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1 The spin-orbit coupling interaction

In the main paper we simply state that the spin-orbit coupling term in a trunctated diabatic basis

containing two charge transfer states is given by Eqs. (3) and (11). In the one electron case,

the electronic state factorises into spatial and spin parts given by |�, f〉 = k� (r|Q) |f〉, where

k� (r|Q) is the nuclear configuration dependent diabatic state wavefunction. Importantly for bound

electronic states these wavefunctions can always be chosen to be real-valued.1 The full spin orbit

coupling Hamiltonian for an # electron system is1

�̂SOC =

#∑
8=1

∑
 

b (A8 )ℓ̂8 · ŝ8, (S.1)

where A8 = |r8 − Q |, b (A8 ) is a real-valued function of A8 and ℓ̂8 = (r8 − Q ) × p̂8 is the

orbital angular momentum of electron 8 about nucleus  , ŝ8 is the momentum operator for electron

8 and ŝ8 is the spin operator for electron 8. The SOC matrix elements are then given by (noting that

for one electron we can drop the electron labels 8)

〈�, f |�̂SOC |�′, f′〉 =
∑

U=G,H,I

〈f | B̂U |f′〉
∫

drk 9 (r|Q)∗
∑
 

b� (A )ℓ̂ ,Uk�′ (r|Q) (S.2)

and therefore we identify the components of the spin orbit coupling vector 8��,�′ (Q) as

8Λ�,�′,U (Q) =
∫

drk� (r|Q)∗
∑
 

b (A )ℓ̂ ,Uk�′ (r|Q). (S.3)

Noting that p̂ = −8ℏ∇r, and that the diabatic wave functions are real-valued, this term must be

zero for � = �′ and for � ≠ �′ Λ�,�′,U (Q) is real valued with Λ�,�′,U (Q) = −Λ�′,�,U (Q). This

immediately gives the diabatic basis spin-orbit coupling Hamiltonian given by Eq. (3) in the main

text, when k� is taken to be an orbital localised on D, kD, and k�′ is taken to be an orbital localised

on A, kA, and when we also invoke the Condon approximation i.e. assuming that these matrix

elements have only a weak dependence on Q for accessible conformations of the molecule.

S2



This argument generalises to the many electron case as follows. For an arbitrary electronic

state |Ψ�, ( = 1/2, "(〉 with total spin quantum number ( = 1/2 with real expansion coefficients

in terms of Slater determinants of real-valued molecular orbitals, it is true that

〈Ψ�, 1/2,±1/2|�̂SOC |Ψ�, 1/2,∓1/2〉 = 80�,� ± 1�,� (S.4)

〈Ψ�, 1/2,±1/2|�̂SOC |Ψ�, 1/2,±1/2〉 = ±82�,� (S.5)

where 0�,�, 1�,� and 2�,� are real valued, and all 0 if � = � (see Ref. 2 for details). For two

( = 1/2 diabatic states |Ψ0, 1/2, "(〉 = |D•−A, 1/2, "(〉 = |0, 1/2, "(〉 and |Ψ1, 1/2, "(〉 =

|DA•−, 1/2, "(〉 = |1, 1/2, "(〉, the spin orbit coupling Hamiltonian in this truncated basis is

therefore

+̂SOC =28
(
00,1(̂G + 10,1(̂H + 20,1(̂I

)
( |0〉〈1| − |1〉〈0|) (S.6)

and we can therefore identify � = −2(00,1, 10,1, 20,1). These are implicitly dependent on Q but

again we can invoke the Condon approximation to ignore this Q dependence.

In order to understand the two unpaired electron radical pair case, we will first consider a two

electron system, in which orbitals k� (r|Q) are occupied, and the total electronic states are denoted

|�, �, f1, f2〉 which are the antisymmetrised states in which orbital � is occupied with spin f1 and

orbital � is occupied with spin f2,

|�, �, f1, f2〉 =
1
√

2

(
k� (r1)k� (r2) |f1〉1 |f2〉2 − k� (r1)k� (r2) |f2〉1 |f1〉2

)
, (S.7)

where |f〉 9 is a spin state of electron 9 , and r 9 refer to the coordinates of electron 9 , and we have

dropped the explicit dependence on Q for brevity. In our case we consider the coupling between

a state |0〉 where one electron is the donor HOMO kD, and one in the donor LUMO kD∗ (which

corresponds to the photoexcited precursor state), and a state |1〉 where one electron is in the donor

HOMO kD and one in the acceptor LUMO kA (which corresponds to the charge separated radical
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pair state). Because the spin orbit coupling matrix element between identical orbitals is zero, the

only non-zero SOC matrix elements between these states can be written as

〈
D∗,D, f1, f2

���̂soc
��A,D, f′1, f′2〉=∑

 ,U

〈
f2

��f′2〉
×

〈
f1

��B̂U��f′1〉 ∫
drkD∗ (r)∗b (A )ℓ̂ ,UkA(r).

(S.8)

As before the spin-orbit coupling integral between kD∗ and kA is purely imaginary valued. We

define the effective electron spin operator Ŝ1 on the truncated set of states |�, �, f1, f2〉 in terms

of the matrix elements of an ( = 1/2 spin operator ŝ i.e.
〈
�, �, f1, f2

��Ŝ1
���′, �′, f′1, f′2〉 =〈

f1
��ŝ��f′1〉 X�,�′X�,�′Xf2,f

′
2
. We can now construct the spin orbit coupling operator on the trunctated

set of states |0〉 = |0, S〉 = 1√
2
( |D∗,D, U, V〉 − |D∗,D, V, U〉) and |1, f1, f2〉 = |A,D, f1, f2〉, exactly

as is given in Eq. (11) in the main text.

Again we can generalise this to a many electron system by noting that for arbitrary elecronic

states |Ψ�, (, "(〉 which have total electronic spin quantum number ( = 0 or ( = 1 and total

electron spin projection quantum number "(, provided they can be expanded as a real linear

combination of Slater determinants of real valued molecular orbitals, then the spin orbit coupling

matrix elements have the following properties2

〈Ψ�, 0, 0|�̂soc |Ψ�, 1,±1〉 = ∓80�,� + 1�,� (S.9)

〈Ψ�, 0, 0|�̂soc |Ψ�, 1, 0〉 = 82�,�, (S.10)

where again the constants are all real-valued. Now considering just a subset of diabatic states

|Ψ0, 0, 0〉 = |D∗A, 0, 0〉 = |0, 0, 0〉, and |Ψ1, (, "(〉 = |D•+A•−, (, "(〉 = |1, (, "(〉 which corre-

spond to the precursor state and the set of ( = 0 and ( = 1 radical pair states, and ignoring the

spin-orbit coupling between radical pair states (which vanishes for large radical separations), the

spin orbit coupling operator can be written as in Eq. (11) of the main text with the above definition
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of the effective electron spin operator Ŝ1 with

� = (2
√

200,1, 2
√

210,1, 220,1). (S.11)

2 Second order master equation theory

In this appendix we briefly summarise the master equation used to obtain the spin density operator

master equations in the main text. Further details can be found in Ref. 3. Our starting point is

the Nakajima-Zwanzig equation4,5 for a projected density operator P d̂(C), which contains the spin

density operators,3

d
dC
P d̂(C) = PLP d̂(C) +

∫ C

0
K(C − g)P d̂(g) dg , (S.12)

where L = −(8/ℏ) [�̂, · ] is the total Liouvillian for the system andK(C) is a memory kernel which

contains the effects of parts of the system removed by projecting the density operator with P . We

assume that the charge transfer coupling is weak, and thus the initial state of the system can be

assumed to a be a local equilibrium state on each diabatic surface, d̂(0) = ∑
9 Π̂ 9 f̂9 (0) d̂ 9n, with

d̂ 9n = 4
−V�̂ 9n/Trn [4−V�̂ 9n] and f̂9 (0) being the initial spin density operator for state 9 . Analogous

to previous work, we define P =
∑
9 d̂ 9n Trn [Π̂ 9 · Π̂ 9 ], such that P d̂(0) = d̂(0) and we expand the

kernel K(C) to second order in the coupling Γ.

The approximate treatment of the spin-orbit and diabatic coupling is based on approximating

the kernel in the Nakajima-Zwanzig equation, which is given by

K(C) = PL4(1−P)LC (1 − P)LP . (S.13)

Expanding this up to second order in the spin-orbit coupling and diabatic coupling, and ignoring

S5



the spin terms �̂ 9s in the kernel gives the following approximation to K(C)

K(C)P d̂ ≈ − 1
ℏ2

∑
9

d̂ 9n Trn
[
Π̂ 9 [+̂ , [+̂n(C),P d̂]]Π̂ 9

]
(S.14)

where +̂ = +̂DC + +̂SOC and +̂n(C) = 4−8�̂nC/ℏ+̂4+8�̂nC/ℏ, where �̂n = �̂0nΠ̂0 + �̂1nΠ̂1. We also invoke

the Markovian approximation to the time-convolution term, in which we assume the decay time of

the kernel is much faster than the characteristic timescales of the spin and population dynamics,

and therefore we can approximate the time convolution in the Nakajima-Zwanzig equation as6

∫ C

0
K(C − g)P d̂(g) dg ≈

∫ ∞

0
K(g) dgP d̂(C). (S.15)

Using this approximation we recover the incoherent kinetic description of the electron transfer

processes.

By using these approximations and expanding the double commutator in the second order

kernel, one arrives at the master equations given above, with :f given by the standard Fermi’s

Golden rule rate expression,7

:f =
2Γ2

ℏ2 Re
∫ ∞

0
Trn [4+8�̂0nC/ℏ4−8�̂1nC/ℏ d̂0n] dC (S.16)

and similarly :b is given by

:b =
2Γ2

ℏ2 Re
∫ ∞

0
Trn [4+8�̂1nC/ℏ4−8�̂0nC/ℏ d̂1n] dC (S.17)

and the X� term in the radical pair master equation is

X� =
Γ2

2ℏ
Im

∫ ∞

0
Trn [4+8�̂0nC/ℏ4−8�̂1nC/ℏ d̂0n] dC . (S.18)

The derivation of these expressions is described in detail in Ref. 3. We note that going to higher

orders in Γ̂, the ( = 1/2 system master equation is unchanged, but at fourth order and above in Γ in

S6



the radical pair master equation a decoherence term of the following form will also appear in the

master equation,

:D

(
*̂%̂S*̂

†f̂1s(C)*̂%̂S*̂
† − 1

2
{
*̂%̂S*̂

†, f̂1s(C)
})
. (S.19)

Also the expressions for the master equation parameters :f , :b and X� must be corrected at higher

orders in Γ, but the general form of the master equation remains unchanged other than the additional

decoherence term. In this treatment the coupling of electronic and vibrational degrees of freedom

is treated exactly, and the only approximations invoked are the perturbative treatment of electronic

state coupling, the neglect of spin interactions on the electronic state transition kernel, and the

Markovian approximation.

We note finally that in all of the above, we have used the Condon approximation, in which we

assume Δ and� are independent of Q. However in reality these terms will be nuclear configuration

dependent and in general they will have a different dependence on Q. Accounting for this will

introduce terms which lead to spin decoherence on electron transport, i.e. terms which only transfer

populations and not spin coherences.

3 OOP-ESEEM Signals for chiral radical pairs

Here we outline the derivation of the OOP-ESEEM signal for a chiral radical pair formed by

SOCT. We consider the final time dependent G channel FID signals in the rotating frame 5G (C) =

Trs [(̂Gf̂s(C)]. Here fs(C) is the radical pair spin density operator (denoted f̂1s(C) above) after the

OOP-ESEEM pulse sequence, and (̂U = (̂1U + (̂2U. For simplicity in finding 5G (C), we will invoke

the high field (secular) approximation for the radical pair spin Hamiltonian in the rotating frame,8

�̂s
ℏ
= Ω1(̂1,I +Ω2(̂1,I − 2�Ŝ1 ·Ŝ2 +

1
2
3

(
(̂2
I −

1
3
(̂2

)
+

2∑
8=1

#8∑
:=1

08,: Î8,: · Ŝ8 . (S.20)
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From right to left these terms describe the Zeeman interactions of two electron spins (relative

to the rotating frame frequency), the scalar electron spin coupling, the dipolar coupling (with

3 = � (3 cos2(b) −1), where � is the dipolar coupling constant), and the hyperfine coupling terms.

For simplicity we ignore chiral spin-orbit effects on evolution of the radical pair spin density,

for example terms of the form 2X�*̂%̂S*̂
†, and as a further simplification we will ignore any decay

processes of the radical pair. This means we will assume the radical pair spin density operator

evolves under the equation,

d
dC
f̂s(C) = −

8

ℏ

[
�̂s, f̂s(C)

]
= Lsf̂s(C). (S.21)

The action of a perfect (instantaneous) microwave pulse on the spin density operator by an angle

i, about an axis U is UU (i)f̂s = 4
−8i(̂U f̂s4

+8i(̂U . Finally we assume the nuclear spins are in the

infinite temperature thermal equilibrium state, i.e. a completely mixed state, at C = 0, therefore

the initial spin density operator of a chiral radical pair is f̂s(0) = (1//)*̂%̂S*̂
†, where / is the

dimensionality of the nuclear spin Hilbert space. The spin density operator in the rotating frame at

a time C of the echo, f̂s(C), is then found as

f̂s(C) = 4LsC4LsgUG (c)4LsgUG (c/4)f̂s(0). (S.22)

We will now use this to calculate the OOP-ESEEM signal when the radical pair is oriented

such that n is parallel to the lab I axis. We note that the Hamiltonian commutes with �̂8,:,I, and

therefore its eigenstates can be written as |=,M〉, where M denotes the set of I projection quantum

numbers for the nuclear spins. For simplicity, we make the weak-coupling approximation here,

|Ω1 − Ω2 | � |� − 3/6|, and then using standard expressions for the radical pair eigenstates,8 one
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finds the total G channel OOP-ESEEM signal to be

5G (C) =
sin (\)
/

∑
M

cos (l̄MC) sin
((
3

3
− �

)
(C + 2g)

)
×

(√
2 cos (\) sin (ΔlMC) − sin (\) cos (ΔlMC)

) (S.23)

where l̄M = (l1,M + l2,M)/2, ΔlM = (l1,M − l2,M)/2 l8,M = Ω8 +
∑#8

:=1 08,:"8,: . In the

semiclassical limit, where the number of hyperfine coupled nuclear spins is larger, we can replace∑#8

:=1 08,:"8,: → ℎ8,I, and 1
/

∑
M →

∏2
8=1

∫ ∞
−∞ dℎ8,I %8,I (ℎ8,I), where the probability distribution is

given by9

%8,I (ℎ8,I) =
g8√
2c

exp
(
−1

2
(
ℎ8,Ig8

)2
)

(S.24)

where g−2
8
= 1

3
∑#8

:=1 0
2
8,:
�8,: (�8,: + 1). This gives the expression for 5G (C) in the weak coupling limit

given in the main text.

Beyond the weak coupling limit, but still within the high field approximation, we can obtain

analytical expressions for the G channel FID signal,

5G (C) =
1
/

∑
M

1
2

cos(Cl̄M)
(
2 sin2(\) cos(ΔMg) sin((� − 3/3) (C + 2g)) cos(ΔM(C + g))

− 2 sin2(\) cos(4qM) sin(ΔMg) sin((� − 3/3) (C + 2g)) sin(ΔM(C + g))

− 2 sin2(\) cos(2qM) cos((� − 3/3) (C + 2g)) sin(ΔM(C + 2g))

−
√

2 sin(\)
(
sin(2qM) sin(ΔMC) sin((� − 3/3) (C + 2g))

+ sin(4qM) sin(ΔMg) cos((� − 3/3) (C + 2g)) sin(ΔM(C + g))
) )

(S.25)

where l̄M = (l1,M + l2,M)/2, ΔM =

√
Δl2

M + (� + 3/6)2, tan(2qM) = ΔlM/(� + 3/6), ΔlM =

(l1,M − l2,M)/2, and l8,M = Ω8 +
∑#8

:=1 08,:"8,: . By making the same semiclassical replacement

as above, we can numerically evaluate the semiclassical FID signals as a function of C. We can then

numerically integrate these for a range of g values to yield �G (g).

S9



In the weak coupling, semiclassical limit the integrated FID signal can be found analytically as

a function of g by integrating Eq. (18) as �G (g) =
∫ ∞

0 5G (C) dC,

�G (g) =
√
c

8

[
g1

(
4−g

2
1 (�−3/3+Ω1)2/2 − 4−g2

1 (�−3/3−Ω1)2/2
)

+ g2

(
4−g

2
2 (�−3/3−Ω2)2/2 − 4−g2

2 (�−3/3+Ω2)2/2
) ]

cos(2(� − 3/3)g) sin(\)

+ 1
4

[
g1

(
�+(g1(� − 3/3 −Ω1)/

√
2) − �+(g1(� − 3/3 +Ω1)/

√
2)

)
+ g2

(
�+(g2(� − 3/3 +Ω2)/

√
2) − �+(g2(� − 3/3 −Ω2)/

√
2)

) ]
sin(2(� − 3/3)g) sin(\)

+ 1
4

√
c

2

[
g1

(
4−g

2
1 (�−3/3+Ω1)2/2 + 4−g2

1 (�−3/3−Ω1)2/2
)

+ g2

(
4−g

2
2 (�−3/3−Ω2)2/2 + 4−g2

2 (�−3/3+Ω2)2/2
) ]

sin(2(� − 3/3)g) sin2(\)

+ 1
2
√

2

[
g1

(
�+(g1(� − 3/3 −Ω1)/

√
2) + �+(g1(� − 3/3 +Ω1)/

√
2)

)
+ g2

(
�+(g2(� − 3/3 +Ω2)/

√
2) + �+(g2(� − 3/3 −Ω2)/

√
2)

) ]
cos(2(� − 3/3)g) sin2(\)

(S.26)

where �+(G) = 4−G
2 ∫ G

0 4_
2 d_ is the Dawson function.

4 Magnetic field effects

Chirality induced spin coherence in oriented radical pairs could also manifest in magnetic field

effect experiments, in which quantum yields of spin selective radical pair reactions, or the lifetime

of radical pair state, are measured as the applied magnetic field strength is varied, for example by

transient absorption spectroscopy.10,11

As a simple illustrative example, as above, we consider a radical pair oriented such that the

spin orbit coupled charge transport vector � is aligned parallel to the applied magnetic field. We

also take the high field limit where the Δ6 mechanism dominates the singlet-triplet interconversion.

Treating the spin selective recombination process with the standard Haberkorn reaction term in the
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master equation for f̂s(C), i.e. −
{
(:S/2)%̂S + (:T/2)%̂T, f̂s(C)

}
, and assuming that |Ω1 − Ω2 | �

|� |, |� |, |:S − :T |, 1/g8, we can use Eq. (S.20), to find the triplet quantum yield for a chiral radical

pair, ΦT = :T
∫ ∞

0 Trs [%̂Tf̂s(C)] dC in the high field limit,

ΦT = :T
4ΔΩ2 − :̄2 cos(2\) + :̄2 − 2ΔΩ:̄ sin(2\)

2:̄
(
:̄2 + 4ΔΩ2) , (S.27)

where ΔΩ = Ω1 − Ω2 and :̄ = (:S + :T)/2. The term proportional to sin(2\) leads to a chirality

dependent triplet quantum yield, and from this the difference in the triplet yields between two

enantiomers is maximised when |ΔΩ| = :̄/2.

Of course, the quantitative interpretation of any real experiment would require more detailed

quantummechanicalmodelling, accounting fully for hyperfine interactions and spin relaxation,12–14

but this simple result demonstrates that chirality induced spin coherence could in principle lead to

chirality dependent magnetic field effects on the reactions of oriented radical pairs.
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