Supporting information

Highly Selective and Productive Synthesis of Carbon Dioxide-based Copolymer upon Zwitterionic Growth

Ying Wang,[†] Jian-Yu Zhang,[‡] Jia-Liang Yang,[†] Hao-Ke Zhang,[†],[‡] Jiraya Kiriratnikom,[†] Cheng-Jian Zhang,[†] Kai-Luo Chen,[†] Xiao-Han Cao,[†] Lan-Fang Hu,[†] Xing-Hong Zhang^{*, †}, Ben Zhong Tang^{†, ‡}

[†] MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

[‡] Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China

Table of Contents

Materials and methods
Table S1. Copolymerization of CO ₂ with PO catalyzed by TEA or TEB respectively5
Figure S1. ¹ H NMR spectrum of the crude product of entry 1, Table 15
Figure S2. ¹ H NMR spectrum of the crude product of entry 2, Table 16
Figure S3. ¹ H NMR spectrum of the crude product of entry 3, Table 16
Figure S4. ¹ H NMR spectrum of the crude product of entry 4, Table 17
Figure S5. ¹ H NMR spectrum of the crude product of entry 5, Table 17
Figure S6. ¹ H NMR spectrum of the crude product of entry 6, Table 18
Figure S7. ¹ H NMR spectrum of the crude product of entry 7, Table 18
Figure S8. ¹ H NMR spectrum of the crude product of entry 8, Table 18
Figure S9. ¹ H NMR spectrum of the crude product of entry 9, Table 19
Figure S10. ¹ H NMR spectrum of the crude product of entry 10, Table 110
Figure S11. ¹ H NMR spectrum of the crude product of entry 11, Table 110
Figure S12. (1) ¹ H NMR spectrum of the crude product of entry 1 Table 2; (2) ¹ H NMR spectrum
of the purified product of entry 1, Table 2; (3) ¹³ C NMR spectrum of the purified product of entry
1, Table 211
Figure S13. (1) ¹ H NMR spectrum of the crude product of entry 2 Table 2; (2) ¹ H NMR spectrum
of the purified product of entry 2, Table 2; (3) ¹³ C NMR spectrum of the purified product of entry
2, Table 2
Figure S14. (1) ¹ H NMR spectrum of the crude product of entry 3 Table 2; (2) ¹ H NMR spectrum
of the purified product of entry 3, Table 2; (3) ¹³ C NMR spectrum of the purified product of entry
3, Table 2
Figure S15. ¹ H NMR spectrum of the crude product of entry 4 Table 214
Figure S16. ¹ H NMR spectrum of the crude product of entry 5 Table 214
Figure S17. ¹ H NMR spectrum of the crude product of entry 6 Table 215
Figure S18. In situ infrared profiles of -OC(O)O- linkages in PPC catalyzed by TEED/TEB at
60°C15
Figure S19. Quantitative ¹³ C NMR spectrum (CDCl ₃) of the purified CO ₂ /PO copolymer catalyzed
by 1) TEA-TBB; 2) TEED-TEB; 3) TEED-TBB
Figure S20. Free energies associated with the chain initiation and growth of the copolymerization
of CO_2 with PO by the TEB/TEA pair by the unfavourable routes16
Figure S22. ¹ H NMR spectra (CDCl ₃) of a) TEA, b) TEA/TEB (1:1) pair17
Figure S23. a) MALDI-TOF MS spectrum of PPC catalyzed by TEB/TEA (without termination).
b) The fitting relationship of Mn of PPC vs. the numbers of the repeating unit
Figure S24. The elemental analysis result of PPC catalyzed by TEB/TEA ($M_n = 2532$ g/mol,
terminated by dilute 1.0 M HCl in ehanol)

Materials and methods.

Materials.

Unless otherwise specified, all syntheses and manipulations were carried out on a double-manifold Schlenk vacuum line under nitrogen atmosphere or in a nitrogen-filled glovebox. Triethylamine (TEA) and N,N,N',N'-Tetramethylethylenediamine (TMED) was bought from J&K Chemical. N,N,N',N'-tetraethyl ethylenediamine (TEED) was purchased from Energy Chemical. All tertiary amines were purified by distillation after stirring with calcium hydride for 3 days in nitrogen. Triethyl borane (TEB) in tetrahydrofuran solution (1.0 mol/L) and tributyl borane (TBB) in tetrahydrofuran solution (1.0 mol/L) and tributyl borane (TBB) in tetrahydrofuran solution (1.0 mol/L) was purified by distillation after stirring with calcium hydride for 3 days. Carbon dioxide (> 99.99%) was used as received. Following purification, materials were stored in a nitrogen-filled glovebox prior to use unless otherwise specified.

Methods.

¹H and ¹³C NMR spectra were performed on a Bruker Advance DMX 400 MHz in CDCl₃. And chemical shift values were referenced to CHCl₃ at 7.26 ppm for ¹H NMR and and 77.16 ppm for ¹³C NMR. The number-average molecular weight (M_n) and molecular weight distribution ($D = M_w/M_n$) of the resultant copolymers were determined with a PL-GPC220 chromatograph (Polymer Laboratories) equipped with an HP 1100 pump from Agilent Technologies. The GPC columns were eluted with THF with 1.0 mL/min at 40°C. The sample concentration was 0.4 wt %, and the injection volume was 50 µL. Calibration was performed using monodisperse polystyrene standards. Matrixassisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometric measurements were performed on a Bruker Ultraflex MALDI TOF mass spectrometer, equipped with a nitrogen laser delivering 3 ns laser pulses at 337 nm. trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB, 99%, Alfa) was used as the matrix.

Representative procedure for copolymerization reactions.

A 10mL autoclave with magnetic stirrer was dried in an oven at 120°C overnight, then immediately placed into the glove box chamber. After keeping under vacuum for 1-2 h, the reaction vessel was put into the glove box under nitrogen atmosphere. The copolymerization of CO₂ with PO described below is taken from entry 2 in Table 1 as an example. triethylamine (TEA, 20 μ l, 0.143 mmol) was firstly added into the reactor. Afterwards, propylene (PO, 1ml, 14.3 mmol) and triethyl borane (TEB, 143 μ L, 0.143 mmol), was added into the autoclave respectively. The reactor was sealed and taken out from the glove box and charged with 1.26 g CO₂ (CO₂ : epoxide = 2:1, molar ratio, 2 MPa). The copolymerization was carried out at 60°C for 4 h. In the first 5 minutes of the reaction, the pressure was increased to 2.7 MPa. During the copolymerization process, the pressure drops gradually. When PO conversion was up to 80%, the pressure finally drops to around 2.1 MPa. At the end of the polymerization, the autoclave was cooled in ice-water bath and return to room temperature with decreased pressure to 1.8MPa. The unreacted CO₂ was slowly released. A spot of crude product was taken for the determination of PO conversion and the molar ratio of copolymer/cyclic products by ¹H NMR spectrum. The crude product was quenched with HCl in ethanol (1mol/L). Next, the polymer was dissolved with CH_2Cl_2 and then precipitated in ethanol. The final product was dried in vacuum at 50°C until a constant weight.

Table S	Cable S1. Copolymerization of CO ₂ with PO catalyzed by TEA or TEB respectively. ^[a]								
Entr			LA/LB/PO	t/h	Conv.	РРС	$F_{\rm CO2}$	M _n	PDI
у	LA	LB			[%] ^[b]	Selec.[%] ^[b]	[%] ^[c]	[kg/mol] ^[d]	$[M_{ m w}/M_{ m n}]^{[m d]}$
1	-	TEA	0:1:100	4	-	-	-	-	-
2	TEB	-	1:0:100	4	-	-	-	-	-

^[a] The reactions were performed in bulk in a 10 ml autoclave, 60°C, [CO₂]:[PO]=2:1. ^[b] Determined by ¹H NMR spectroscopy of crude product. ^[c] Determined by ¹H NMR spectroscopy of the purified product. ^[d] Determined by gel permeation chromatography (GPC) in THF, calibrated with polystyrene standards.

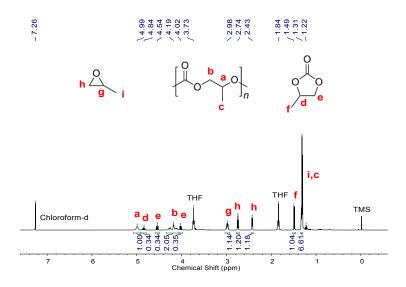


Figure S1. ¹H NMR spectrum of the crude product of entry 1, Table 1.

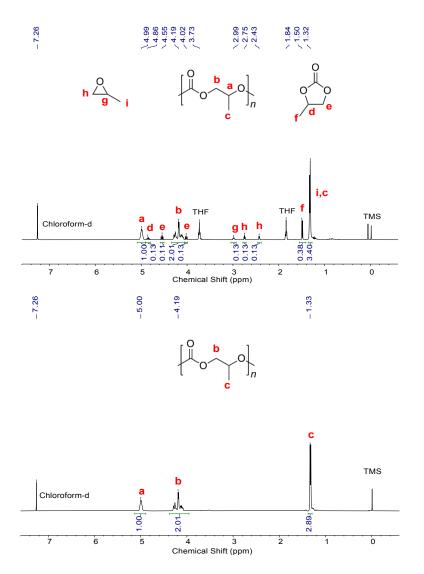


Figure S2. ¹H NMR spectrum of the crude product of entry 2, Table 1.

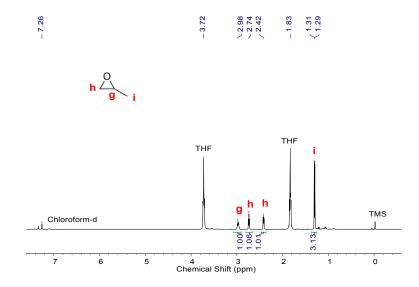


Figure S3. ¹H NMR spectrum of the crude product of entry 3, Table 1.

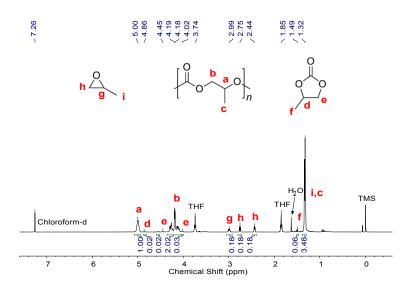


Figure S4. ¹H NMR spectrum of the crude product of entry 4, Table 1.

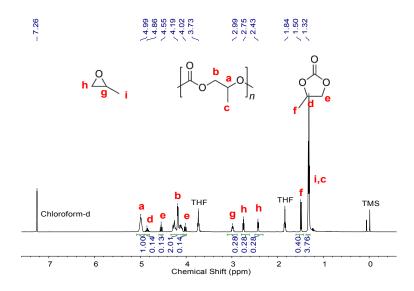


Figure S5. ¹H NMR spectrum of the crude product of entry 5, Table 1.

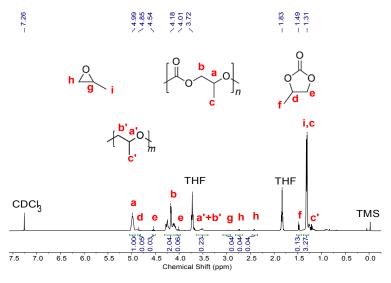


Figure S6. ¹H NMR spectrum of the crude product of entry 6, Table 1.

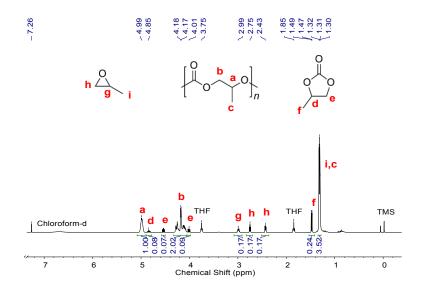


Figure S7. ¹H NMR spectrum of the crude product of entry 7, Table 1.

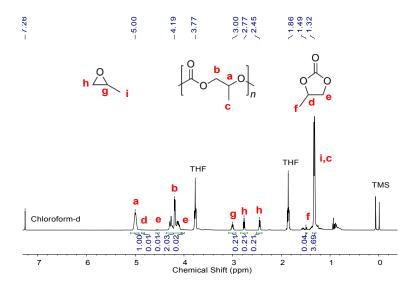


Figure S8. ¹H NMR spectrum of the crude product of entry 8, Table 1.

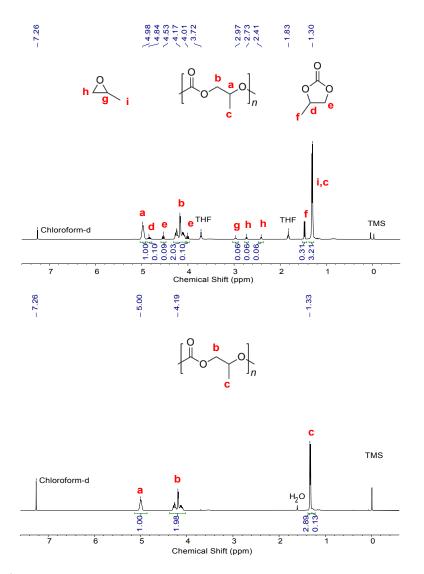
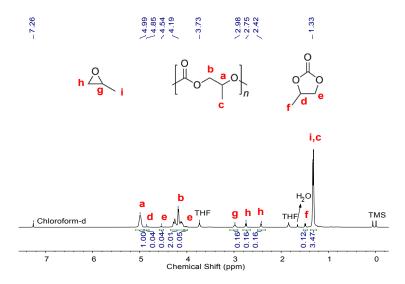



Figure S9. ¹H NMR spectrum of the crude product of entry 9, Table 1.

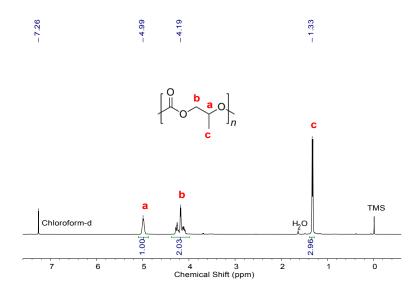
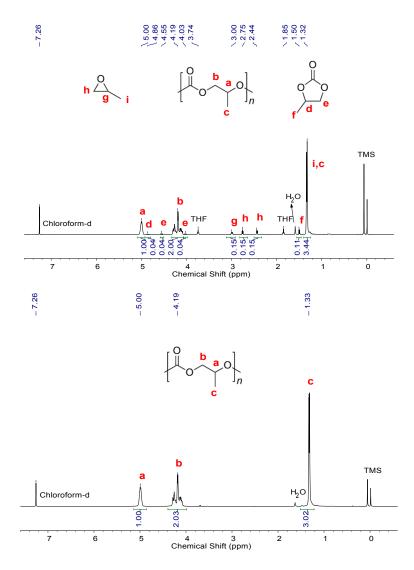
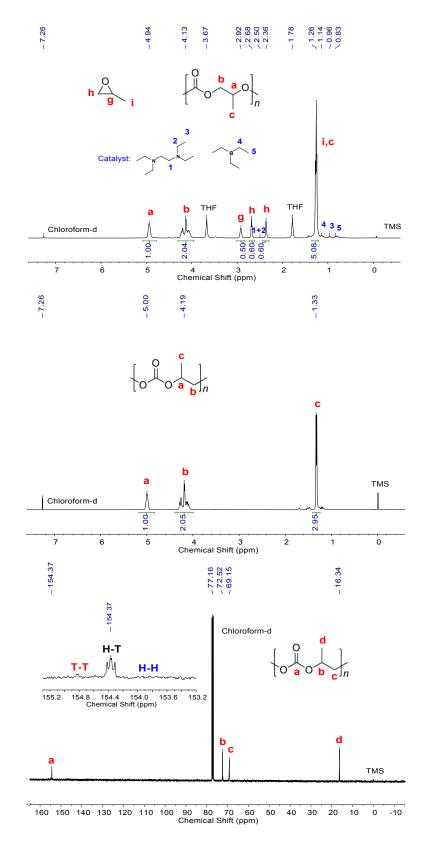
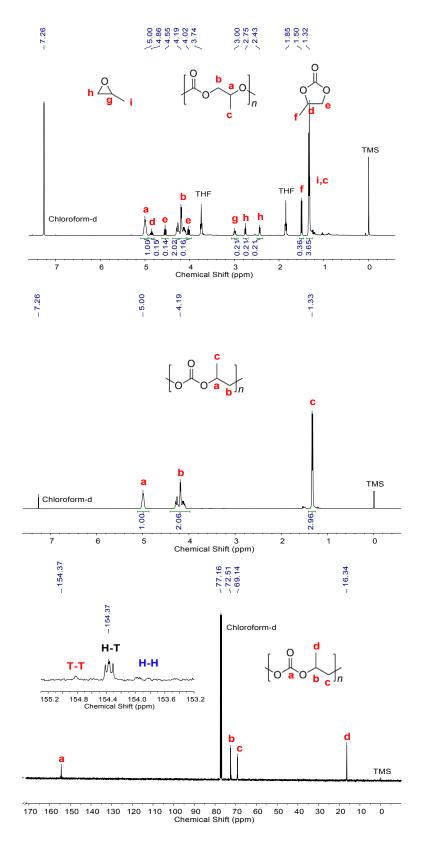


Figure S10. ¹H NMR spectrum of the crude product of entry 10, Table 1.

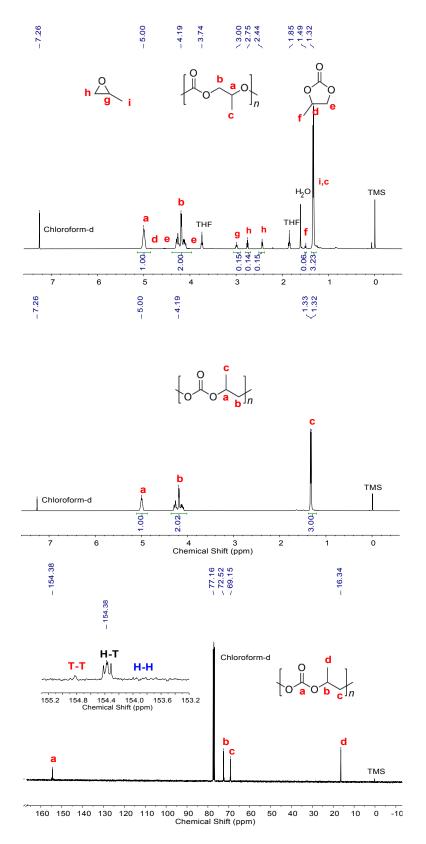

Figure S11. ¹H NMR spectrum of the crude product of entry 11, Table 1.

Figure S12. (1)¹H NMR spectrum of the crude product of entry 1 Table 2; (2) ¹H NMR spectrum of the purified product of entry 1, Table 2; (3) ¹³C NMR spectrum of the purified product of entry 1, Table 2.

Figure S13. (1)¹H NMR spectrum of the crude product of entry 2 Table 2; (2) ¹H NMR spectrum of the purified product of entry 2, Table 2; (3) ¹³C NMR spectrum of the purified product of entry 2, Table 2.

Figure S14. (1)¹H NMR spectrum of the crude product of entry 3 Table 2; (2) ¹H NMR spectrum of the purified product of entry 3, Table 2; (3) ¹³C NMR spectrum of the purified product of entry 3, Table 2.

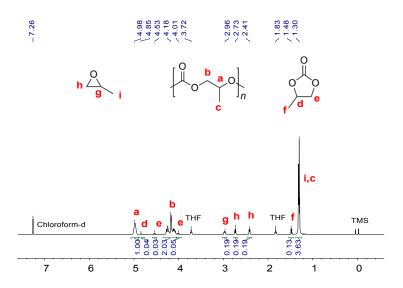


Figure S15. ¹H NMR spectrum of the crude product of entry 4 Table 2.

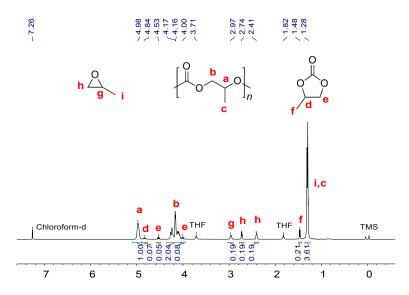


Figure S16. ¹H NMR spectrum of the crude product of entry 5 Table 2.

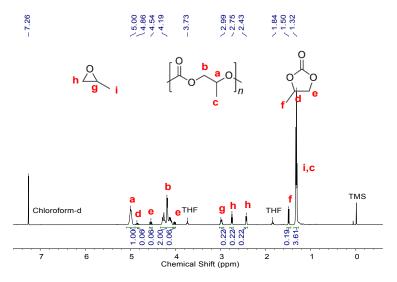
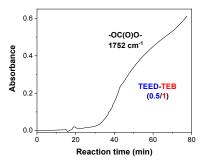
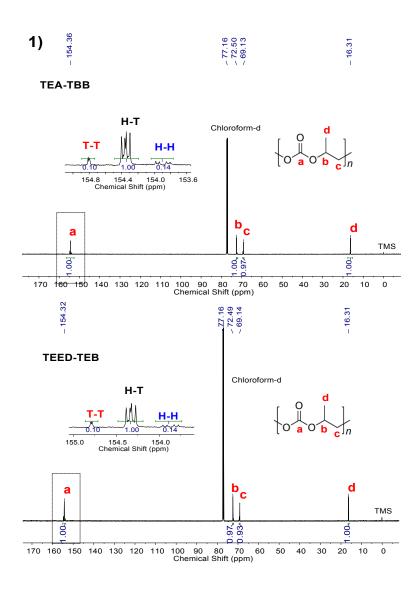
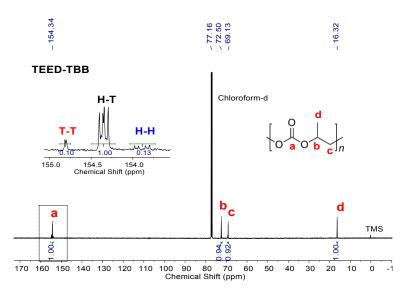





Figure S17. ¹H NMR spectrum of the crude product of entry 6 Table 2.

Figure S18. In situ infrared profiles of –OC(O)O- linkages in PPC catalyzed by TEED/TEB at 60°C.

Figure S19. Quantitative ¹³C NMR spectrum (CDCl₃) of the purified CO₂/PO copolymer catalyzed by 1) TEA-TBB; 2) TEED-TEB; 3) TEED-TBB.

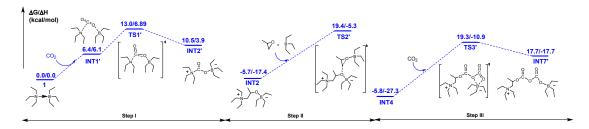
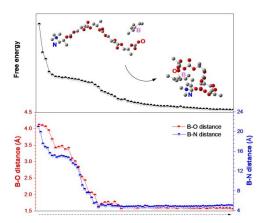



Figure S20. Free energies associated with the chain initiation and growth of the copolymerization of CO_2 with PO by the TEB/TEA pair by the unfavourable routes.

Figure S21. The free energy and corresponding B-O and B-N distance during changes of the conformation for CO_2/PO copolymer with 5 repeating units. Calculated by the method of m062x/6-31g(d,p), Gaussian 09 program.

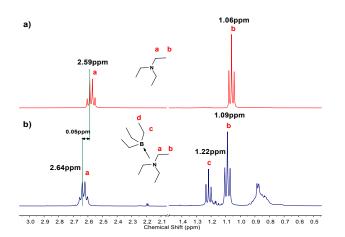
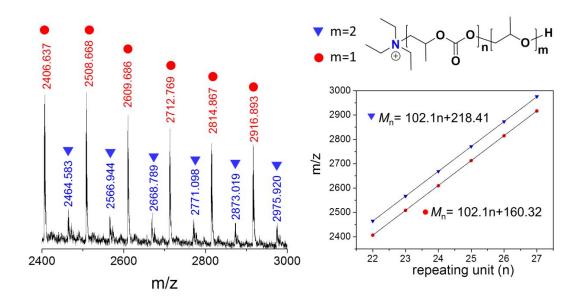



Figure S22. ¹H NMR spectra (CDCl₃) of a) TEA, b) TEA/TEB (1:1) pair.

Figure S23. a) MALDI-TOF MS spectrum of PPC catalyzed by TEB/TEA (without termination). b) The fitting relationship of Mn of PPC vs. the numbers of the repeating

unit.

		iang University								
repoi	Name	Method	Maish4 feesal	N Area	C Area	H Area	N [%]	C [%]	11-10/1	
25	wy20201225-2	2mgChem70s	Weight [mg] 2.1220	N Area 330	20 941	9 805	0.50	47.00	H [%]	
			1,7750	263	17 513	8 357	0.48	46.97		
26	wy20201225-2	2mgChem70s	1.7750	263	17 513	8 357	0.48	46.97	6.55	
ne: ea	assuperuser, Access	s: VarioMICRO superus	er							2020-12-31 14:51

Figure S24. The elemental analysis result of PPC catalyzed by TEB/TEA ($M_n = 2500$

g/mol, terminated by dilute 1.0 M HCl in ehanol).