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Supporting Information 

SI --- Experimental Set-Up

SII --- Physical and optical behavior of CaCO3 under XPL

CaCO3 crystals appear as bright, white and flickering dots in XPL, due to the fact that vaterite, aragonite and

calcite are anisotropic and cause birefringence.1,2 Nevertheless, the optical effect of birefringence during and

after CaCO3 nucleation, until it settles on the inner wall, is caused by constant tumbling of CaCO3 crystals within

a tube, rather than a rotating stage of the microscope during XPL experiments. At some point after their settling,

the crystals do not illuminate anymore and, as some longer time passes, start to disappear again. The explanation

for this phenomenon lies in the relationship between the transmitted light intensity of two distinct propagated

light waves3:

I=A2 sin2
(2φ )sin2( πdd

λ
( μE − μO )) (S2.1)

where 'A' is the amplitude of the light [W m-2], 'φ' the angle [°] between the resultant vibration direction that is

allowed with respect to the orientation of the polarizer, 'd' the thickness of the crystal [m], 'λ' the wavelength of

2

Figure S1: XPL‘s Experimental set-up.



the absorbed light [m] and 'µE' and 'µO' the refractive indices [-] of, respectively, the E-ray and O-ray. If φ = 90°,

then the situation, called the extinction position, occurs, meaning that the intensity of transmitted light is zero.

Contrary, when φ = 45°, the first sinusoidal-term in Equation S2.1 becomes unity. Therefore, at this angle, the

crystal is illuminated to its fullest. 

The  second  sinusoidal  term contributes  also  to  the  light  intensity  and  is  mainly  dependent  on  the  crystal

thickness (d).2 Comparing the contribution of this term using different crystal sizes explains the phenomenon

why crystals undergo the stages of flickering, brightly present and disappearance during growth (Figure S2).

3

Figure  S2:  Graph  illustrating  the  relationship  between  the
crystal size and the contribution of the 2nd sinusoidal term to
light intensity (with λ=500 and using the refractive indices for
calcite; 1.658 and 1.485).



SIII --- Definition of precipitation time

Whenever two crystals visibly settled on the wall of the tube, then this time was recorded, and was defined as the

precipitation time accordingly (Figure S3).

Based on the relationship depicted in Figure S2, we derived that crystals visible in XPL are at least 20 μm thickm thick

in the direction of the polarized light beam. Note however, that this curve holds for φ = 45°. If crystals happened

to form at or near the extinction angle, we did not observe them, since we did not rotate the setup relative to the

light source.

SIV --- Derivation of the proposed fitting equation

The initial method that used to create the model, which describes the precipitation time of CaCO 3 with respect to

ionic strength, pH, supersaturation degree and stoichiometry between Ca2+ and CO3
2-, is the 'Non-linear least

squares (nls)'. Subsequently, the initial equation was refined and simplified using a Bayesian approach (Section

V). The greatest advantage of using nls regression over many other technique is the broad range of functions that

can be fitted. One other advantage is the efficient use of data. Nonlinear regression can produce good estimates
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Figure S3: The moment at which the precipitation time is defined. Two crystals are visible: the one located
slightly at the top wall of the tube is visually sharp and was therefore settled on the upper part of the wall. The
one located in the middle of the tube is observed more vaguely under XPL and was, consequently, settled on
either the top or bottom wall (since the focus was not on either of these wall parts).



of the unknown parameters in the model with relatively small data sets.4 The disadvantage is that this technique

requires starting values or initial guesses of the still unknown parameters. To have an initial starting value for the

unknown parameters, trial and error guesses were carried out to approximate the model function to an arbitrary

line along the measured data points, where the relationship of Ω, pH and I with nucleation time were deduced

from earlier work of Nielsen (1964),5 Wolthers et al. (2012)6 and Zuddas & Mucci (1998),7 respectively, which is

described below.

The nls-method was performed within R-software environment.8 The algorithm used to converge the model is

the ‘nl2sol’ (named 'port' within R Studio). This algorithm minimized the nonlinear sum of squares using an

analytical Jacobian, which is used in reaction kinetics quite often.9-11 It assumes that there is a certain amount of

variables 'X' and an equivalent number of nonlinear "residual functions" 'F(X)' and the algorithms' task is to find

a solution 'X' that minimizes the Euclidean norm of  '| | F(X) | |'.12 Bates & Watts (1988)13 and Chambers (1992)14

provide more information about the used algorithm and associated mathematics behind it.

The  non-linear  model  that  was  implemented to  fit  the  measured  data  was based  on  four  dependent  and  8

independent (fitting) parameters:

           Nucleation time(raq , Ωcal , pH , I , i , j , k , l , m , n , o , p) =

(( raq
i
+ j

raq∗ k
+raq

l
+m)∗ ((√Ωcal )−1 )

n
∗ ( pH o )∗ (1

I ))∗ p (S4.1)

 

where “p” consists of several parameter constants (“p1, p2...”) (Table S4.1).

NOTE: For clarity, the letters indicating the fitting parameters are denoted by different letters compared to

Equation 4, as they have different values due to the fact that Equation S4.1 is written in the initial different form.
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Table S4.1: Parameter values used in the ‘nls’-model.

Parameter Model Value

m [-] *300

n [-] -7.0

o [-] -10.99

p [M sec] 2.3 * 109 * 0.148 * 4.5625 * 109

* Except at Ω = 50, where ‘m’ = 0

Evaluation of the   supersaturation (Ω) term   

Different rate laws for CaCO3 crystal growth regarding supersaturation have been proposed in the past. One that

is  often  used  to  fit  experimental  data  relates  crystal  growth  to  supersaturation 5,15,16 and  this  relationship  is

assumed for CaCO3 precipitation as well:

J g=k∗(Ωcal−1)
n (S4.2)

where 'Jg' is the precipitation rate [m3 s-1], 'k' is the rate constant [m3 s-1] and 'n' is an empirical reaction order [-].

Basically, the CaCO3 precipitation rate increases as the supersaturation of CaCO3 in the solution increases. A

similar relation to link Ωcal to precipitation time has been used in this research. For the results of this study, Ωcal

related to precipitation time through the square root of Ωcal, especially if 10 < Ωcal < 50 (Figure S4.1). Therefore,

the following dependency was applied: 

precipitationtime=p1∗(√Ωcal−1)
n

(S4.3)

where 'p1', in Equation S4.3, has a fitted value of 2.3*109 [sec] and n = -7.0 delineated by the blue fit in Figure

S4.1.  Equation  S4.2  would  be  better  applicable  if  Ωcal ≥ 150.  Potentially,  this  is  due  to  a  switch  in  the

precipitation  mechanism above  Ωcal >  100 from nucleation  and growth  to  nucleation  and aggregation  (and
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transformation). Accordingly, parameter 'p1' in Equation S4.3 was adjusted by one order in magnitude, to a value

of 2.3*1010 at Ωcal = 200, resulting in a better fit.

NOTE: one extra precipitation time measurement was conducted at Ωcal = 30 in order to find an indication of

the relationship between Ω and precipitation time, as plotted in Figure S4.1.

Evaluation of the pH term

It is commonly believed that the effect of pH on CaCO3 precipitation time is similar to the pH impact on crystal

growth.17 Wolthers et al. (2012)6 pointed out that there is an exponential relationship between pH and growth of

individual CaCO3 crystals. The exponent they used to model the calcite growth rate was -10.99. Considering the

7

Figure S4.1: Relation between Ω and precipitation time shown based on conducted experiments in this research. One extra
measurement has been done at Ω = 30, stoichiometry ~ 1, pH ~ 11 and I ~ 0.19-0.20 M. The blue curve represents the

dependency between Ω and precipitation time as stated in Equation S4.3, whereas the black fit represents an exponential
dependency without any square root as can be delineated from Equation S4.2. The former one seems to have a better fit

whenever Ω < 150. The better fit is further supported by a smaller value of least squares.



fact that the pH mainly effects the solubility of CaCO3, our precipitation time must have a similar trend with pH

as shown in Figure S4.2. The value of -10.99 was therefore adopted in the exponent to investigate the relation

between pH and precipitation time (Figure S4.2). Concluding from Figure S4.2, the CaCO3 precipitation happens

roughly a hundred times faster at pH 11 than at pH 7.5. A similar relation was also found by Gómez-Morales et

al. (1996).18

Evaluation of the I  onic Strength term  

Zuddas & Mucci (1998)7 investigated the relationship between ionic strength and precipitation rate. The results

obtained in their  study reveal that the partial  reaction order with respect to the carbonate ion concentration

increases linearly as a function of total ionic strength. A one- to four-fold increase in the partial reaction order is

expected upon a ten-fold increase in ionic strength.

However, this relationship is very specific for NaCl as the background electrolyte and this linear expression is

only valid if ~ 0.05 < I < 1.0 M. Beyond this range, the activity for NaCl does not behave linear anymore with

increasing or decreasing ionic strength.19 Since we worked at 0.2M NaCl, the relationship found by Zuddas &

Mucci (1998)7 was used here to represent the effect of ionic strength on precipitation time obtained in XPL

precipitation experiments. Conversion factors, to correct our measurement times for minor variations in ionic

strength in our experiments, are found in Table S4.2. These conversion factors were based on the slope of the
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Figure S4.2: The effect that pH has on the precipitation time on a linear scale (left) and a
logarithmic scale (right).



line in Figure 6 in the study of Zuddas & Mucci (1998)7, which relates the kinetic impact of ionic strength

variations, and has a slope of 3.7.

Table S4.2: Used conversion factor to correct for differences in ionic strength among the different solutions.

Solution nr. Calculated conversion factor

2.1 2.79

3.1 3.19

4.1 3.51

5.1 4.58

5.6 1.21

5.7 *6.23

6.1 1.14

6.5 1.54
*Slightly outside linear part according to Garrels & Christ (1965).

Yet, the figure relates ionic strength to a rate rather than a time. If a rate is positively correlated to ionic strength

then the precipitation time is inversely related to ionic strength. This inverse relation exists because, for example,

a higher chance of collision between two ions translates to a faster nucleation process, leading to a decline of

induction time and ultimately affects our measured precipitation time. Therefore, the term in Equation S4.1. that

includes ionic strength, is characterized by an inverse relation, where the associated parameter 'i' is assumed to

have a value of 6.757 M-1 and the inverse number (0.148 M) can be found as a part (‘p2’) of parameter 'p' in the

final equation (Equation S4.1) in order to account for differences in ionic strength at extreme stoichiometric

conditions. The derivation of the constant value of ‘i’ was obtained via (where 0.7M was used as an example, but

any other value of I would lead to the same result):

0.7
0.2

=3.5

1
0.2i

−
1

0.7 i
+
(0.2∗3.7)

3.5
−(0.2∗3.7) = 0, so

i=6.757 [M−1
]
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Ultimately, parameter “i”, “j”, “k” and “l” of Equation S4.1 were computed in order to fit the measured data as

all other fitting parameters were assigned with a constant value based on past research described above (Table

S4.1). ‘p3’ = 4.5625*10-9 was introduced as an empirical value (factor) to complete the fitting with p = p1 * p2 *

p3.

nls results

Using the nls method, parameter values were obtained for “i”, “j”, “k” and “l” (Equation S4.1) for each dataset

(Ω) (Table S4.3); the fit of the initial equation to the experimental data is shown in Figure S4.3.

Table S4.3: Parameter values obtained by nls-fitting of Equation S4.1.

Ω i j k l m

200 0.607 0 0.0265 0.670 300

150 1.230 0.0126 0.0009 0.991 300

100 1.029 0.00118 0.000183 1.261 300

85 0.943 0.00139 0.00381 1.566 300

70 2.562 0.818 1.184 1.612 300

50* 2.562 0.610 0.902 1.80 0
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However, Equation S4.1 and Table S4.3 show that there was a potential co-linearity between “j” and “k”. This

was further investigated using a Bayesian approach in order to simplify the proposed underlying modelling

equation (Equation S4.1). Additionally, the ‘nls’-approach did not allow us to calculate the confidence interval

for the overall equation and was solved by using the Bayesian approach.
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Fig S4.3: The relationship between induction time and stoichiometry at different supersaturation degrees. Crosses are
precipitation times measured using XPL-OLM; lines are initial fits, obtained with the nls method. Final fits to this data set,

obtained after a refinement using a Bayesian approach, are shown in Figure 5 in the main text.



12

Figure S4.4: Matrix correlation plot corresponding to Equation S4.1 and the dataset with Ω = 100.



SV --- Bayesian Statistics

The initial  proposed  equation obtained  by nls  (Equation S4.1)  was  simplified (Equation  S4.4)  by applying

Bayesian statistics in order to reduce the amount of fitting parameters. The Bayesian modelling approach allows

for evaluation of the parameter sensitivities for those that  relate the stoichiometry to precipitation time. For

clarity,  we  relabelled  the  various  parameters  from  Equation  S4.1.  The  co-linearity  between  “b”  and  “c”

(previously  “j”  and  “k”)  was  clearly  revealed  as  is  depicted  in  the  matrix  correlation  plot  (Figure  S4.4).

According to Figure S4.4, the correlation between parameter “b” and “c” is 1, which means that they show a

very strong colinearity. Therefore, the proposed equation (Equation S4.1) was rewritten in such a way that there

is no colinearity between these two parameters; [c = 1.2b]. Also, “m” was removed from Equation S4.1 in the

process, as the improvement of fitting was very little, resulting in a more simplified equation for the precipitation

time (see also Equation 4 in main text): 

t nucleation (raq ,Ωcal , pH , IS ,a ,b , c , d , e , f ) =

(( raq
a
+b

raq∗1.2 b
+raq

c )∗( (√Ωcal )−1 )
d
∗( pH e )∗( 1

IS ))∗f

(S4.4)

NOTE: In Equation S4.4, the fitting parameters are assigned by different letters, as they have different values

compared to Equation S4.1.
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Figure S5: Predictive inference plots for each omega dataset. The red line gives the best fit, while the black line shows the average 
of 3000 randomly chosen MCMC computations; the dark grey envelopes indicate the ± 1 standard deviation and the light grey the
min-max probability fields.



Table S5: Statistics output for each dataset of omega-value.

The initially allowable lower and upper boundaries for the unknown fitting parameters “a”, “b” and “c” in the

Bayesian approach were set at 0.6, 10-3, 0.6 and 2.6, 1.0 and 1.8, respectively. Table S5 and Figure S5 show the

final results from the parameter evaluation.

In most cases, the measured precipitation times related well to the precipitation times calculated using Equation

S4.4. At Ω = 50, the estimates and associated standard errors show slightly higher p-values, but are still well

below the accepted cutoff (P < 0.05). Also, the parameter estimates and associated standard errors are a bit less

accurate  compared  to  the  ones  computed  for  larger  Ω-values,  as  the  dataset  of  Ω  =  50  contains  fewer

measurements. However, the “b” parameter at Ω = 150 shows a large p-value, because the Ca-limiting solutions

(raq < 1) do not show a significant increase in precipitation time as was the case at other Ω-values,  making it the

only result that implies weak evidence against the null-hypothesis (e.g. relationship between measurements and

fit). 

Generally, as depicted from Table S5, the “b” and “c” parameter value increased with decreasing Ω, while the

“a” parameter does not show any definite response to Ω. Figure S5 reveals that some measurements fall outside
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the  minimum-maximum  probability  fields.  Causative  might  be  the  measurement  error  that  has  not  been

incorporated in the model.
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SVI --- Three-hour time range of the CaCO3 particle size evolution (both intensity and number vs. size

plots) at raq = 1
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Figure S6: The relative intensity of scattered light [%] vs particle size [nm] (a-d) and the relative amount of particles (number)
plotted against the size of particles [nm] (e-h), at stoichiometric conditions at different Ω cal (i.e. 70, 100, 150 and 200) for the first
three hours of the precipitation reaction. Note that for Ωcal = 100, only five measurements were performed (instead of seven).



SVII --- The 15-hour time range of the CaCO3 particle size evolution (number vs. size plots) at raq = 1 at

different Ω
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Figure S7: Measurements were taken for 15 consecutive hours. The upper and bottom figure consist of measurements

taken roughly every 30 minutes, while the time interval for the middle one was set at roughly 10 minutes. The darkest
gray-scale  color represents  the first  time step and subsequential  time steps become more and more  brighter.  The
preference between both nucleation and growth pathways may play a role as small precipitate-sized particles (30 – 100
nm) were not seen at Ω > 100 and their absence may indicate that nucleation and growth occur by aggregation of
prenucleation clusters.



SVIII --- one-hour time range of the CaCO3 particle size evolution (both relative intensity and number vs.

size plots) at raq ≠ 1
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Figure S8: The relative intensity of scattered light [%] vs particle size [nm] (a-c) and the relative amount of particles (number)
plotted against the size of particles [nm] (d-f), at different stoichiometric conditions at an Ω cal = 100 for the first hour of the
precipitation reaction. In all cases, the yellow color represents a rough initial measurement, the green colour after approximately
half an hour and the purple colour represents a measurement after one hour.



SIX --- Three-hour time range of the CaCO3 particle size evolution with time (both relative intensity and

number vs. size plots) at raq ≠ 1 
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Figure S9: The relative intensity of scattered light [%] vs particle size [nm] (a-c) and the relative amount of particles (number)
plotted against the size of particles [nm] (d-f), at different stoichiometric conditions at an Ωcal = 100 for the first three hours of the
precipitation reaction. Note that for Ωcal = 100 at raq ≈ 1, only five measurements were performed (instead of seven). Also, some
peaks may overlap.



SX --- Thermodynamic stability over time for the systems we used in our MD simulations

Note that the curves in Figure S10 contain only the enthalpic contribution to the overall free energy. That all

curves are more or less constant in time means that the enthalpy is not changing in time. However, since we

know that  the  particle  size,  in  our  simulations  starting  from fully  solvated  ions,  continues  to  increase,  the

entropic term in the total free energy will change.
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Figure S10: Shows the evolution of the systems’ relative thermodynamic stability according to Equation 3 in the main text, when 
starting with one large particle (a) and starting with fully solvated ions (b).



SXI --- Nanoparticle stoichiometry evolution (simulations that started with a cluster)

To further investigate the evolution of the MD systems that started with a cluster, we highlight here the evolution

of the stoichiometry of the total particle, its outer layer (5.8 Å) and the solution (Figure S11).

The stoichiometric system does not shed many Ca2+ or CO3
2- ions during the 20 ns of simulation time (Figure

S11a). Within the first 2 ns, the particle shed the largest amount of ions, in order to achieve a stable particle

(Figure S10). Thereafter the particle started to build in some ions again (i.e growth). However, we observed for

the non-stoichiometric  systems that  excess  ions  were shed in  much larger  amounts  during the first  ns  and

continued to shed some more during the remainder of our simulation time. Noteworthy, is that the amount of

CO3
2- shed from the particle in the raq = 4.85 system, slowly increased over time, while the amount of Ca2+ shed

in the raq = 0.21 system remained approximately the same. The starting configuration of the non-stoichiometric

systems had some ions in solution surrounding the particle, to maintain electro-neutrality. For raq = 0.21, 4 Ca2+-

ions and 17 CO3
2--ions (thus, a stoichiometry in solution of 0.24) were initially in the solution surrounding the

particle and vice versa for raq = 4.85 (a stoichiometry in solution of 4.25). Therefore, it was possible for the raq =

0.21 system, to take up some Ca2+ ions from the solution (Figure S11c). 

Only the outer layer of the particle in our simulations was given a certain stoichiometry, while the inner particle

was built with a Ca2+:CO3
2- of 1 and was assumed to have the most stable configuration. Therefore, we also

investigated the changes occurring in the external layer of the particle (Figure S11b). Particles containing a non-

stoichiometric external layer tend to shed all the ions in their respective external layer, before they could initiate

their growth.

The stoichiometry of the solution surrounding the particle stayed fairly constant throughout the entire 20 ns and

the conditions in terms of stoichiometry were maintained (Figure S11c). The variations in stoichiometry of the

bulk solution for the stoichiometric system with every ns of simulation time is due to the fact that there are

initially no ions present in solution (for convenience stated as 1 in Figure S11c; e.g. the limit of Ca 2+ and CO3
2-

ions going both to zero is 1) and that the addition of one ion has a relatively large effect on the stoichiometry. For
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the  non-stoichiometric  systems,  the  initial  amount  of  ions  in  the  bulk  solution  was  much  larger.  The

stoichiometry of the outer layer of the particles varied over time for the non-stoichiometric particles (Figure

S11d).  For  raq =  4.85,  atoms  were  shed  for  the  first  6  ns  of  simulation  time,  in  order  to  reach  a  more

thermodynamically favourable particle (nearly stoichiometric), before growth by addition of ions occurred. For

raq = 0.21, atoms were shed throughout the entire 20 ns of simulation  time and, therefore, required more time to

obtain more favourable conditions for subsequent growth. 
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Figure S11: Illustrates the evolution of the particle created for the MD simulations with regards to the amount of ions it contained
and the stoichiometry. Ca2+ and CO3

2- atoms are shed from the particle (a), and are mostly shed from the predefined outer layer
(b). As a consequence, the stoichiometry of the solution surrounding the particle is variable with time (c) and of the outer layer as
well (d). In Figure a and b, the CO3

2- (for raq = 0.21) and Ca2+ (for raq = 4.85) show the largest variation respectively.



SXII --- Stoichiometry evolution for simulations that started with fully solvated ions

Expectedly, the stoichiometry evolution for the stoichiometric system stayed fairly constant (raq = 1.42 after 20

ns of simulation time) and, thus, relatively stoichiometric throughout the entire simulation time. However, the

systems that  were initially  non-stoichiometric  became more  extreme in their  non-stoichiometry,  while  their

relative stabilities remained more or less constant (Figure S10). The system with raq = 1.30, evolved to raq = 2.76

after 20 ns of simulation time and the system with raq = 0.77, evolved to raq = 0.37. Potentially, the difference in

solution composition affected the systems differently.

25

Figure S12: Stoichiometry evolution of the solution for the systems starting with fully solvated ions.



SXIII --- Ultra Pure Water (UPW) DLS measurements versus CaCO3 DLS measurements

Pure water may show size distributions, because a difference in refractive index is defined for the measured

system. However, such peaks for pure water only occur as a result of noise-on-noise. Typical count rates for a

clean solution (i.e. pure water) are between 2 and 20 kcps,20 but it depends also on the values for the absorption

(in some specific cases such as gold particles) and the refractive index. Our measurements (for example the

measurements of Figure 1) contained much larger count rates than 20 kcps. For the smallest Ω-value (= 70), we

have derived count rates of 50 – 100 kcps. For the experiments conducted with Ω = 100, 150 and 200, we have

count rates of 100 – 500 kcps. We have performed additional measurements of ultra pure water (UPW) (Figure

S13.1)  with  the  same  values  for  absorption  and  refractive  index  as  those  for  the  CaCO3 precipitation

experiments.

The  results  below  show  both  similarities  and  differences  with  the  CaCO3 precipitation  experiments.  The

autocorrelation functions of UPW are roughly in the same range (correlation coefficient) as those of the CaCO 3

experiments  (Figure  S13.2).  The  fact  that  the  physico-chemical  conditions  of  the  conducted  CaCO 3 DLS

experiments, related to Figure 1, is near or at the limit of what the Zetasizer Nano ZS can measure (lower limit in

terms of concentrations), it is not surprising that they fall in the same range. However, the position of the peaks

for the particle size intensity distribution of our experiments varies significantly from those of UPW. UPW

shows invariably two peaks; one at the 1 – 10 nm size and another one at approximately 500 nm. This is in

accordance with an ongoing debate about the formation of ‘water clusters’.21-27 Another typical feature of UPW is

that the correlation function shows intermittent jumps and an overall flat line (Nobbmann, 2014), which is a

result of noise-on-noise. This is in accordance of what we observed as well (topleft figure below).

The CaCO3 DLS experiments show much less consistency in comparison with UPW water, with regards to the

size range at which these intensity distribution peaks occur. For example, at every time step in Ωcal = 70, intensity

peaks within the 1 – 10 nm range are observed, but the intensity peaks at the larger size range are not invariable

at all (Figure 1a). At Ωcal = 100, the particle size intensity distribution peaks for the 1 – 10 nm range are absent
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for each time step (Figure 1b). Only for Ωcal = 200, the position of the particle size intensity distribution peaks

coincide with those of UPW (Figure 1d versus Figure S13.1), but the intensity itself is quite large (> 15 %) if we

compare them to the ones we observed for UPW (< 10 %).

27

Figure S13.1: Illustrates 5 repeat measurements of UPW, which are defined by color. The RI for the measured material in the
dispersant (water) was set at 1.55 (i.e. the same value as calcite). Topleft: Autocorrelation functions. Topright: Diffusion coefficient
intensity distribution. Bottomleft: Particle size intensity distribution. Bottomright: Particle size number distribution.
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Figure S13.2: Illustrates the autocorrelation functions for the same measurements as
those presented in Figure 1 in the submitted manuscript. The initial Ωcal increases from
top to bottom; 70, 100, 150, 200.
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	The initial proposed equation obtained by nls (Equation S4.1) was simplified (Equation S4.4) by applying Bayesian statistics in order to reduce the amount of fitting parameters. The Bayesian modelling approach allows for evaluation of the parameter sensitivities for those that relate the stoichiometry to precipitation time. For clarity, we relabelled the various parameters from Equation S4.1. The co-linearity between “b” and “c” (previously “j” and “k”) was clearly revealed as is depicted in the matrix correlation plot (Figure S4.4). According to Figure S4.4, the correlation between parameter “b” and “c” is 1, which means that they show a very strong colinearity. Therefore, the proposed equation (Equation S4.1) was rewritten in such a way that there is no colinearity between these two parameters; [c = 1.2b]. Also, “m” was removed from Equation S4.1 in the process, as the improvement of fitting was very little, resulting in a more simplified equation for the precipitation time (see also Equation 4 in main text):
	NOTE: In Equation S4.4, the fitting parameters are assigned by different letters, as they have different values compared to Equation S4.1.
	The initially allowable lower and upper boundaries for the unknown fitting parameters “a”, “b” and “c” in the Bayesian approach were set at 0.6, 10-3, 0.6 and 2.6, 1.0 and 1.8, respectively. Table S5 and Figure S5 show the final results from the parameter evaluation.
	In most cases, the measured precipitation times related well to the precipitation times calculated using Equation S4.4. At Ω = 50, the estimates and associated standard errors show slightly higher p-values, but are still well below the accepted cutoff (P < 0.05). Also, the parameter estimates and associated standard errors are a bit less accurate compared to the ones computed for larger Ω-values, as the dataset of Ω = 50 contains fewer measurements. However, the “b” parameter at Ω = 150 shows a large p-value, because the Ca-limiting solutions (raq < 1) do not show a significant increase in precipitation time as was the case at other Ω-values, making it the only result that implies weak evidence against the null-hypothesis (e.g. relationship between measurements and fit).
	Generally, as depicted from Table S5, the “b” and “c” parameter value increased with decreasing Ω, while the “a” parameter does not show any definite response to Ω. Figure S5 reveals that some measurements fall outside the minimum-maximum probability fields. Causative might be the measurement error that has not been incorporated in the model.

