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Materials and methods.

Materials.

Unless otherwise specified, all syntheses and manipulations were carried out on a 

double-manifold Schlenk vacuum line under nitrogen atmosphere or in a nitrogen-filled 

glovebox. Triethylamine (TEA) and N,N,N',N'-Tetramethylethylenediamine (TMED) 

was bought from J&K Chemical. N,N,N',N'-tetraethyl ethylenediamine (TEED) was 

purchased from Energy Chemical. All tertiary amines were purified by distillation after 

stirring with calcium hydride for 3 days in nitrogen. Triethyl borane (TEB) in 

tetrahydrofuran solution (1.0 mol/L) and tributyl borane (TBB) in tetrahydrofuran 

solution (1.0mol/L) was bought from Sigma-Aldrich and used without further 

purifications. Propylene oxide (PO) was purified by distillation after stirring with 

calcium hydride for 3 days. Carbon dioxide (> 99.99%) was used as received. 

Following purification, materials were stored in a nitrogen-filled glovebox prior to use 

unless otherwise specified.

Methods. 

1H and 13C NMR spectra were performed on a Bruker Advance DMX 400 MHz 

in CDCl3. And chemical shift values were referenced to CHCl3 at 7.26 ppm for 1H NMR 

and and 77.16 ppm for 13C NMR. The number-average molecular weight (Mn) and 

molecular weight distribution (Đ= Mw/Mn) of the resultant copolymers were determined 

with a PL-GPC220 chromatograph (Polymer Laboratories) equipped with an HP 1100 

pump from Agilent Technologies. The GPC columns were eluted with THF with 1.0 
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mL/min at 40°C. The sample concentration was 0.4 wt %, and the injection volume was 

50 μL. Calibration was performed using monodisperse polystyrene standards. Matrix-

assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometric 

measurements were performed on a Bruker Ultraflex MALDI TOF mass spectrometer, 

equipped with a nitrogen laser delivering 3 ns laser pulses at 337 nm. trans-2-[3-(4- 

tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB, 99%, Alfa) was 

used as the matrix.

Representative procedure for copolymerization reactions.

A 10mL autoclave with magnetic stirrer was dried in an oven at 120°C overnight, then 

immediately placed into the glove box chamber. After keeping under vacuum for 1-2 

h, the reaction vessel was put into the glove box under nitrogen atmosphere. The 

copolymerization of CO2 with PO described below is taken from entry 2 in Table 1 as 

an example. triethylamine (TEA, 20 μl, 0.143 mmol) was firstly added into the reactor. 

Afterwards, propylene (PO, 1ml, 14.3 mmol) and triethyl borane (TEB, 143 µL, 0.143 

mmol), was added into the autoclave respectively. The reactor was sealed and taken out 

from the glove box and charged with 1.26 g CO2 (CO2 : epoxide = 2:1, molar ratio, 2 

MPa). The copolymerization was carried out at 60°C for 4 h. In the first 5 minutes of 

the reaction, the pressure was increased to 2.7 MPa. During the copolymerization 

process, the pressure drops gradually. When PO conversion was up to 80%, the pressure 

finally drops to around 2.1 MPa. At the end of the polymerization, the autoclave was 

cooled in ice-water bath and return to room temperature with decreased pressure to 

1.8MPa. The unreacted CO2 was slowly released. A spot of crude product was taken 
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for the determination of PO conversion and the molar ratio of copolymer/cyclic 

products by 1H NMR spectrum. The crude product was quenched with HCl in ethanol 

(1mol/L). Next, the polymer was dissolved with CH2Cl2 and then precipitated in ethanol. 

The final product was dried in vacuum at 50°C until a constant weight.

Table S1. Copolymerization of CO2 with PO catalyzed by TEA or TEB respectively.[a]

Entr

y
LA LB LA/LB/PO t/h

Conv.

[%][b]

PPC

Selec.[%][b]

FCO2

[%][c]

Mn

[kg/mol][d]

PDI

[Mw/Mn][d]

1 - TEA 0:1:100 4 - - - - -

2 TEB - 1:0:100 4 - - - - -

[a] The reactions were performed in bulk in a 10 ml autoclave, 60°C, [CO2]:[PO]=2:1. 

[b] Determined by 1H NMR spectroscopy of crude product. [c] Determined by 1H NMR 

spectroscopy of the purified product. [d] Determined by gel permeation chromatography 

(GPC) in THF, calibrated with polystyrene standards.
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Figure S1. 1H NMR spectrum of the crude product of entry 1, Table 1.
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Figure S2. 1H NMR spectrum of the crude product of entry 2, Table 1.
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Figure S3. 1H NMR spectrum of the crude product of entry 3, Table 1.
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Figure S4. 1H NMR spectrum of the crude product of entry 4, Table 1.
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Figure S5. 1H NMR spectrum of the crude product of entry 5, Table 1.
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Figure S6. 1H NMR spectrum of the crude product of entry 6, Table 1.
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Figure S7. 1H NMR spectrum of the crude product of entry 7, Table 1.
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Figure S8. 1H NMR spectrum of the crude product of entry 8, Table 1.
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Figure S9. 1H NMR spectrum of the crude product of entry 9, Table 1.
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Figure S10. 1H NMR spectrum of the crude product of entry 10, Table 1.
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Figure S11. 1H NMR spectrum of the crude product of entry 11, Table 1.
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Figure S15. 1H NMR spectrum of the crude product of entry 4 Table 2.
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Figure S16. 1H NMR spectrum of the crude product of entry 5 Table 2.
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Figure S17. 1H NMR spectrum of the crude product of entry 6 Table 2.
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Figure S18. In situ infrared profiles of –OC(O)O- linkages in PPC catalyzed by 
TEED/TEB at 60°C.
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Figure S19. Quantitative 13C NMR spectrum (CDCl3) of the purified CO2/PO 

copolymer catalyzed by 1) TEA-TBB; 2) TEED-TEB; 3) TEED-TBB.
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copolymerization of CO2 with PO by the TEB/TEA pair by the unfavourable routes.
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Figure S21. The free energy and corresponding B-O and B-N distance during changes 

of the conformation for CO2/PO copolymer with 5 repeating units. Calculated by the 

method of m062x/6-31g(d,p), Gaussian 09 program.
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Figure S22. 1H NMR spectra (CDCl3) of a) TEA, b) TEA/TEB (1:1) pair.
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Figure S23. a) MALDI-TOF MS spectrum of PPC catalyzed by TEB/TEA (without 

termination). b) The fitting relationship of Mn of PPC vs. the numbers of the repeating 

unit.

Figure S24. The elemental analysis result of PPC catalyzed by TEB/TEA (Mn = 2500 

g/mol, terminated by dilute 1.0 M HCl in ehanol).


