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Figure S1. Impact of IRW on cellular viability of different cells. Cell viability of different
mammalian cells pre-treated with 50 pM of IRW for 24h using MTT assay. Results are the
mean + S.E.M of experiments performed in triplicates.
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Figure S2. Impact of IRW on NAMPT in different mammalian cell lines. (A, B) Dose-
dependent response of IRW-induced NAMPT expression in Hela and MDAMB231 cells. Cells
were incubated with indicated concentrations of IRW for 24 h and analyzed by western blot
(C) NAMPT mRNA expression in 293T cells was quantified by qPCR and normalized to [3-
actin
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Figure S3. Impact of IRW on DBC1 and CD38. (A) IRW-induced no impact of DBC1 in L6
cells. The cells were incubated with indicated concentrations of IRW for 24 h and analyzed by
western blot B) Muscle and C) Liver tissue of C57BL/6J mice exhibited marginal changes in
DBCI levels. IRW had no impact on NDAase CD38 in (D) L6 cells (E) Muscle (F) Liver
tissues of C57BL/6J mice fed a high-fat diet. The C57BL/6J mice were divided into three
groups (n=6, per group) (1) control group (ND): receiving regular diet (9% fat) for 14 weeks
2) HFD group: receiving HFD (40% fat) for 14 weeks 3) Treatment group (HFD+IRW):
receiving HFD (40% fat) for 14 weeks with incorporation of IRW (45mg/kg BW) during the
last 8 weeks.
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Figure S4. IRW lowers the protein levels of p66°HC in cells, mice tissues, and flies (A) L6
cells (B) Muscle (C) Liver tissues of C57BL/6J mice fed a high-fat diet and (D-E) yw
Drosophila Melanogaster. The C57BL/6] mice were divided into three groups (n=6) (1)
control diet group (ND): receiving regular diet (9% fat) for 14 weeks 2) HFD group: receiving
HFD (40% fat) for 14 weeks 3) Treatment group (HFD+IRW): receiving HFD (40% fat) for
14 weeks with the incorporation of IRW (45mg/kg BW) during the last 8 weeks. The yw flies
were divided into two groups (n=30, per group) 1) Vehicle: receiving regular diet for 10 days
2) IRW group 1: receiving low IRW dose (25 um) supplemented in the regular diet for 10 days
and IRW group 2: receiving high IRW dose (50 um) supplemented in regular diet for 10 days.
Flies were fed with ND or HFD food containing indicated concentrations of IRW for 10 days
and whole-body protein and RNA were extracted using RIPA buffer, respectively. ND: Normal
diet, HFD: High fat diet.
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Figure SS. Impact of IRW on OXPHOS complexes in mitochondria. (A) IRW-induced
increase in 5 OXPHOS complexes of L6 cells. The cells were incubated with indicated
concentrations of IRW for 24 h and analyzed by western blot B) Muscle and C) Liver tissue of
C57BL/6]J mice exhibited a marginal increase in OXPHOS complexes. The C57BL/6J mice
were divided into three groups (n=6, per group) (1) control group (ND): receiving regular diet
(9% fat) for 14 weeks 2) HFD group: receiving HFD (40% fat) for 14 weeks 3) Treatment
group (HFD+IRW): receiving HFD (40% fat) for 14 weeks with incorporation of IRW
(45mg/kg BW) during the last 8 weeks.
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Figure S6. Increase in NAMPT levels in different cellular compartments and structure-
function relationship (A) Nucleus and (B) Mitochondrial following treatment with IRW; and
the impact of (C) amino acids (D) analogous peptides on NAMPT levels. The cells were
incubated with indicated concentrations of IRW for 24 h, the cell compartments were separated
and analyzed by western blot. GAPDH was used as the control.
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Figure S7. Comparative analysis of NAMPT levels in muscle tissues of younger and older
individuals. The values are based on human muscle NAMPT blot shown in Figure 1B.



Table 1: List of the primers used in the study

Gene Forward primer Reverse primer

D-NAAM TTGTCATCGAAGATTCAAACGGA GGCGGTCATCACTGTCCTTG
Mouse NAMPT ACCAGCGGGGAACTTTGTTA ACGTCCTGCTCGATGTTCAG
Rat NAMPT AGGGGCATCTGCTCATTTGG CTCTGCCGCTGGAACAGAAT
Human NAMPT CTTCGGTTCTGGTGGAGGTT AATCGGCCCTTTTTGGACCT
Mouse GAPDH AAGAGGGATGCTGCCCTTAC TACGGCCAAATCCGTTCACA
Rat GAPDH TGATTCTACCCACGGCAAGTT TGATGGGTTTCCCATTGATGA
Human (-actin TCGTGCGTGACATTAAGGAG GTCAGGCAGCTCGTAGCTCT




