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Materials and methods.

Materials.

Unless otherwise specified, all syntheses and manipulations were carried out on a
double-manifold Schlenk vacuum line under nitrogen atmosphere or in a nitrogen-filled
glovebox. Triethylamine (TEA) and N,N,N',N'-Tetramethylethylenediamine (TMED)
was bought from J&K Chemical. N,N,N',N'-tetracthyl ethylenediamine (TEED) was
purchased from Energy Chemical. All tertiary amines were purified by distillation after
stirring with calcium hydride for 3 days in nitrogen. Triethyl borane (TEB) in
tetrahydrofuran solution (1.0 mol/L) and tributyl borane (TBB) in tetrahydrofuran
solution (1.0mol/L) was bought from Sigma-Aldrich and used without further
purifications. Propylene oxide (PO) was purified by distillation after stirring with
calcium hydride for 3 days. Carbon dioxide (> 99.99%) was used as received.
Following purification, materials were stored in a nitrogen-filled glovebox prior to use

unless otherwise specified.

Methods.

'H and 3C NMR spectra were performed on a Bruker Advance DMX 400 MHz
in CDCl;. And chemical shift values were referenced to CHCl; at 7.26 ppm for 'H NMR
and and 77.16 ppm for 3C NMR. The number-average molecular weight (M) and
molecular weight distribution (D= M,,/M,) of the resultant copolymers were determined
with a PL-GPC220 chromatograph (Polymer Laboratories) equipped with an HP 1100

pump from Agilent Technologies. The GPC columns were eluted with THF with 1.0



mL/min at 40°C. The sample concentration was 0.4 wt %, and the injection volume was
50 pL. Calibration was performed using monodisperse polystyrene standards. Matrix-
assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometric
measurements were performed on a Bruker Ultraflex MALDI TOF mass spectrometer,
equipped with a nitrogen laser delivering 3 ns laser pulses at 337 nm. trans-2-[3-(4-
tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB, 99%, Alfa) was

used as the matrix.

Representative procedure for copolymerization reactions.

A 10mL autoclave with magnetic stirrer was dried in an oven at 120°C overnight, then
immediately placed into the glove box chamber. After keeping under vacuum for 1-2
h, the reaction vessel was put into the glove box under nitrogen atmosphere. The
copolymerization of CO, with PO described below is taken from entry 2 in Table 1 as
an example. triethylamine (TEA, 20 pl, 0.143 mmol) was firstly added into the reactor.
Afterwards, propylene (PO, 1ml, 14.3 mmol) and triethyl borane (TEB, 143 puL, 0.143
mmol), was added into the autoclave respectively. The reactor was sealed and taken out
from the glove box and charged with 1.26 g CO, (CO, : epoxide = 2:1, molar ratio, 2
MPa). The copolymerization was carried out at 60°C for 4 h. In the first 5 minutes of
the reaction, the pressure was increased to 2.7 MPa. During the copolymerization
process, the pressure drops gradually. When PO conversion was up to 80%, the pressure
finally drops to around 2.1 MPa. At the end of the polymerization, the autoclave was
cooled in ice-water bath and return to room temperature with decreased pressure to

1.8MPa. The unreacted CO, was slowly released. A spot of crude product was taken
4



for the determination of PO conversion and the molar ratio of copolymer/cyclic
products by 'H NMR spectrum. The crude product was quenched with HCI in ethanol
(1mol/L). Next, the polymer was dissolved with CH,Cl, and then precipitated in ethanol.

The final product was dried in vacuum at 50°C until a constant weight.

Table S1. Copolymerization of CO, with PO catalyzed by TEA or TEB respectively.[?

Entr Conv. PPC Fcor M, PDI
LA LB LA/LB/PO t/h
y [%]®  Selec.[%]P!  [%]!c [kg/mol]ldl [M,/M,]!l
1 - TEA 0:1:100 4 - o - - -
2 TEB - 1:0:100 4 - - - - -

[a] The reactions were performed in bulk in a 10 ml autoclave, 60°C, [CO,]:[PO]=2:1.
[b] Determined by '"H NMR spectroscopy of crude product. [l Determined by 'H NMR
spectroscopy of the purified product. [4 Determined by gel permeation chromatography

(GPC) in THF, calibrated with polystyrene standards.
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Figure S1. 'H NMR spectrum of the crude product of entry 1, Table 1.
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Figure S2. 'H NMR spectrum of the crude product of entry 2, Table 1.
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Figure S3. 'H NMR spectrum of the crude product of entry 3, Table 1.
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Figure S6. 'H NMR spectrum of the crude product of entry 6, Table 1.

© oW ) oW o WONNTTO
N @@ - OoN eNY  RIIN0Q
~ < < O AN e
! \ o oy LY
O
(0]
° b a N
hk e} 0 o 0
o Sk
d
¢ f
i,c
b
a THF h h THF | ™S
| Chloroform-d id e e 9 ‘ J‘ J
| b P A b ) L |
o K e R 7y
Qoo cQo AT N0
~ooao coo S o
7 6 5 5 ; A

4
Chemical Shift (ppm)

Figure S7. '"H NMR spectrum of the crude product of entry 7, Table 1.
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Figure S8. 'H NMR spectrum of the crude product of entry 8, Table 1.
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Figure S9. 'H NMR spectrum of the crude product of entry 9, Table 1.
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Figure S10. "H NMR spectrum of the crude product of entry 10, Table 1.
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Figure S11. "H NMR spectrum of the crude product of entry 11, Table 1.
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Figure S15. "H NMR spectrum of the crude product of entry 4 Table 2.
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Figure S16. '"H NMR spectrum of the crude product of entry 5 Table 2.
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Figure S17. "H NMR spectrum of the crude product of entry 6 Table 2.
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Figure S18. In situ infrared profiles of —OC(O)O- linkages in PPC catalyzed by
TEED/TEB at 60°C.
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Figure S23. a) MALDI-TOF MS spectrum of PPC catalyzed by TEB/TEA (without
termination). b) The fitting relationship of Mn of PPC vs. the numbers of the repeating
unit.
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Figure S24. The elemental analysis result of PPC catalyzed by TEB/TEA (M, = 2500

g/mol, terminated by dilute 1.0 M HCI in ehanol).
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