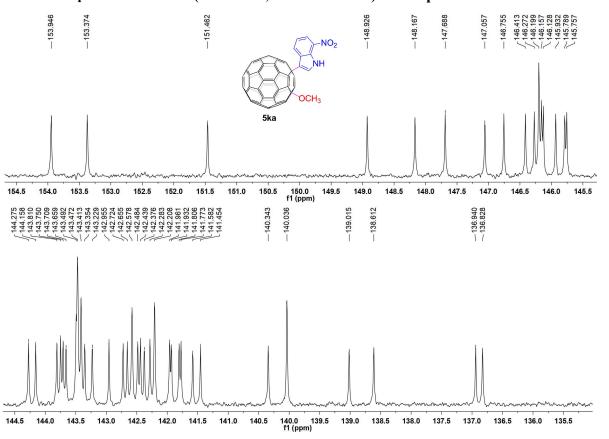
138.5

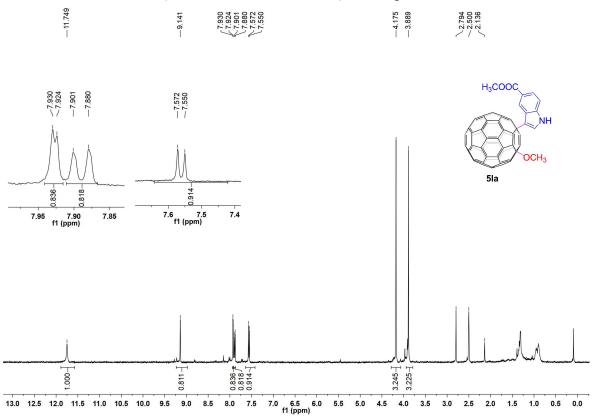

139.0

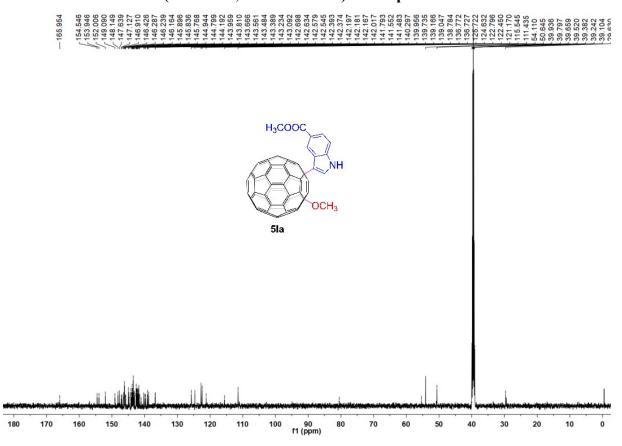
138.0

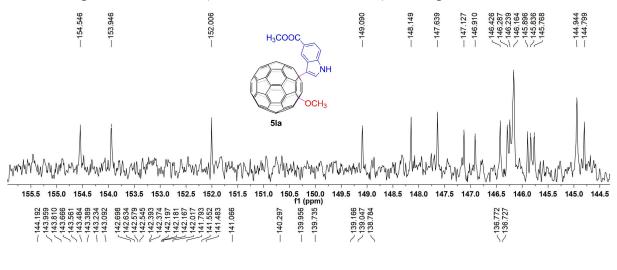

137.5

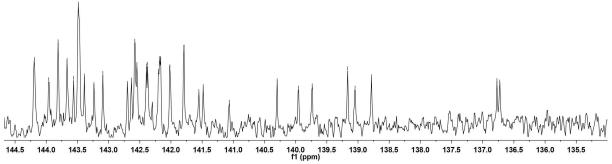

136.5


137.0

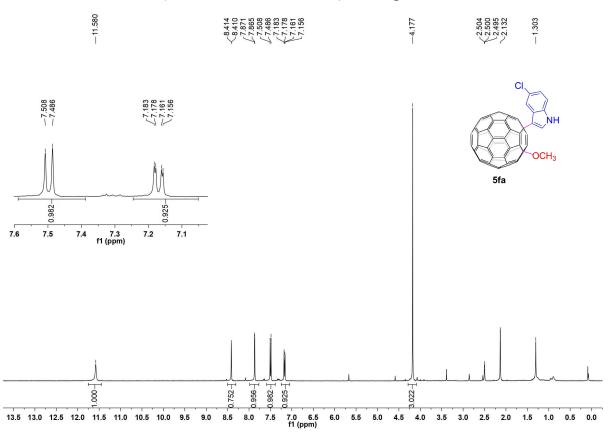

¹³C NMR (100 MHz, d₆-DMSO/CS₂) of compound 5ka




¹H NMR (400 MHz, d₆-DMSO/CS₂) of compound 5la

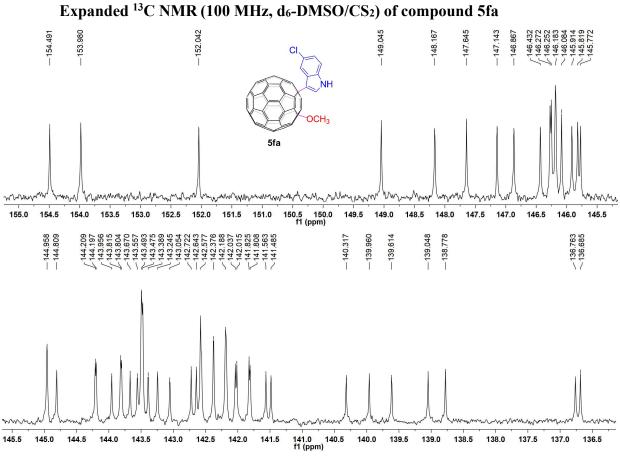


¹³C NMR (150 MHz, d₆-DMSO/CS₂) of compound 5la

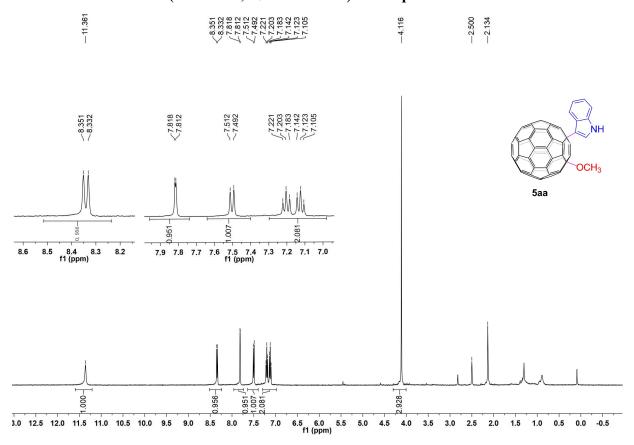


Expanded ¹³C NMR (150 MHz, d₆-DMSO/CS₂) of compound 5la

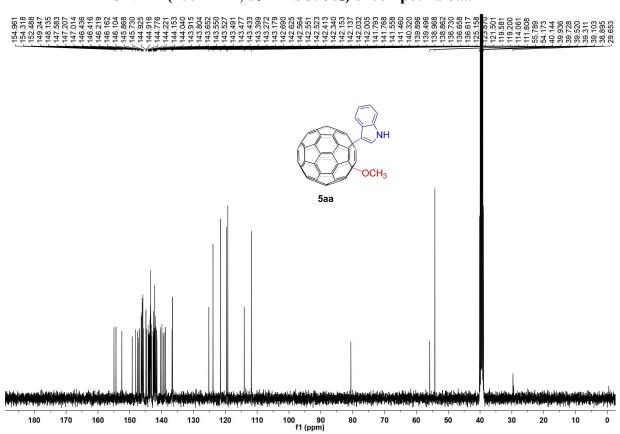


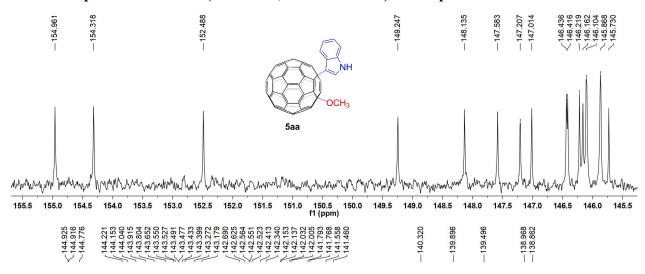


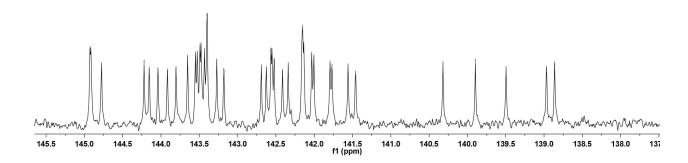
¹H NMR (400 MHz, d₆-DMSO/CS₂) of compound 5fa



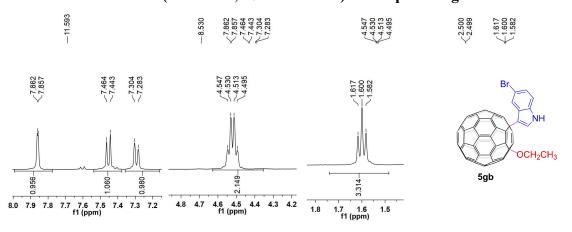
$^{13}C\ NMR\ (100\ MHz\ ,\ d_6\text{-DMSO/CS}_2)$ of compound 5fa

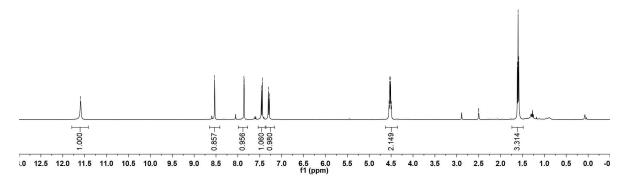


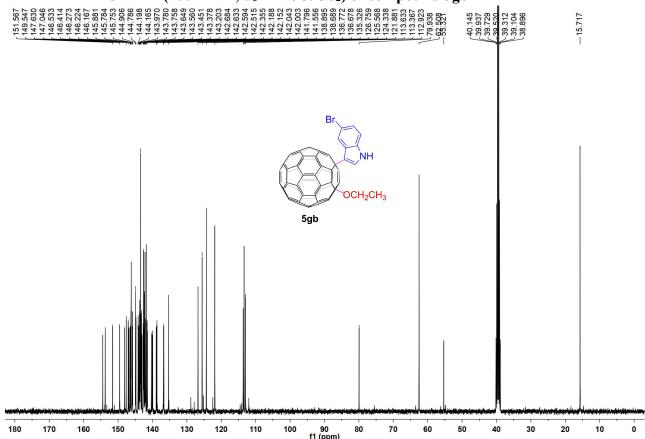

¹H NMR (400 MHz, d₆-DMSO/CS₂) of compound 5aa



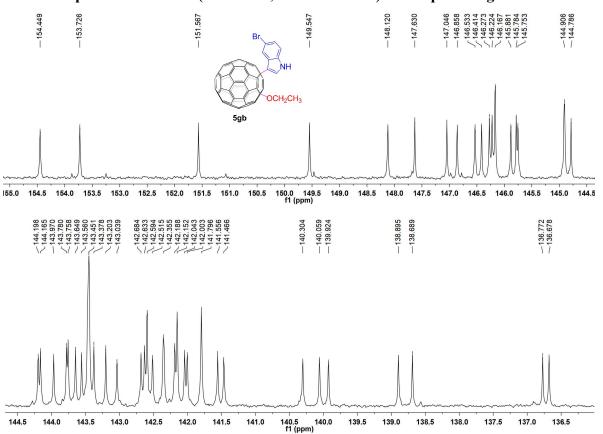
$^{13}C\ NMR\ (100\ MHz\ ,\ d_{6}\text{-DMSO/CS}_{2})$ of compound 5aa

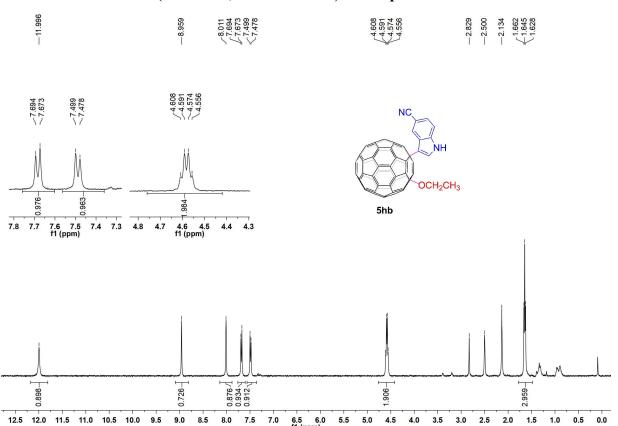


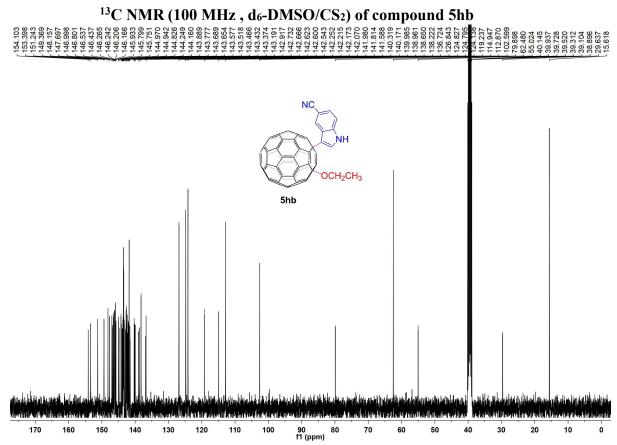

Expanded ^{13}C NMR (100 MHz , d_6 -DMSO/CS₂) of compound 5aa



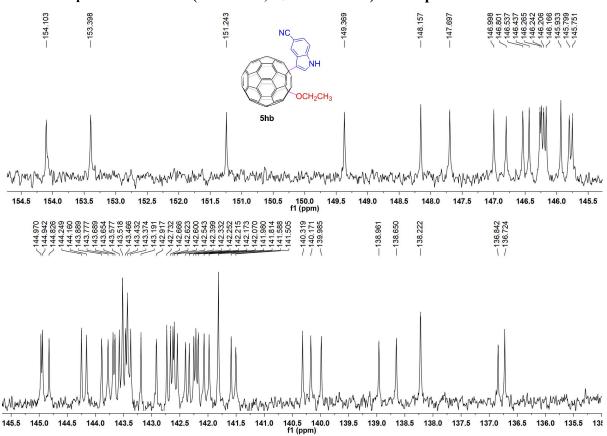
¹H NMR (400 MHz, d₆-DMSO/CS₂) of compound 5gb



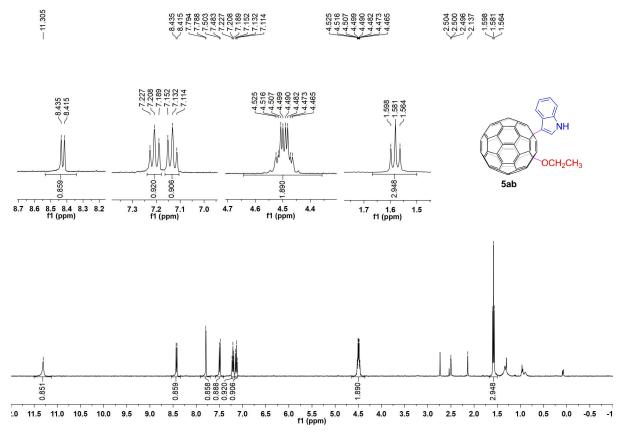

$^{13}C\ NMR\ (100\ MHz\ ,\ d_6\text{-DMSO/CS}_2)$ of compound 5gb

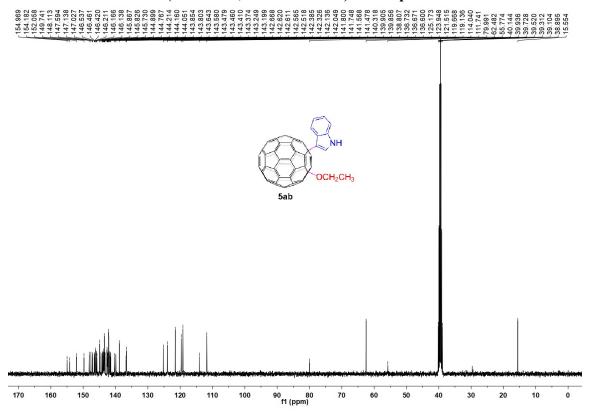


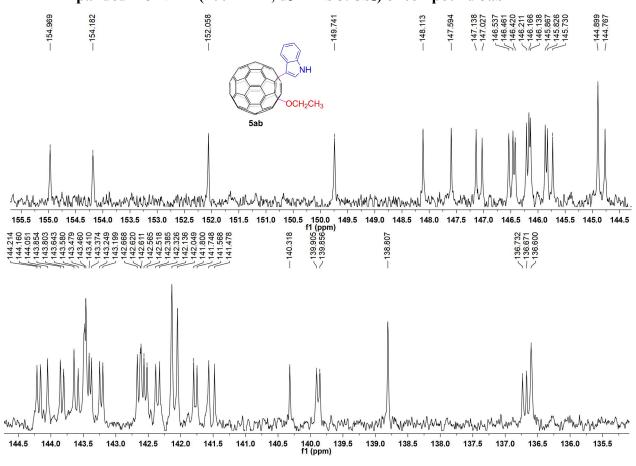
Expanded ¹³C NMR (100 MHz, d₆-DMSO/CS₂) of compound 5gb

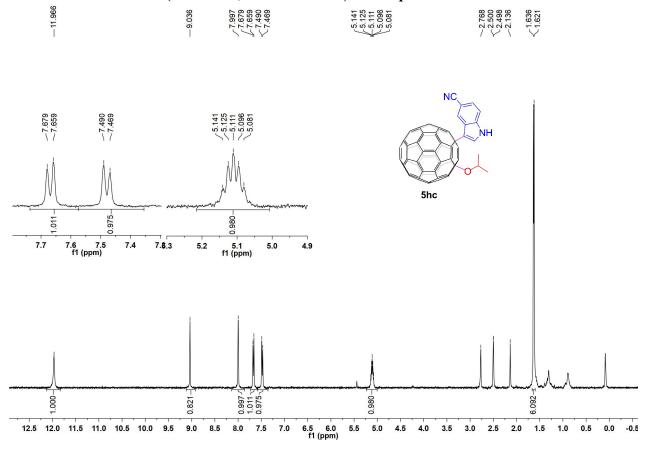


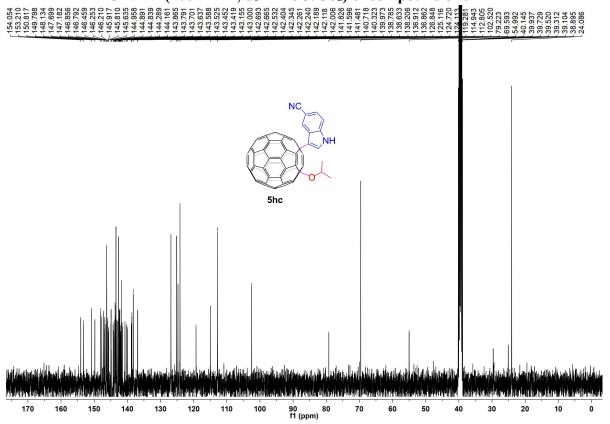
$^{1}H\ NMR\ (400\ MHz\ ,\ d_{6}\text{-DMSO/CS}_{2})$ of compound 5hb

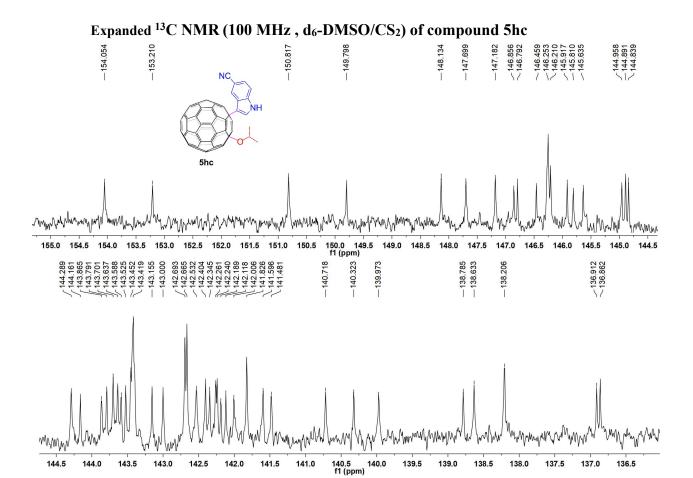



Expanded ^{13}C NMR (100 MHz , d₆-DMSO/CS₂) of compound 5hb

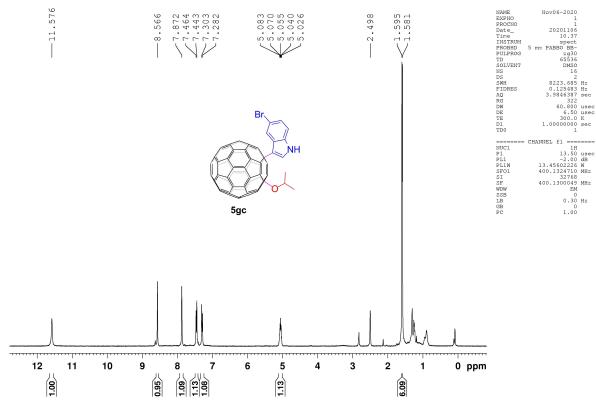

¹H NMR (400 MHz, d₆-DMSO/CS₂) of compound 5ab


¹³C NMR (100 MHz, d₆-DMSO/CS₂) of compound 5ab

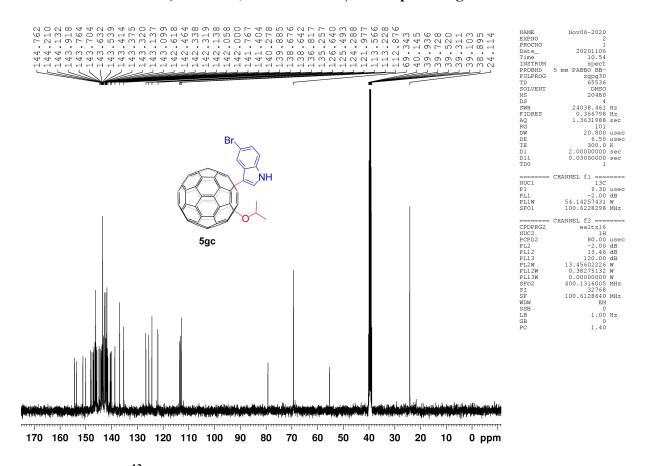

Expanded ¹³C NMR (100 MHz, d6-DMSO/CS2) of compound 5ab

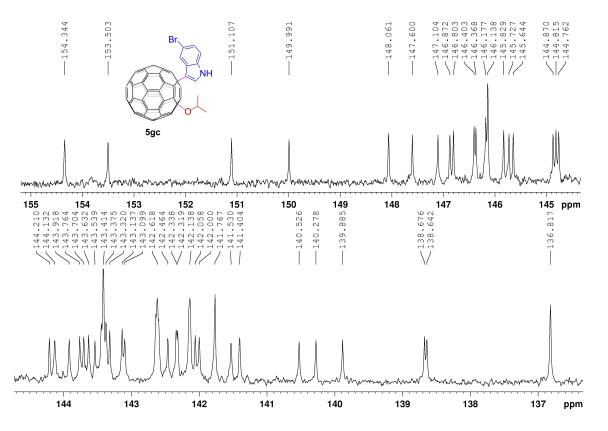


$^1H\ NMR\ (400\ MHz\ ,\ d_6\text{-DMSO/CS}_2)$ of compound 5hc

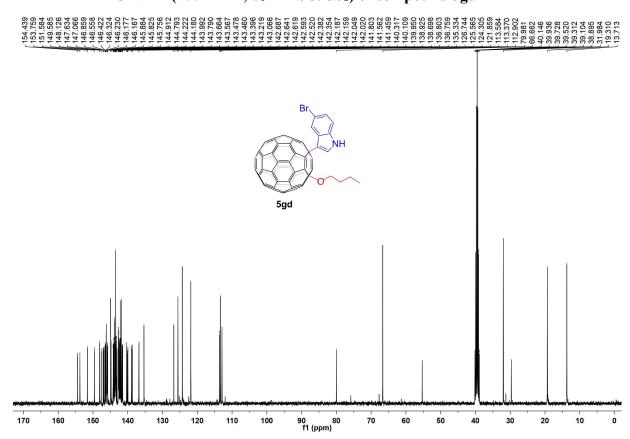


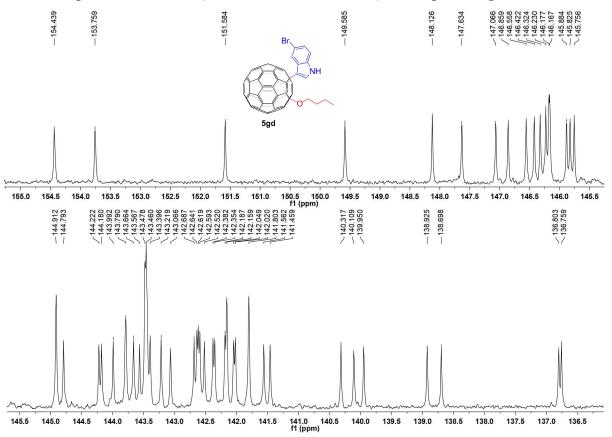
$^{13}C\ NMR\ (100\ MHz\ ,\ d_{6}\text{-DMSO/CS}_{2})$ of compound 5hc

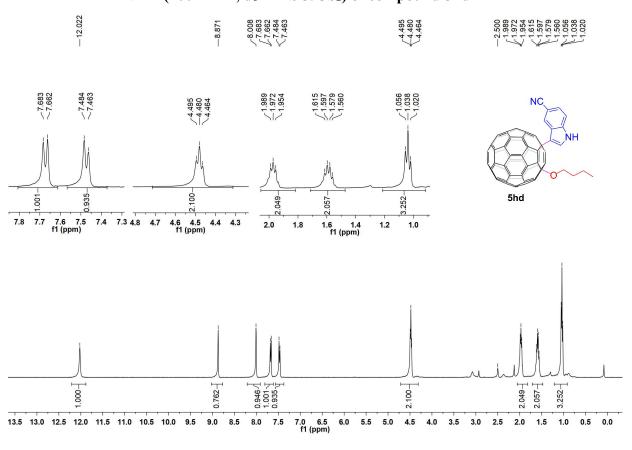


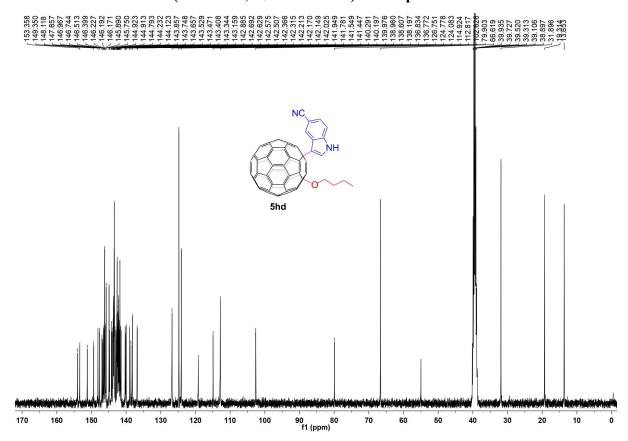


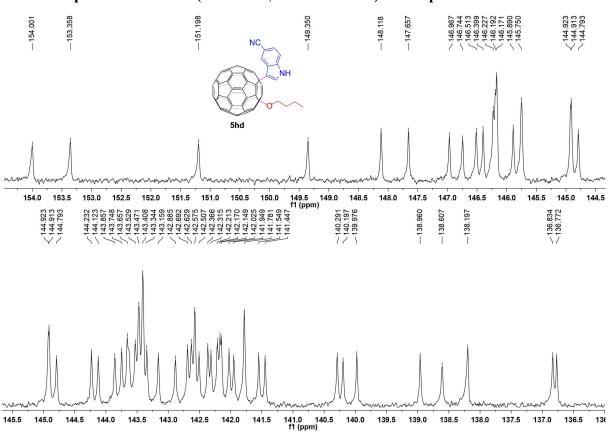
¹³C NMR (100 MHz, d₆-DMSO/CS₂) of compound 5gc

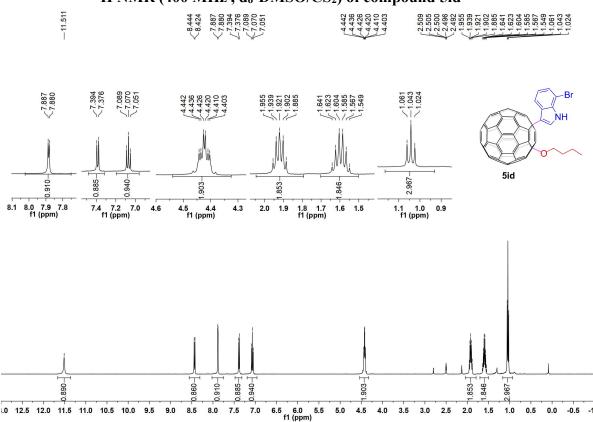

Expanded ¹³C NMR (100 MHz, d₆-DMSO/CS₂) of compound 5gc

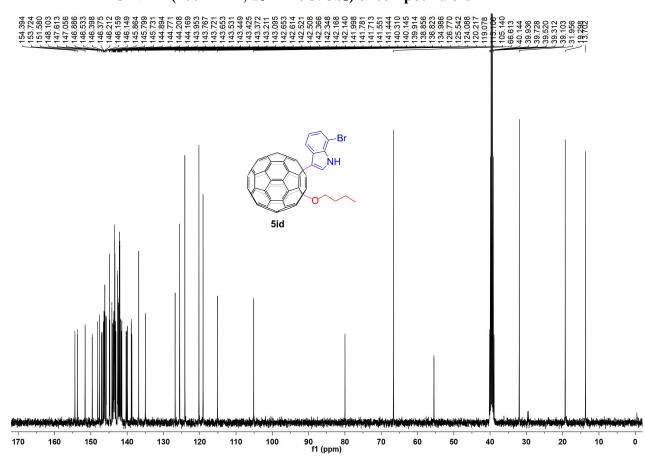

$^1H\ NMR\ (400\ MHz\ ,\ d_6\text{-DMSO/CS}_2)$ of compound 5gd

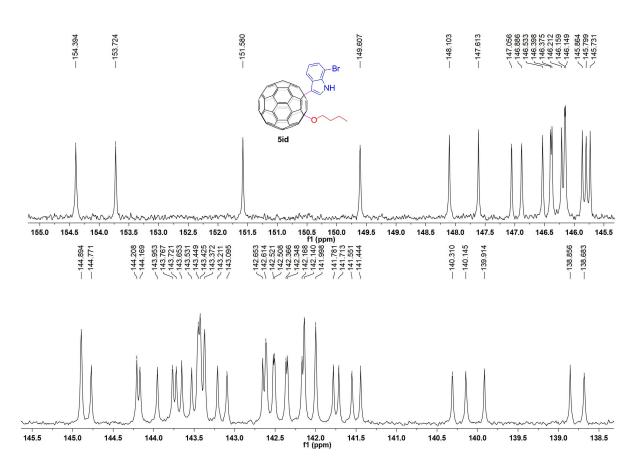

$^{13}C\ NMR\ (100\ MHz\ ,\ d_{6}\text{-DMSO/CS}_{2})$ of compound 5gd

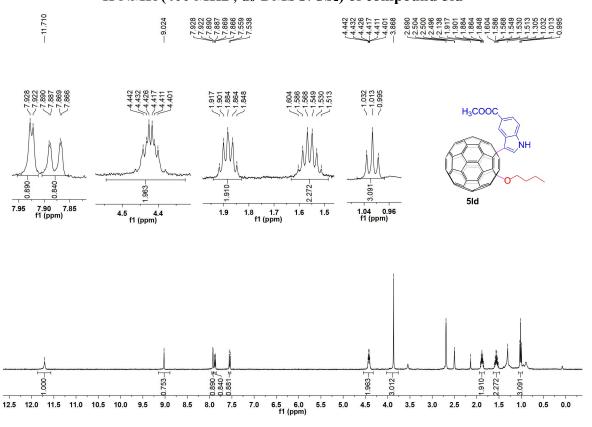

Expanded ^{13}C NMR (100 MHz , d₆-DMSO/CS₂) of compound 5gd

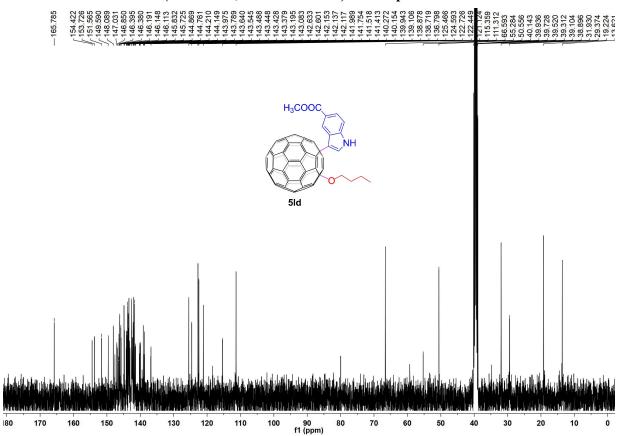

¹H NMR (400 MHz, d₆-DMSO/CS₂) of compound 5hd

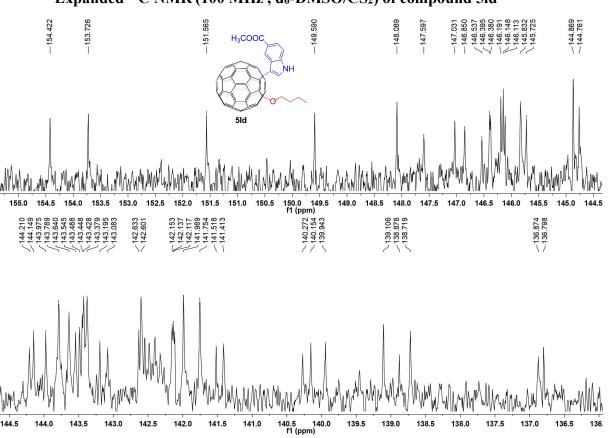

$^{13}C\ NMR\ (100\ MHz\ ,\ d_6\text{-DMSO/CS}_2)$ of compound 5hd

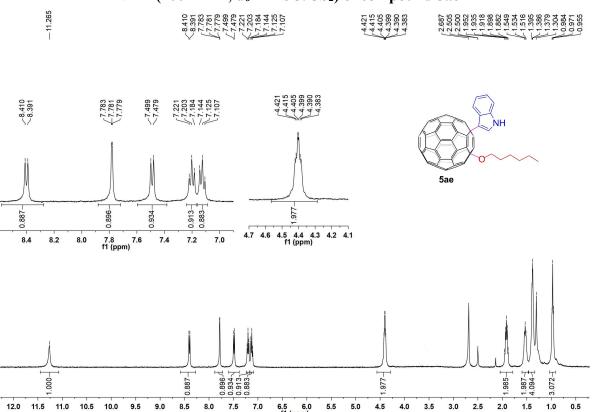

Expanded ¹³C NMR (100 MHz, d6-DMSO/CS2) of compound 5hd

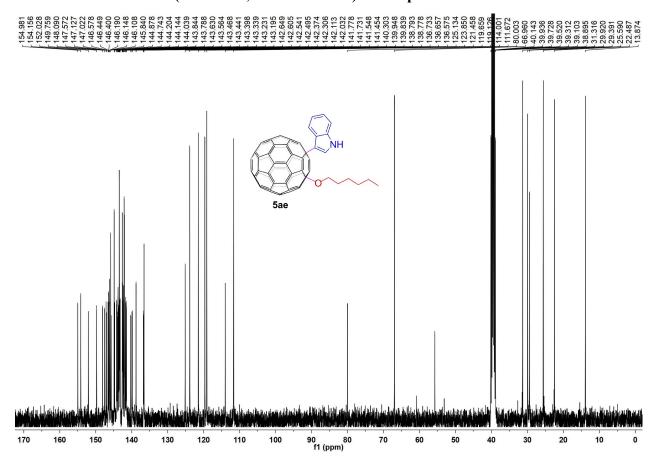

¹H NMR (400 MHz, d₆-DMSO/CS₂) of compound 5id

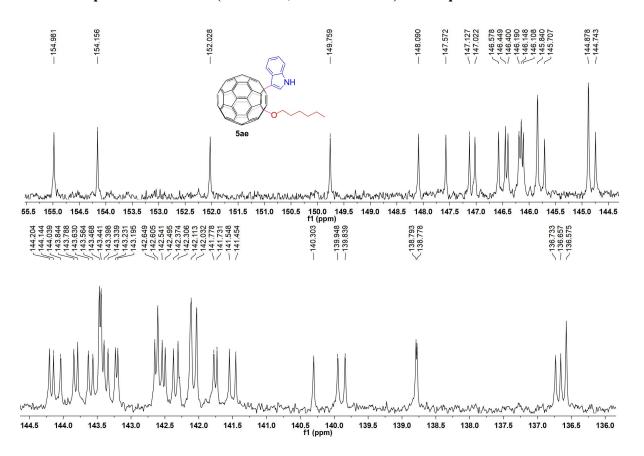

$^{13}C\ NMR\ (100\ MHz\ ,\ d_{6}\text{-DMSO/CS}_{2})$ of compound 5id

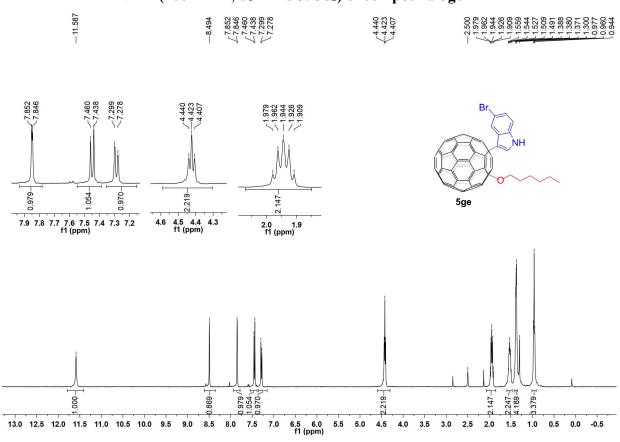

Expanded ¹³C NMR (100 MHz, d₆-DMSO/CS₂) of compound 5id

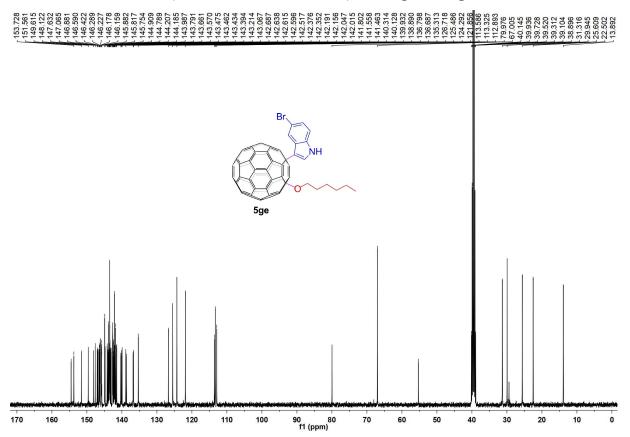

¹H NMR (400 MHz, d₆-DMSO/CS₂) of compound 5ld

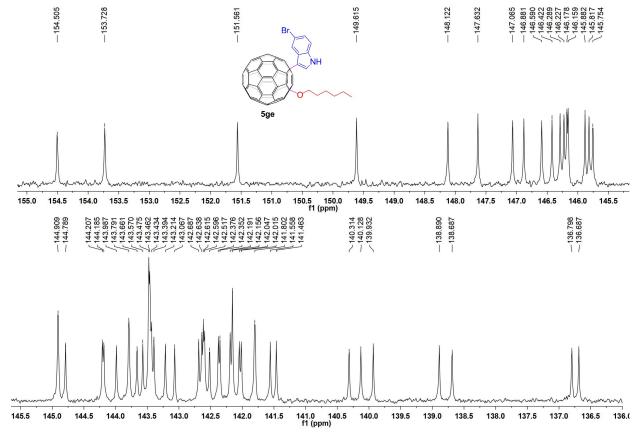

¹³C NMR (100 MHz, d₆-DMSO/CS₂) of compound 5ld

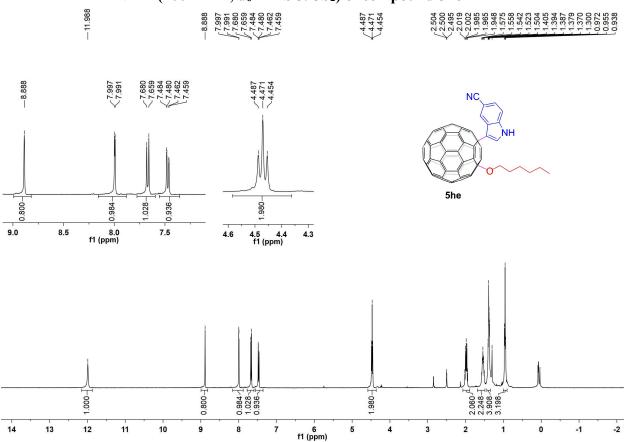

Expanded ¹³C NMR (100 MHz, d₆-DMSO/CS₂) of compound 5ld

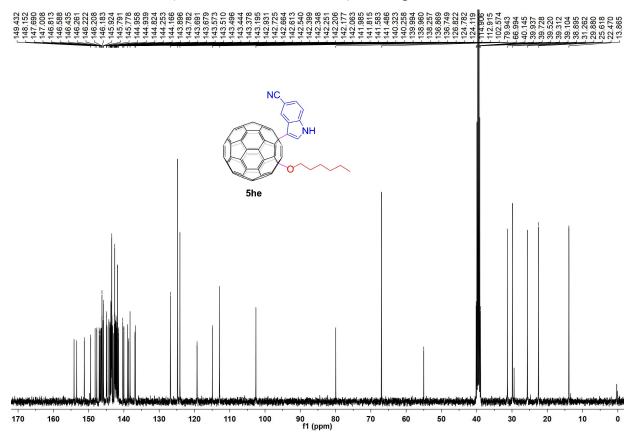

¹H NMR (400 MHz, d₆-DMSO/CS₂) of compound 5ae

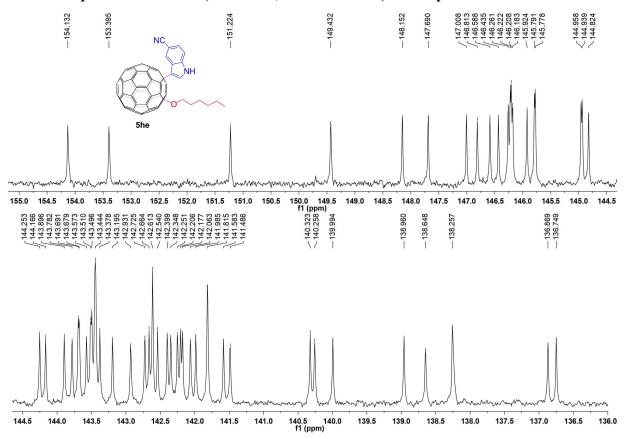

¹³C NMR (100 MHz, d₆-DMSO/CS₂) of compound 5ae

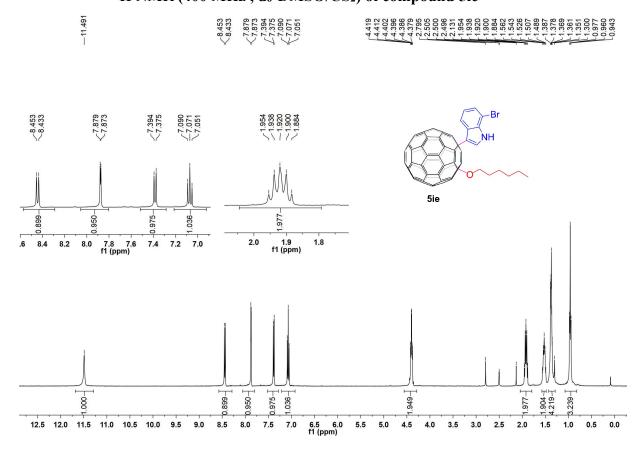

Expanded ¹³C NMR (100 MHz, d₆-DMSO/CS₂) of compound 5ae

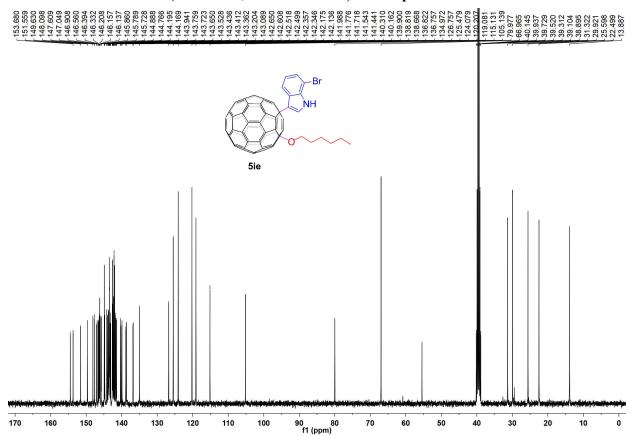

¹H NMR (400 MHz, d₆-DMSO/CS₂) of compound 5ge

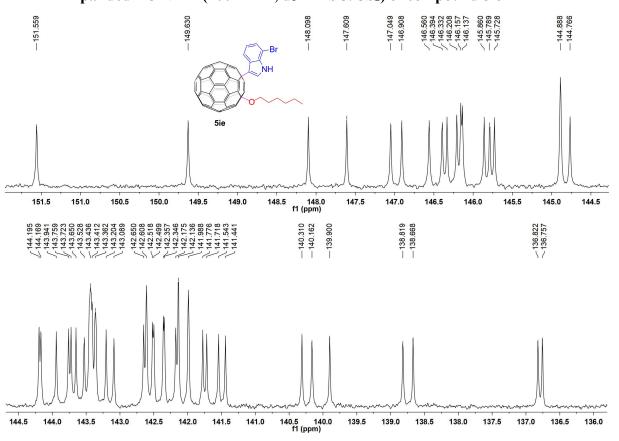

$^{13}C\ NMR\ (100\ MHz\ ,\ d_6\text{-DMSO/CS}_2)$ of compound 5ge

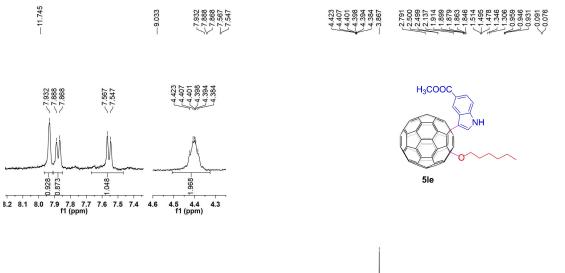

Expanded ¹³C NMR (100 MHz, d6-DMSO/CS2) of compound 5ge

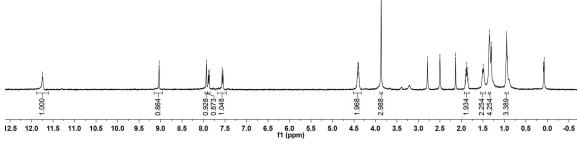

$^1H\ NMR\ (400\ MHz\ ,\ d_6\text{-DMSO/CS}_2)$ of compound 5he


$^{13}\mbox{C NMR}$ (100 MHz , d₆-DMSO/CS₂) of compound 5he

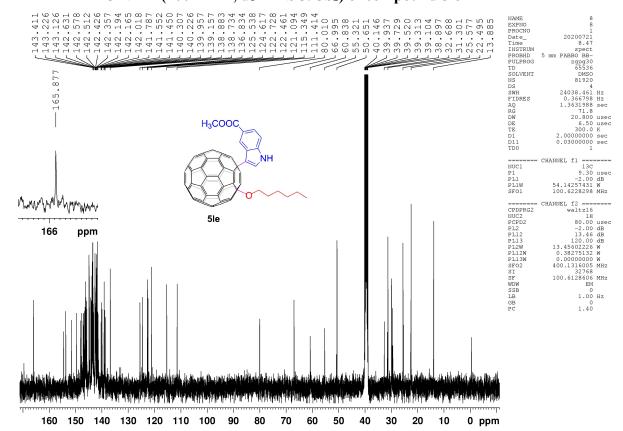

Expanded ^{13}C NMR (100 MHz , d₆-DMSO/CS₂) of compound 5he


¹H NMR (400 MHz, d₆-DMSO/CS₂) of compound 5ie

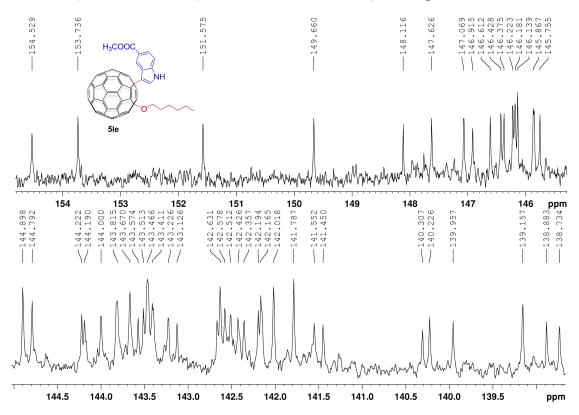

$^{13}C\ NMR\ (100\ MHz\ ,\ d_6\text{-DMSO/CS}_2)$ of compound 5ie

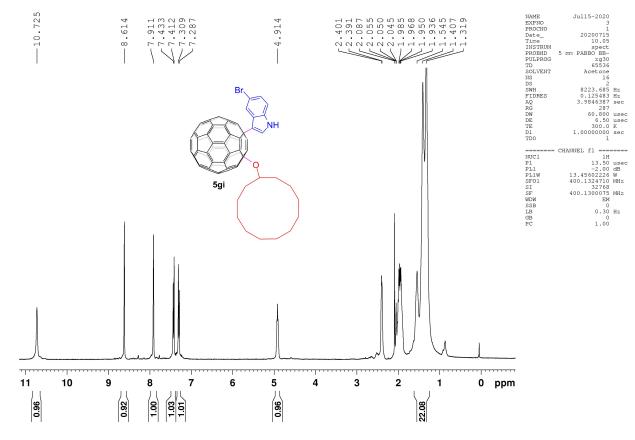


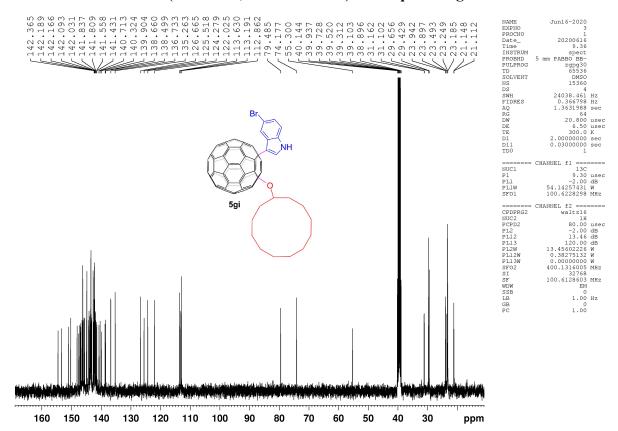
Expanded ¹³C NMR (100 MHz, d₆-DMSO/CS₂) of compound 5ie

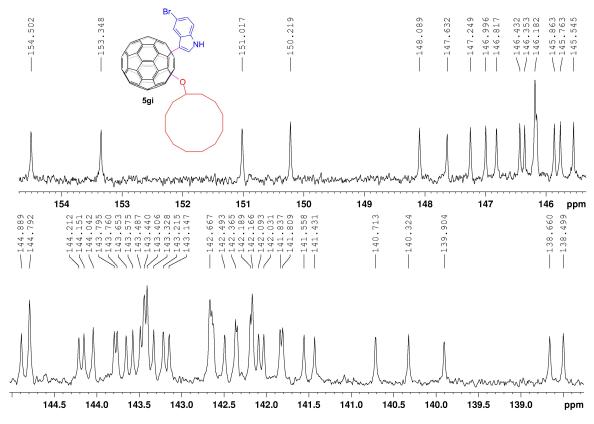


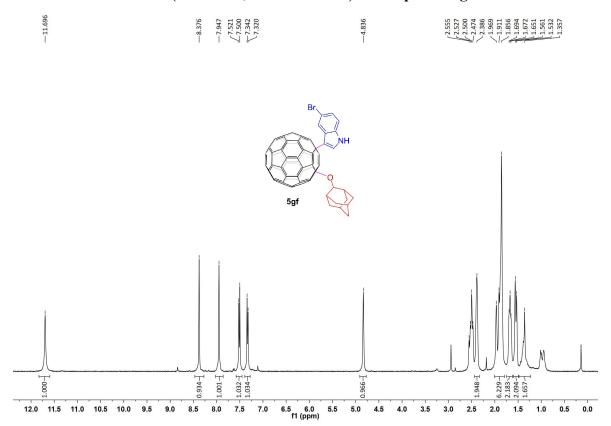
¹H NMR (400 MHz, d₆-DMSO/CS₂) of compound 5le

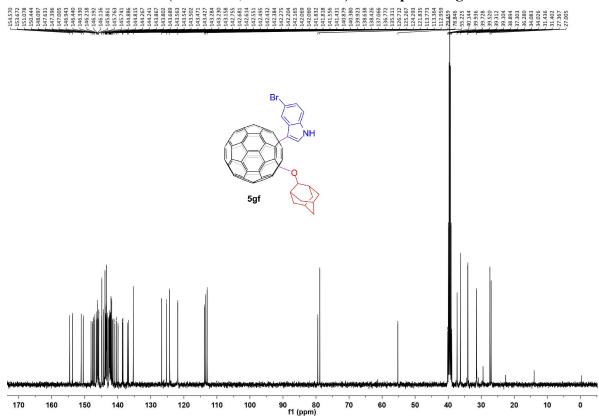


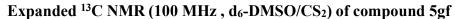

¹³C NMR (100 MHz, d₆-DMSO/CS₂) of compound 5le

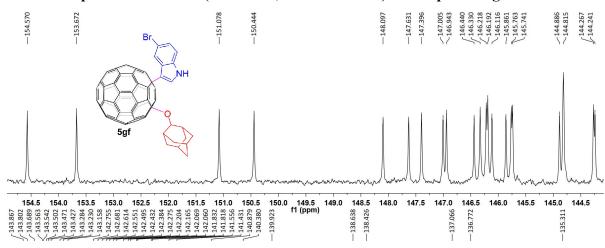

Expanded ¹³C NMR (100 MHz, d₆-DMSO/CS₂) of compound 5le

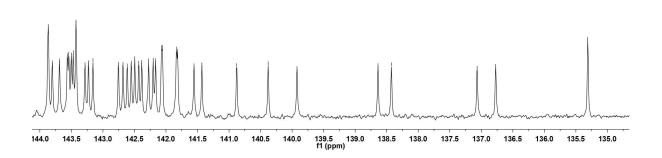

¹H NMR (400 MHz, Acetone-d₆/CS₂) of compound 5gi

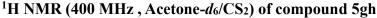

¹³C NMR (100 MHz, d₆-DMSO/CS₂) of compound 5gi

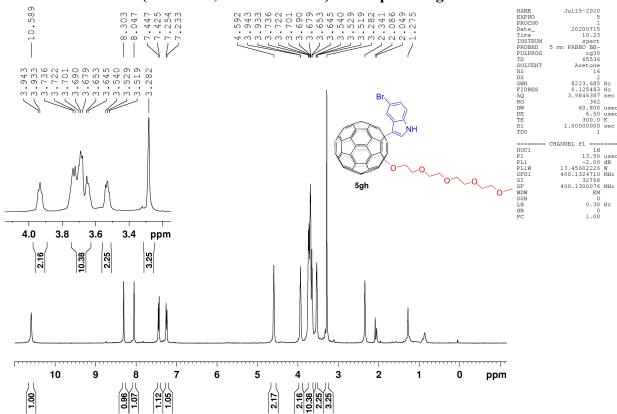

Expanded ¹³C NMR (100 MHz, d₆-DMSO/CS₂) of compound 5gi

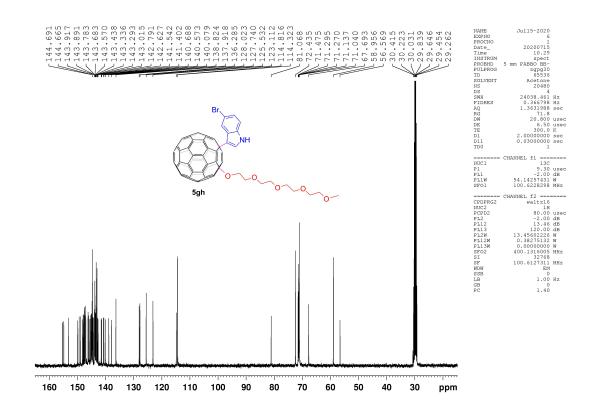


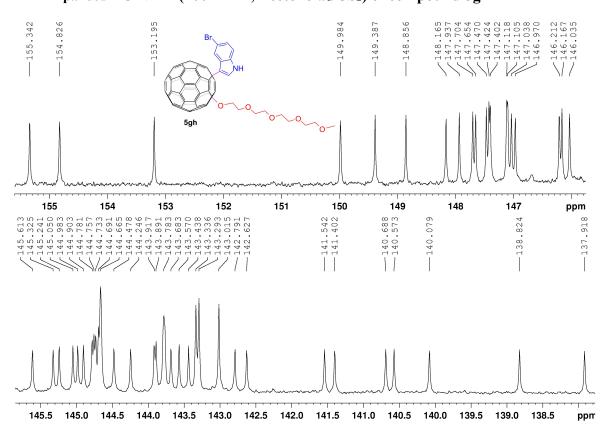

$^1H\ NMR\ (400\ MHz\ ,\ d_6\text{-DMSO/CS}_2)$ of compound 5gf

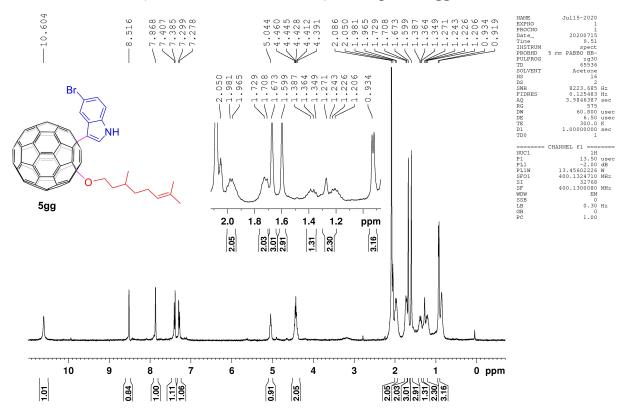


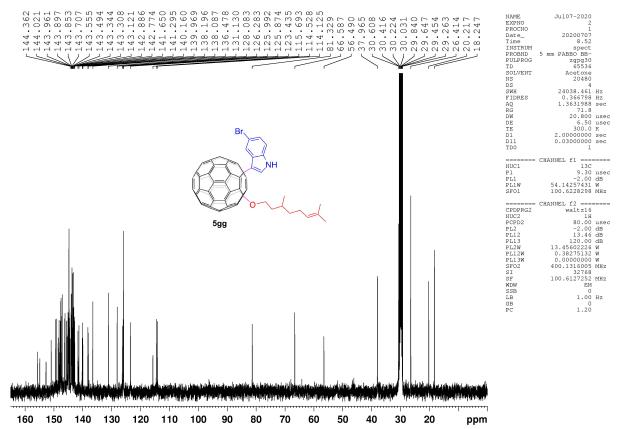


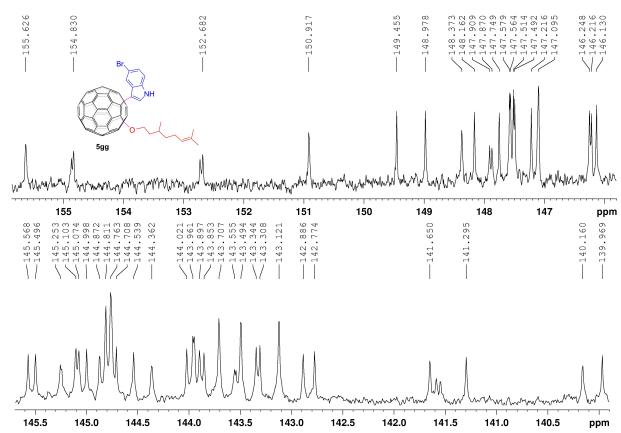


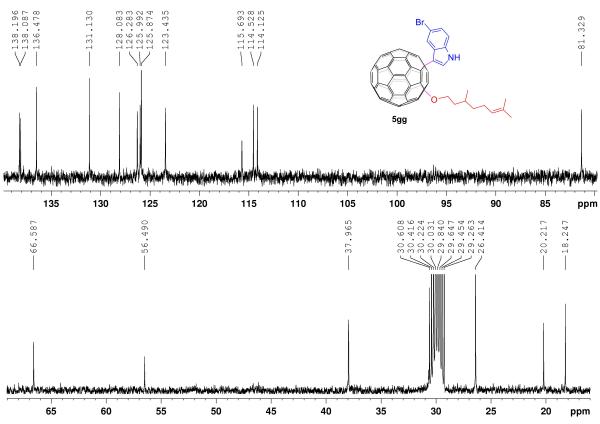


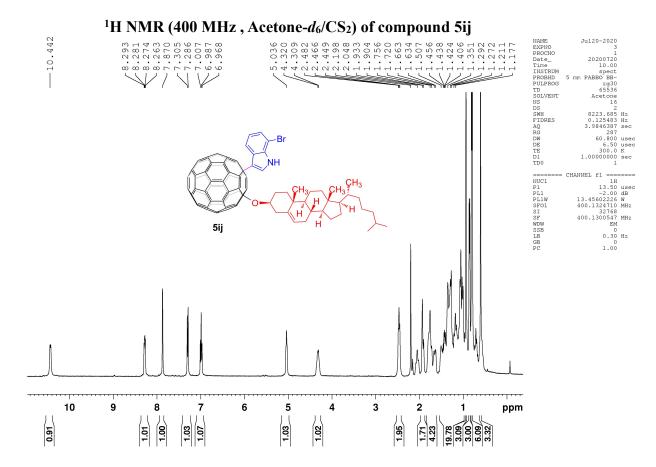



¹³C NMR (100 MHz, Acetone-d₆/CS₂) of compound 5gh

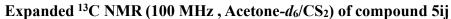

Expanded $^{13}C\ NMR\ (100\ MHz\ ,\,Acetone\text{-}\textit{d6}/CS_2)$ of compound 5gh

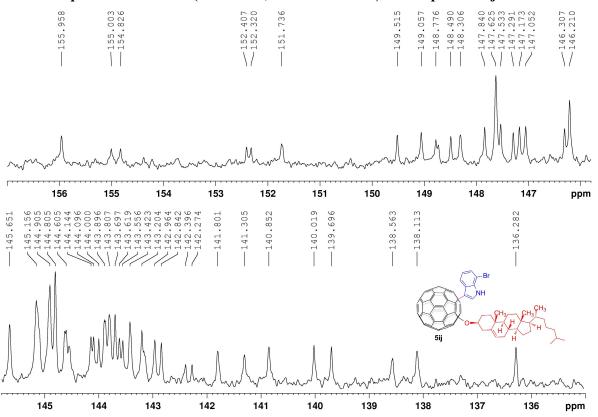

¹H NMR (400 MHz, Acetone-d₆/CS₂) of compound 5gg

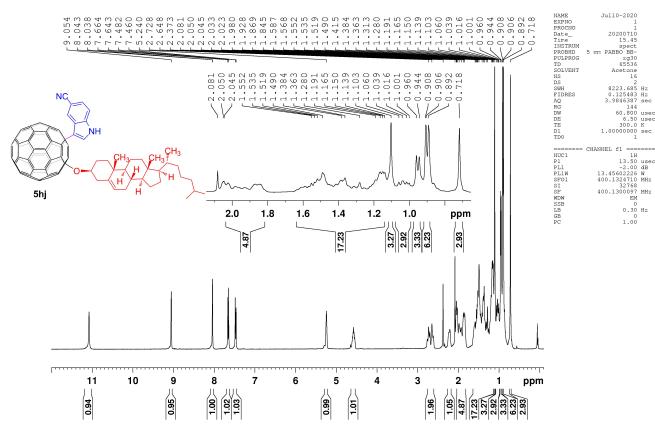

$^{13}C\ NMR\ (100\ MHz\ ,\ d_6\text{-DMSO/CS}_2)$ of compound 5gg



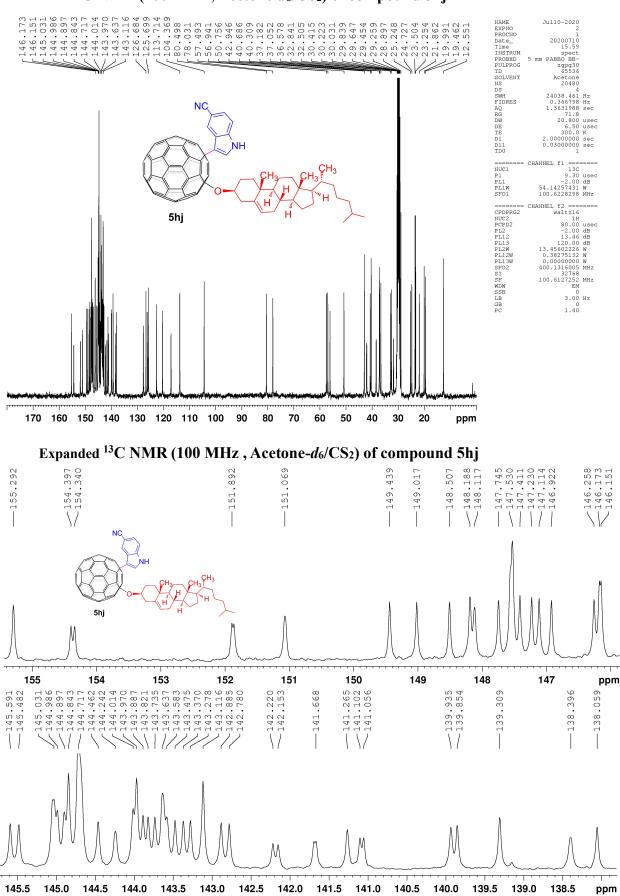
Expanded ¹³C NMR (100 MHz, d₆-DMSO/CS₂) of compound 5gg

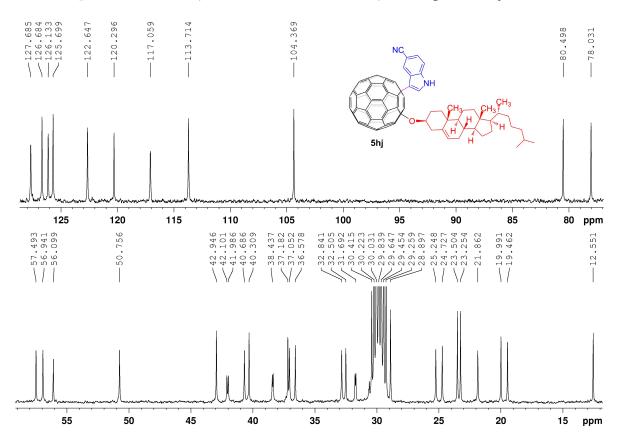

Expanded $^{13}C\ NMR\ (100\ MHz\ ,\ d_6\text{-DMSO/CS}_2)$ of compound 5gg

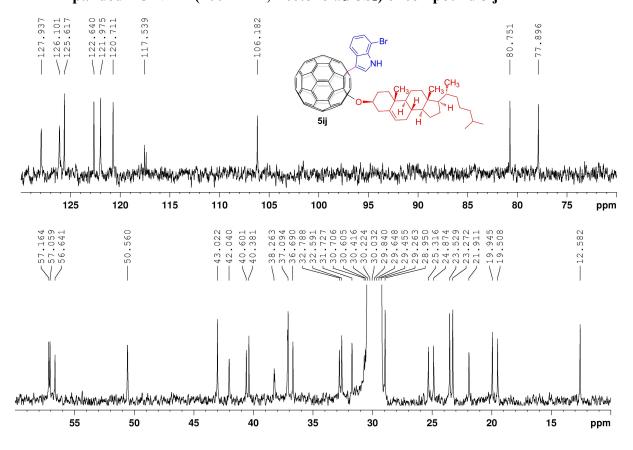


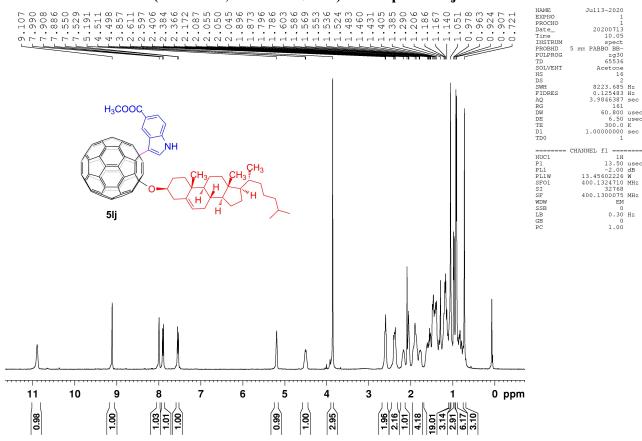


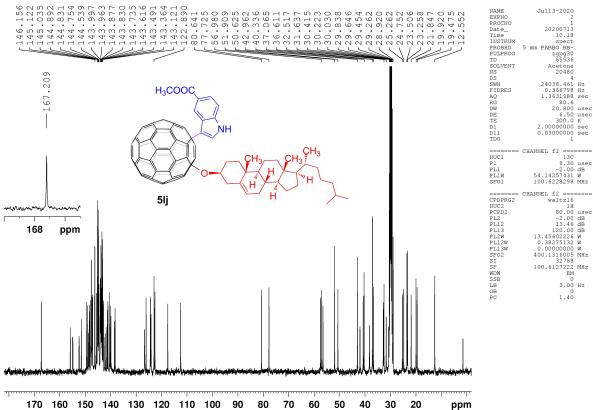
170 160 150 140 130 120 110 100

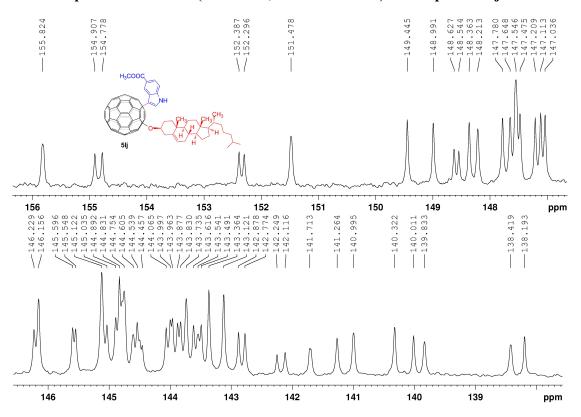


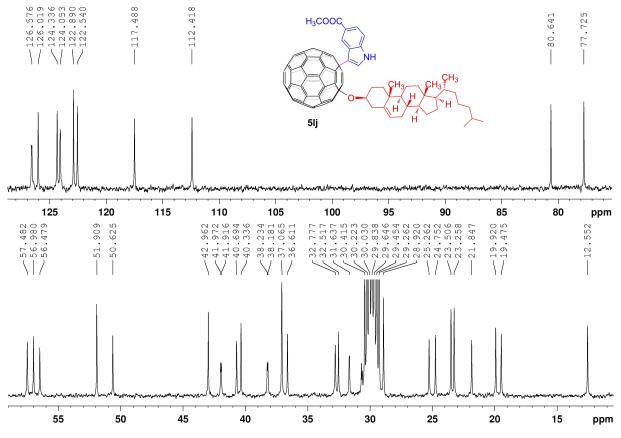

¹H NMR (400 MHz, Acetone-d₆/CS₂) of compound 5hj

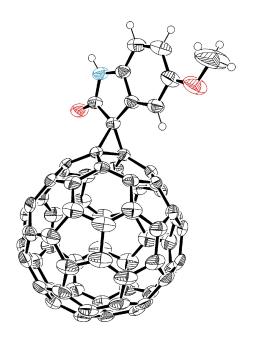

¹³C NMR (100 MHz, Acetone-d₆/CS₂) of compound 5hj


Expanded ¹³C NMR (100 MHz, Acetone-d₆/CS₂) of compound 5hj


Expanded ¹³C NMR (100 MHz, Acetone-d₆/CS₂) of compound 5ij


¹H NMR (400 MHz, Acetone-d₆/CS₂) of compound 5lj


¹³C NMR (100 MHz, Acetone-d₆/CS₂) of compound 5lj


Expanded ¹³C NMR (100 MHz, Acetone-d₆/CS₂) of compound 5lj

Expanded ¹³C NMR (100 MHz, Acetone-d₆/CS₂) of compound 5lj

2. Single-Crystal X-Ray Crystallography of 2d, 3g, and 5aa

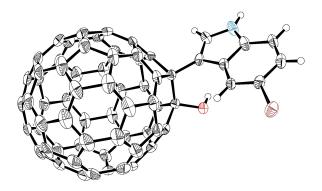

2d: X-ray crystal structure CCDC number: 2025910

Figure S1 ORTEP diagrams of **2d** with 50% thermal ellipsoids. The solvent molecules are omitted for clarity.

Black block crystals of 2d suitable for X-ray diffraction were obtained from slow evaporation of its solution in a mixture of CS_2 and DMSO at room temperature. Single-crystal X-ray diffraction data were collected on a diffractometer (DECTRIS PILATUS 300K, STOE & Cie GmbH) equipped with a CCD area detector using graphite-monochromated Cu K α radiation (λ = 1.54184 Å) in the scan range 8.90° < 20 < 140.22°. The structure was solved with direct methods using SHELXS-97 and refined with full-matrix least-squares refinement using the SHELXL-97 program within OLEX2. Crystallographic data have been deposited in the Cambridge Crystallographic Data Centre as deposition number CCDC 2025910.

Table 1 Crystal data and structure refinement for 2d.		
Identification code	2d	
Empirical formula	$C_{144}H_{26}N_2O_7S_6$	
Formula weight	4176.05	
Temperature/K	293(2)	
Crystal system	triclinic	
Space group	P-1	
a/Å	10.1194(5)	
b/Å	17.9287(10)	

5.0200(13)
2.020(.0)
0.326(4)
8.550(4)
8.428(4)
145.0(4)
.673
.184
112.0
.3 × 0.2 × 0.1
$uK\alpha \ (\lambda = 1.54186)$
.402 to 132.988
5 ≤ h ≤ 12, -19 ≤ k ≤ 21, -28 ≤ l ≤ 29
2443
4135 [R _{int} = 0.0226, R _{sigma} = 0.0217]
4135/0/1438
.036
t ₁ = 0.0856, wR ₂ = 0.2462
L ₁ = 0.1079, wR ₂ = 0.2645
.14/-0.98

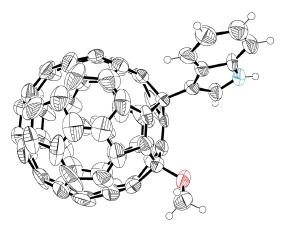

3g: X-ray crystal structure CCDC number: 2025917

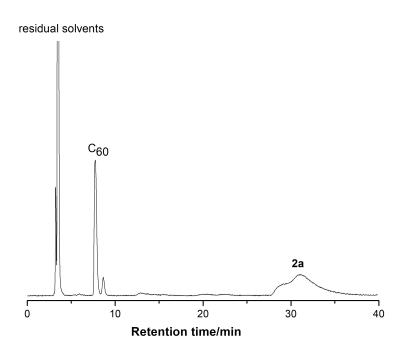
Figure S2 ORTEP diagrams of **3g** with 50% thermal ellipsoids. The solvent molecules are omitted for clarity.

Black block crystals of 3g suitable for X-ray diffraction were obtained from slow evaporation in a mixture of CS_2 and methanol at room temperature. Single-crystal

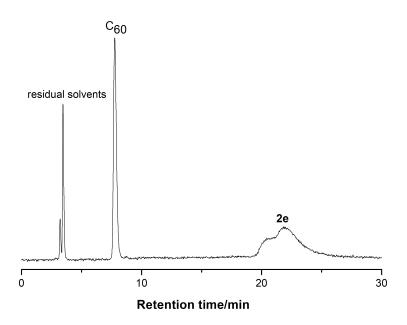
X-ray diffraction data were collected on a diffractometer (DECTRIS PILATUS 300K, STOE & Cie GmbH) equipped with a CCD area detector using graphite-monochromated Cu K α radiation (λ = 1.54184 Å) in the scan range 8.90° < 20 < 140.22°. The structure was solved with direct methods using SHELXS-97 and refined with full-matrix least-squares refinement using the SHELXL-97 program within OLEX2. Crystallographic data have been deposited in the Cambridge Crystallographic Data Centre as deposition number CCDC 2025917.

Table 2 Crystal data and structure refinement for 3g.		
Identification code	3g	
Empirical formula	C ₆₈ H ₆ BrNO	
Formula weight	932.65	
Temperature/K	293(2)	
Crystal system	monoclinic	
Space group	P2 ₁ /c	
a/Å	21.873(6)	
b/Å	10.168(3)	
c/Å	19.646(7)	
α/°	90	
β/°	114.02(2)	
γ/°	90	
Volume/Å ³	3991(2)	
Z	4	
ρ _{calc} g/cm ³	1.552	
μ/mm ⁻¹	1.844	
F(000)	1856.0	
Crystal size/mm ³	0.23 × 0.21 × 0.07	
Radiation	$CuK\alpha \ (\lambda = 1.54186)$	
2Θ range for data collection/°	8.852 to 139.354	
Index ranges	$-20 \le h \le 26, -11 \le k \le 5, -23 \le l \le 20$	
Reflections collected	16721	
Independent reflections	7218 [R _{int} = 0.0552, R _{sigma} = 0.0563]	
Data/restraints/parameters	7218/0/641	
Goodness-of-fit on F ²	1.028	
Final R indexes [I>=2σ (I)]	$R_1 = 0.0835$, $wR_2 = 0.2271$	
Final R indexes [all data]	$R_1 = 0.0947$, $wR_2 = 0.2368$	
Largest diff. peak/hole / e Å-3	1.44/-1.19	

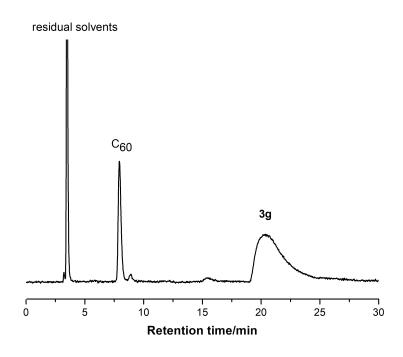
5aa: X-ray crystal structure **CCDC number: 2025919**


Figure S3 ORTEP diagrams of **5aa** with 50% thermal ellipsoids. The solvent molecules are omitted for clarity.

Black block crystals of 5aa suitable for X-ray diffraction were obtained from slow evaporation in a mixture of CS2 and methanol at room temperature. Single-crystal X-ray diffraction data were collected on a diffractometer (DECTRIS PILATUS 300K, **STOE** Cie equipped with a CCD area detector GmbH) graphite-monochromated Cu K α radiation ($\lambda = 1.54184$ Å) in the scan range 8.90° < $2\theta < 140.22^{\circ}$. The structure was solved with direct methods using SHELXS-97 and refined with full-matrix least-squares refinement using the SHELXL-97 program within OLEX2. Crystallographic data have been deposited in the Cambridge Crystallographic Data Centre as deposition number CCDC 2025919.


Table 3 Crystal data and structure refinement for 5aa.		
Identification code	5aa	
Empirical formula	C ₇₁ H ₉ NOS ₄	
Formula weight	1020.03	
Temperature/K	293(2)	
Crystal system	monoclinic	
Space group	P2 ₁ /n	
a/Å	10.1582(5)	
b/Å	16.9627(10)	
c/Å	23.5264(12)	
α/°	90	
β/°	95.305(4)	
γ/°	90	
Volume/ų	4036.5(4)	

Z	4	
ρ _{calc} g/cm ³	1.678	
μ/mm ⁻¹	2.650	
F(000)	2056.0	
Crystal size/mm³	0.3× 0.2 × 0.1	
Radiation	$CuK\alpha \ (\lambda = 1.54186)$	
20 range for data collection/° 9.176 to 139.614		
Index ranges	-11 ≤ h ≤ 12, -16 ≤ k ≤ 20, -19 ≤ l ≤ 28	
Reflections collected	11433	
Independent reflections	5365 [R _{int} = 0.0937, R _{sigma} = 0.0804]	
Data/restraints/parameters	5365/0/641	
Goodness-of-fit on F ²	0.962	
Final R indexes [I>=2σ (I)]	$R_1 = 0.0619$, $wR_2 = 0.1205$	
Final R indexes [all data]	$R_1 = 0.1420$, $wR_2 = 0.1587$	
Largest diff. peak/hole / e Å-3	0.17/-0.13	


3. HPLC Profiles of the reaction mixtures for the synthesis of 2a, 2e, 3g and 5ie

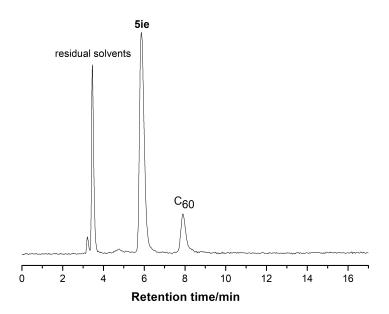

Figure S4. The HPLC profile of the reaction mixtures of toluene solution containing **2a** monitored by HPLC. HPLC column: Cosmosil Buckyprep column (4.6 ×250 mm; toluene, 1 mL/min; 326 nm; 25 °C).

Figure S5. The HPLC profile of the reaction mixtures of toluene solution containing **2e** monitored by HPLC. HPLC column: Cosmosil Buckyprep column (4.6 ×250 mm; toluene, 1 mL/min; 326 nm; 25 °C).

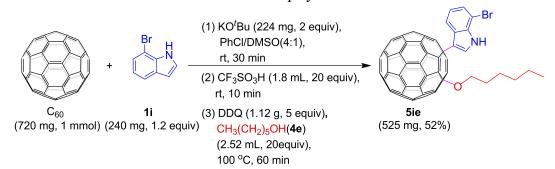

Figure S6. The HPLC profile of the reaction mixtures of toluene solution containing **3g** monitored by HPLC. HPLC column: Cosmosil Buckyprep column (4.6 ×250 mm; toluene, 1 mL/min; 326 nm; 25 °C).

Figure S7. The HPLC profile of the reaction mixtures of toluene solution containing **5ie** monitored by HPLC. HPLC column: Cosmosil Buckyprep column (4.6 ×250 mm; toluene, 1 mL/min; 326 nm; 25 °C).

4. Scale-up procedure for synthesis of 5ie

Scheme S1. Scale-up synthesis of 5ie

C₆₀ (720 mg, 1 mmol), 7-bromoindole (240 mg, 1.2 mmol), KO'Bu (224 mg, 2 mmol) were dissolved in chlorobenzene (160 mL) at room temperature under Ar atmosphere. Then DMSO (40 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (1.8 mL, 20 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (1.12 g, 5 mmol) and CH₃(CH₂)₅OH (2.52 mL, 20 mmol) were added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 400 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the

eluent to give unreacted C_{60} (166 mg, 23%) and **5ie** (525 mg, 52%) as black amorphous solid.

5. Experimental Procedures of Mechanism Studies

Scheme S2. Control experiment for the synthesis of 3g and 5ga

C₆₀ (36.0 mg, 0.05 mmol), 5-bromoindole (12 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 μL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol), H₂O (18 μL, 1 mmol) and CH₃OH (40 μL, 1 mmol) were added to the mixture and stirred in an oil bath at 110 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the eluent to give unreacted C₆₀ (1.5 mg, 4%) and **5ga** (18.3 mg, 39%) as black amorphous solid.

Scheme S3. Control experiment for the synthesis of 5ie

C₆₀ (36.0 mg, 0.05 mmol), 7-bromoindole(12 mg, 0.06 mmol), KO'Bu (11.2 mg, 0.1 mmol) were dissolved in chlorobenzene (8 mL) at room temperature under Ar atmosphere. Then DMSO (2 mL) was added to the mixture and the color of the solution changed gradually from purple to dark green. After being stirred for 30 minutes, CF₃SO₃H (90 μL, 1 mmol) was added to the mixture and the color changed from dark green to yellowish brown. And after being stirred for 10 minutes, DDQ (56 mg, 0.25 mmol), CH₃(CH₂)₅OH (12.6 μL, 0.1 mmol) and TEMPO

(2,2,6,6-tetramethylpiperidine-1-oxyl) (15.6 mg, 0.1 mmol) were added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 20 mL carbon disulfide. Resulting dark-yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the eluent to give unreacted C_{60} (3.8 mg, 11%) and **5ie** (22.7 mg, 45%) as black amorphous solid.

Scheme S4. Synthesis of **5ge** from 1,2-(hydro)[60]fulleroindole **6** through DDQ oxidization.

1,2-(Hydro)[60]fulleroindole **6** (9.2 mg, 0.01 mmol) and DDQ (11.5 mg, 0.05 mmol) were dissolved in chlorobenzene (2 mL) and DMSO (0.5 mL) at room temperature under Ar atmosphere. Then CF₃SO₃H (18 μ L, 0.2 mmol) and CH₃(CH₂)₅OH (25.2 μ L, 0.2 mmol) were added to the mixture and stirred in an oil bath at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 10 mL carbon disulfide. Resulting yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (2:1) as the eluent to give **5ge** (7.7 mg, 76%) as black amorphous solid.

Scheme S5. Synthesis of **5ge** from 1,2-(hydro)[60]fulleroindole **6** through DDQ oxidization in air.

1,2-(Hydro)[60]fulleroindole **6** (9.2 mg, 0.01 mmol) and DDQ (11.5 mg, 0.05 mmol) were dissolved in chlorobenzene (2 mL) and DMSO (0.5 mL) at room temperature in air. Then CF_3SO_3H (18 μ L, 0.2 mmol) and $CH_3(CH_2)_5OH$ (25.2 μ L, 0.2 mmol) were added to the mixture and stirred in an oil bath in air at 100 °C for 60 minutes. The mixture was cooled to room temperature and then added 10 mL carbon disulfide. Resulting yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon

disulfide/dichloromethane (2:1) as the eluent to give **5ge** (8.0 mg, 78%) as black amorphous solid.

Scheme S6. Synthesis of **3g** from 1,2-(hydro)[60]fulleroindole **6** through DDQ oxidization in air.

1,2-(Hydro)[60]fulleroindole **6** (9.2 mg, 0.01 mmol) and DDQ (11.5 mg, 0.05 mmol) were dissolved in chlorobenzene (2 mL) and DMSO (0.5 mL) at room temperature in air. Then CF₃SO₃H (36 μ L, 0.4 mmol) and H₂O (9 μ L, 0.4 mmol) were added to the mixture and stirred in an oil bath in air at 110 °C for 60 minutes. The mixture was cooled to room temperature and then added 10 mL carbon disulfide. Resulting yellow solution was washed with water and then evaporated in vacuo. The residue was separated on a silica gel column with carbon disulfide/dichloromethane (1:1) as the eluent to give **3g** (7.8 mg, 83%) as black amorphous solid.