Highly enantioselective addition of *N*-2,2,2-trifluoroethylisatin ketimines to ethylene sulfonyl fluoride

Jie Chen, Dong-yu Zhu, Xue-jing Zhang*, Ming Yan*

Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of

Pharmaceutical Sciences,

Sun Yat-sen University, Guangzhou 510006, China.

E-mail: <u>yanming@mail.sysu.edu.cn</u>; zhangxj33@mail.sysu.edu.cn

Supporting Information

Table of Contents

1. HPLC spectra of products 3a-3v	S2
2. HPLC spectra of products 4, 5 and 6	S 8
3. NMR spectra of products 3a-3v , 4 , 5 and 6	S 9
4. The X-ray crystal data of product 3d	S50
5. The X-ray crystal data of product 5	S52

1. HPLC spectra of products 3

(R,E)-4,4,4-Trifluoro-3-((1-methyl-2-oxoindolin-3-ylidene)amino)butane-1-sulfonyl fluoride (3a)

(R,E)-3-((1-Allyl-2-oxoindolin-3-ylidene)amino)-4,4,4-trifluorobutane-1-sulfonyl fluoride (3b)

(R,E) - 3 - ((1 - Benzyl - 2 - oxoindolin - 3 - ylidene) amino) - 4, 4, 4 - trifluorobutane - 1 - sulfonyl fluoride (3c)

(*R*,*E*)-4,4,4-Trifluoro-3-((1-(4-methoxybenzyl)-2-oxoindolin-3-ylidene)amino)butane-1-sulfonyl fluoride (3d)

(*R*,*E*)-4,4,4-*Trifluoro-3-((1-(4-nitrobenzyl)-2-oxoindolin-3-ylidene)amino)butane-1-sulfonyl fluoride* (3e)

(R,E) - 4,4,4 - Trifluoro - 3 - ((2 - oxo - 1 - phenylindolin - 3 - ylidene) amino) but an e - 1 - sulfonyl fluoride (3f)

(*R*,*E*)-4,4,4-Trifluoro-3-((1-(naphthalen-2-ylmethyl)-2-oxoindolin-3-ylidene)amino)butane-1-sulfonyl fluoride (3g)

(R,E)-4,4,4-Trifluoro-3-((2-oxoindolin-3-ylidene)amino)butane-1-sulfonyl fluoride (3h)

(*R*,*E*)-4,4,4-Trifluoro-3-((5-fluoro-1-methyl-2-oxoindolin-3-ylidene)amino)butane-1-sulfonyl fluoride (3i)

(*R*,*E*)-3-((5-Chloro-1-methyl-2-oxoindolin-3-ylidene)amino)-4,4,4-trifluorobutane-1-sulfonyl fluoride (3j)

(*R*,*E*)-3-((5-Bromo-1-methyl-2-oxoindolin-3-ylidene)amino)-4,4,4-trifluorobutane-1-sulfonyl fluoride (3k)

(R,E)-3-((1,5-Dimethyl-2-oxoindolin-3-ylidene)amino)-4,4,4-trifluorobutane-1-sulfonyl fluoride (31)

(*R*,*E*)-4,4,4-Trifluoro-3-((5-methoxy-1-methyl-2-oxoindolin-3-ylidene)amino)butane-1-sulfonyl fluoride (3m)

(*R*,*E*)-4,4,4-Trifluoro-3-((6-fluoro-1-methyl-2-oxoindolin-3-ylidene)amino)butane-1-sulfonyl fluoride (3n)

(*R*,*E*)-3-((6-Chloro-1-methyl-2-oxoindolin-3-ylidene)amino)-4,4,4-trifluorobutane-1-sulfonyl fluoride (30)

(*R*,*E*)-3-((6-Bromo-1-methyl-2-oxoindolin-3-ylidene)amino)-4,4,4-trifluorobutane-1-sulfonyl fluoride (3p)

(*R*,*E*)-4,4,4-Trifluoro-3-((7-fluoro-1-methyl-2-oxoindolin-3-ylidene)amino)butane-1-sulfonyl fluoride (3q)

(*R*,*E*)-3-((7-Chloro-1-methyl-2-oxoindolin-3-ylidene)amino)-4,4,4-trifluorobutane-1-sulfonyl fluoride (3r)

(*R*,*E*)-3-((7-Bromo-1-methyl-2-oxoindolin-3-ylidene)amino)-4,4,4-trifluorobutane-1-sulfonyl fluoride (3s)

(R,E)-3-((1,7-Dimethyl-2-oxoindolin-3-ylidene)amino)-4,4,4-trifluorobutane-1-sulfonyl fluoride (3t)

(*R*,*E*)-4,4,4-Trifluoro-3-((1,5,7-trimethyl-2-oxoindolin-3-ylidene)amino)butane-1-sulfonyl fluoride (3u)

(*R*,*E*)-3-((5,6-Difluoro-1-methyl-2-oxoindolin-3-ylidene)amino)-4,4,4-trifluorobutane-1-sulfonyl fluoride (3v)

2. HPLC spectra of products 4 and 5

(R)-3-(Trifluoromethyl)isothiazolidine 1,1-dioxide (4)

(R)-4,4,4-Trifluoro-3-(((S)-1-methyl-2-oxoindolin-3-yl)amino)butane-1-sulfonyl fluoride (5)

(S)-3-((R)-1,1-dioxido-3-(trifluoromethyl)isothiazolidin-2-yl)-1-methylindolin-2-one (6)

3. NMR spectra of products

S24

S30

S35

S41

 1 H, 13 C{1H} and 19 F { 1 H, 13 C}NMR spectra of 6

NOESY spetra of product 6

4. The X-ray crystal data of product 3d

The absolute configuration of **3d** was determined by single crystal X-ray analysis. (CCDC 2033149 contains the supplementary crystallographic data for this structure. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre)

X-ray structure of product 3d (ellipsoid contour at 50% probability)

Experimental

Single crystals of **3d** ($C_{20}H_{18}F_4N_2O_4S$) were grown by slow evaporation in petroleum ether/ $CH_2Cl_2 = 8 / 1$ under air atmosphere. A suitable crystal was selected and mounted on a XtaLAB Synergy R, DW system, HyPix diffractometer. The crystal was kept at 100.00(10) K during data collection. Using Olex2, the structure was solved with the ShelXS structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation.

Crystal structure determination of 3d

Crystal Data for C₂₀H₁₈F₄N₂O₄S (M =458.42 g/mol): monoclinic, space group P21 (no. 4), a = 4.90510(10) Å, b = 18.8099(3) Å, c = 10.9514(2) Å, β = 95.3540(10)°, V = 1006.02(3) Å3, Z = 2, T = 100.00(10) K, μ (CuK α) = 2.054 mm-1, Dcalc = 1.513 g/cm3, 20562 reflections measured (8.108° $\leq 2\Theta \leq 153.936^{\circ}$), 4168 unique (Rint = 0.0479, Rsigma = 0.0328) which were used in all calculations. The final R1 was 0.0355 (I > 2σ (I)) and wR2 was 0.0982 (all data).

Crystal data and structure refinement for 3d.

Empirical formula	$C_{20}H_{18}F_4N_2O_4S$
Formula weight	458.42
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	P21
a/Å	4.90510(10)
b/Å	18.8099(3)

c/Å	10.9514(2)
α/°	90
β/°	95.3540(10)
$\gamma^{/\circ}$	90
Volume/Å ³	1006.02(3)
Z	2
$\rho_{calc}g/cm^3$	1.513
µ/mm ⁻¹	2.054
F(000)	472.0
Crystal size/mm ³	$0.3\times0.15\times0.05$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	8.108 to 153.936
Index ranges	$-6 \le h \le 6, -23 \le k \le 23, -13 \le l \le 12$
Reflections collected	20562
Independent reflections	$4168 \ [R_{int} = 0.0479, R_{sigma} = 0.0328]$
Data/restraints/parameters	4168/1/281
Goodness-of-fit on F ²	1.073
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0355, wR_2 = 0.0970$
Final R indexes [all data]	$R_1 = 0.0365, wR_2 = 0.0982$
Largest diff. peak/hole / e Å ⁻³	0.30/-0.36
Flack parameter	-0.025(10)

5. The X-ray crystal data of product 5

The absolute configuration of **5** was determined by single crystal X-ray analysis. (CCDC 2033148 contains the supplementary crystallographic data for this structure. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre)

X-ray structure of product 5 (ellipsoid contour at 50% probability)

Experimental

Single crystals of **5** ($C_{13}H_{14}F_4N_2O_3S$) were grown by slow evaporation in petroleum ether/ $CH_2Cl_2 = 8 / 1$ under air atmosphere. A suitable crystal was selected and mounted on a XtaLAB Synergy R, DW system, HyPix diffractometer. The crystal was kept at 100.00(10) K during data collection. Using Olex2, the structure was solved with the ShelXS structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimisation.

Crystal structure determination of 5

Crystal Data for $C_{13}H_{14}F_4N_2O_3S$ (M =354.32 g/mol): orthorhombic, space group P212121 (no. 19), a = 5.25068(4) Å, b = 12.41283(9) Å, c = 22.58089(17) Å, V = 1471.729(19) Å3, Z = 4, T = 100.00(10) K, μ (CuK α) = 2.554 mm-1, Dcalc = 1.599 g/cm3, 15352 reflections measured (7.83° $\leq 2 \Theta \leq 153.726°$), 3066 unique (Rint = 0.0295, Rsigma = 0.0186) which were used in all calculations. The final R1 was 0.0319 (I > 2 σ (I)) and wR2 was 0.0835 (all data).

Crystal data and structure refinement for 5.

Empirical formula	$C_{13}H_{14}F_4N_2O_3S$
Formula weight	354.32
Temperature/K	100.00(10)
Crystal system	orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
a/Å	5.25068(4)
b/Å	12.41283(9)
c/Å	22.58089(17)
α /°	90

β /°	90
γ /°	90
Volume/Å ³	1471.729(19)
Z	4
$\rho_{calc}g/cm^3$	1.599
μ /mm ⁻¹	2.554
F(000)	728.0
Crystal size/mm ³	0.2 $ imes$ 0.05 $ imes$ 0.05
Radiation	CuK a ($\lambda = 1.54184$)
2Θ range for data collection/°	7.83 to 153.726
Index ranges	-5 \leqslant h \leqslant 6, -15 \leqslant k \leqslant 15, -28 \leqslant l \leqslant 28
Reflections collected	15352
Independent reflections	$3066 [R_{int} = 0.0295, R_{sigma} = 0.0186]$
Data/restraints/parameters	3066/0/220
Goodness-of-fit on F ²	1.098
Final R indexes $[I \ge 2 \sigma (I)]$	$R_1 = 0.0319, wR_2 = 0.0818$
Final R indexes [all data]	$R_1 = 0.0333, wR_2 = 0.0835$
Largest diff. peak/hole / e Å ⁻³	0.34/-0.34
Flack parameter	-0.012(8)