## --SUPPORTING INFORMATION--

Analysis of Solid-State Reaction Mechanisms with Two-Dimensional FTIR Correlation Spectroscopy

Nataraju Bodappa,<sup>a</sup> Sarah Stepan,<sup>a</sup> Rodney D. L. Smith<sup>a,b,\*</sup>

<sup>a</sup>Department of Chemistry, University of Waterloo, 200 University Avenue W., Waterloo, Ontario, Canada N2L 3G1

<sup>b</sup>Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue W., Waterloo, Ontario, Canada N2L 3G1

Correspondence to:

rodsmith@uwaterloo.ca

| Metal ion        | vs(COO) | Vas <b>(COO)</b> Chelate | vas(COO)Ionic | vas(COO)Bridge |         | vas(COO)Monodentate |
|------------------|---------|--------------------------|---------------|----------------|---------|---------------------|
| Mn <sup>2+</sup> | 1418.4  | 1521.87                  | 1560          | 1591.72        | -       | 1687.6              |
| Fe <sup>3+</sup> | 1423.4  | 1530.62                  | 1552.6        | 1591.72        | 1614    | 1690.5              |
| Co <sup>2+</sup> | 1419.8  | 1530.7                   | 1548          | 1590.6         | -       | 1681.9              |
| Ni <sup>2+</sup> | 1409.4  | 1530.4                   | 1560          | 1580.99        | 1614.7  | 1680.3              |
| Cu <sup>2+</sup> | 1422.7  | 1501.91                  | 1547          | 1578.99        | -       | -                   |
| Zn <sup>2+</sup> | 1426.5  | 1545.0                   | 1563.5        | 1592.6         | 1629.72 | -                   |

**Table S1.** FTIR peak vibrational frequencies for asymmetric and symmetric carboxylate stretching frequencies in metal (II/III) 2ethylhexanoate films, as obtained from the multi-peak fit in figure S8.

**Table S2.** FTIR peak vibrational frequencies for the monometallic films determined from cross peak locations in the 2D-COS synchronous plots.

| 2-ethylhexanoate(film) | vas(COO)<br>(cm <sup>-1</sup> ) | νs(COO)<br>(cm <sup>-1</sup> ) | $\Delta$ (vas(COO)- vs(COO))<br>(cm <sup>-1</sup> ) | assignment  |
|------------------------|---------------------------------|--------------------------------|-----------------------------------------------------|-------------|
| Mn <sup>2+</sup>       | 1689                            | 1417                           | 272                                                 | Monodentate |
|                        | 1589                            |                                | 172                                                 | Bridge      |
|                        | 1562                            |                                | 145                                                 | lonic       |
|                        | 1520                            |                                | 103                                                 | Chelate     |
| Fe <sup>3+</sup>       | 1686                            | 1423                           | 263                                                 | Monodentate |
|                        | 1589                            |                                | 166                                                 | Bridge      |
|                        | 1552                            |                                | 129                                                 | Ionic       |
|                        | 1531                            |                                | 108                                                 | Chelate     |
| Co <sup>2+</sup>       | 1684                            | 1423                           | 261                                                 | Monodentate |
|                        | 1591                            |                                | 168                                                 | Bridge      |

|                  | 1548 |      | 117 | Ionic       |
|------------------|------|------|-----|-------------|
|                  | 1531 |      | 108 | Chelate     |
| Ni <sup>2+</sup> | 1680 | 1402 | 278 | Monodentate |
|                  | 1618 |      | 214 | Bridge      |
|                  | 1577 |      | 181 | Bridge      |
|                  | 1554 |      | 152 | Ionic       |
|                  | 1531 |      | 108 | Chelate     |
| Cu <sup>2+</sup> | 1598 | 1423 | 175 | Bridge      |
|                  | 1578 |      | 155 | Bridge      |
|                  | 1542 |      | 120 | Ionic       |
|                  | 1504 |      | 81  | Chelate     |
| Zn <sup>2+</sup> | 1591 | 1415 | 176 | Bridge      |
|                  | 1562 |      | 147 | lonic       |
|                  | 1539 |      | 124 | Chelate     |

**Table S3.** Ionic radius, electronegativity, and  $pK_a$  of aqua ion values for different metal ions.

| Metal ion        | d electron configuration | lonic radius <sup>1</sup> (Å) | Electronegativity <sup>2</sup> | <b>pK</b> a <sup>3,4</sup> | Hydration enthalpy (kJ mol <sup>-1</sup> ) <sup>5,6</sup> |
|------------------|--------------------------|-------------------------------|--------------------------------|----------------------------|-----------------------------------------------------------|
| Mn <sup>2+</sup> | d <sup>5</sup>           | 0.83                          | 1.263                          | 10.8                       | -2743                                                     |
| Fe <sup>3+</sup> | d <sup>5</sup>           | 0.645                         | 1.556                          | 2.19                       | -5764                                                     |
| Co <sup>2+</sup> | d <sup>7</sup>           | 0.745                         | 1.321                          | 9.65                       | -2904                                                     |
| Ni <sup>2+</sup> | d <sup>8</sup>           | 0.69                          | 1.367                          | 9.86                       | -2986                                                     |
| Cu <sup>2+</sup> | d <sup>9</sup>           | 0.73                          | 1.372                          | 8                          | -2989                                                     |
| Zn <sup>2+</sup> | d <sup>10</sup>          | 0.74                          | 1.336                          | 8.86                       | -2936                                                     |



**Figure S1.** IR spectra of precursor films at different photolysis time. **(A)** Mn(II) 2-ethylhexanoate, **(B)** Fe(III) 2-ethylhexanoate, **(C)** Co(II) 2-ethylhexanoate, **(D)** Ni(II) 2-ethylhexanoate, **(E)** Cu(II) 2-ethylhexanoate, and **(F)** Zn(II) 2-ethylhexanoate.



**Figure S2.** IR spectra of monometallic precursor films at different photolysis time. **(A)** Mn(II) 2-ethylhexanoate, **(B)** Co(II) 2-ethylhexanoate, **(C)** Ni(II) 2-ethylhexanoate, and **(D)** Zn(II) 2-ethylhexanoate.



**Figure S3.** FTIR spectra of monometallic transition metal 2-ethylhexanoate precursor films separated into the **(A)** first and **(B)** second stages of decay.



**Figure S4.** Two-dimensional IR correlation spectra for photochemically induced decomposition of nickel(II) 2-ethylhexanoate precursor films. (A) Synchronous and (B) disrelation plots in the first stage of decomposition. (C) Synchronous and (D) disrelation plots in the second stage of decomposition.



**Figure S5.** Two-dimensional IR correlation spectra for photochemically induced decomposition of zinc(II) 2-ethylhexanoate precursor films. (A) Synchronous and (B) disrelation plots in the first stage of decomposition. (C) Synchronous and (D) disrelation plots in the second stage of decomposition.



**Figure S6.** Two-dimensional IR correlation spectra for photochemically induced decomposition of manganese(II) 2-ethylhexanoate precursor films. **(A)** Synchronous and **(B)** disrelation plots of decomposition.



**Figure S7.** Two-dimensional IR correlation spectra for photochemically induced decomposition of cobalt(II) 2-ethylhexanoate precursor films. **(A)** Synchronous and **(B)** disrelation plots of decomposition.



**Figure S8.** Chelate and bride bidentate motifs changes in photolysis of **(A)** Mn(II), **(B)** Ni(II) **(C)** Co(II), and **(D)** Zn(II) 2-ethylhexanoate precursor films.



**Figure S9.** Asymmetric COO stretching regions of IR spectra for metal 2-ethylhexanoate precursor films at t = 0 min (before photolysis). Data shown for **(A)** Mn(II), **(B)** Fe(III), **(C)** Co(II), **(D)** Ni(II), **(E)** Cu(II), and **(F)** Zn(II) 2-ethylhexanoate.



**Figure S10.** FTIR spectra of various bimetallic transition metal 2-ethylhexanoate precursor films separated into the **(A)** first and **(B)** second stages of decay.



**Figure S11.** IR spectra of precursor films at different photolysis time. **(A)** Ni(II)Fe(III) 2-ethylhexanoate, **(B)** Ni(II)Zn(II) 2-ethylhexanoate, **(C)** Ni(II)Cu(II) 2-ethylhexanoate, **(D)** Ni(II)Co(II) 2-ethylhexanoate, and **(E)** Ni(II)Mn(II) 2-ethylhexanoate.







**Figure S13.** Two-dimensional IR correlation spectra for photochemically induced decomposition of Ni(II)Mn(II) 2-ethylhexanoate precursor films. (A) Synchronous and (B) disrelation plots in the first stage of decomposition. (C) Synchronous and (D) disrelation plots in the second stage of decomposition.



**Figure S14.** Two-dimensional IR correlation spectra for photochemically induced decomposition of Ni(II)Co(II) 2-ethylhexanoate precursor films. (A) Synchronous and (B) disrelation plots in the first stage of decomposition. (C) Synchronous and (D) disrelation plots in the second stage of decomposition.



**Figure S15.** Two-dimensional IR correlation spectra for photochemically induced decomposition of Ni(II)Cu(II) 2-ethylhexanoate precursor films. (A) Synchronous and (B) disrelation plots in the first stage of decomposition. (C) Synchronous and (D) disrelation plots in the second stage of decomposition.



**Figure S16.** Two-dimensional IR correlation spectra for photochemically induced decomposition of Ni(II)Zn(II) 2-ethylhexanoate precursor films. (A) Synchronous and (B) disrelation plots in the first stage of decomposition. (C) Synchronous and (D) disrelation plots in the second stage of decomposition.



**Figure S17.** The observed rate constant plotted against (A) hydration enthalpy of metal ions and (B) the number of d electrons in the transition metal ions.



**Figure S18.** The observed rate constant plotted against the relative percentage of ligands bound in a **(A)** chelating, **(B)** bridging, and **(C)** monodentate fashion.



**Figure S19.** Correlation plot of **(A)**  $v_{as}(COO)_{monodentate}$  versus  $pK_a$  of aqua metal ion and **(B)**  $v_{as}(COO)_{monodentate}$  versus Pauling's electronegativity.

## References

- Shannon, R. D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. *Acta Crystallogr. Sect. A* 1976, 32 (5), 751– 767. https://doi.org/10.1107/S0567739476001551.
- (2) Li, K.; Xue, D. Estimation of Electronegativity Values of Elements in Different Valence States. J. Phys. Chem. A 2006, 110 (39), 11332–11337. https://doi.org/10.1021/jp062886k.
- (3) Gilson, R.; Durrant, M. C. Estimation of the PK<sub>a</sub> Values of Water Ligands in Transition Metal Complexes Using Density Functional Theory with Polarized Continuum Model Solvent Corrections. *Dalt. Trans.* 2009, No. 46, 10223–10230. https://doi.org/10.1039/B911593E.
- (4) Galstyan, G.; Knapp, E.-W. Computing PK<sub>A</sub> Values of Hexa-Aqua Transition Metal Complexes. *J. Comput. Chem.* **2015**, *36* (2), 69–78. https://doi.org/10.1002/jcc.23764.
- (5) Johnson, D. A.; Nelson, P. G. Factors Determining the Ligand Field Stabilization Energies of the Hexaaqua 2+ Complexes of the First Transition Series and the Irving-Williams Order. *Inorg. Chem.* **1995**, *34* (22), 5666–5671. https://doi.org/10.1021/ic00126a041.
- (6) Johnson, D. A.; Nelson, P. G. Ligand Field Stabilization Energies of the Hexaaqua 3+ Complexes of the First Transition Series. *Inorg. Chem.* **1999**, *38* (22), 4949–4955. https://doi.org/10.1021/ic990426i.