Supporting information

Surface Engineering of Perovskites for Rechargeable Zinc-air Battery Application

Maria Christy^a, Hashikaa Rajan^a, Hwawoo Lee ^a, Iqra Rabani^c, Sang Man Koo^d, Sung Chul Yi _{a, b,*}

^aDepartment of Chemical Engineering, Hanyang University, 222 Wangsimni ro, Seongdonggu, Seoul 04763, Republic of Korea.

^bDepartment of Hydrogen and Fuel cell technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.

^cDepartment of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, Republic of Korea.

^dDepartment of Chemical Engineering, Hanyang University, 222 Wangsimni ro, Seongdonggu, Seoul 04763, Republic of Korea.

*Corresponding author:

Email: scyi@hanyang.ac.kr (Prof. Sung Chul Yi)

Contents

XPS survey and XRD	3
High-resolution XPS Figures	4
FESEM micrographs	5
HRTEM micrographs	6
HRTEM micrographs	7
BET N ₂ -adsorption desorption isotherms	8
Zinc air battery performance	9
Zinc air battery performance of different composites	10
ORR polarization	11
ORR polarization comparison	12
Chronoamperometry	13
OER polarization comparison	14
ORR and OER polarization	14
ECSA	15
Table 1	16
Table 2	17

Figure S1



Figure S1. (a) XPS survey of LSC/LDH (75/25); (b) XRD patterns of pristine and LSC prepared by sintering at 1000° and (c) XRD patterns of LSC/LDH (50/50), LSC/LDH (25/75) and LSC/LDH (75/25) with respect to LSC.

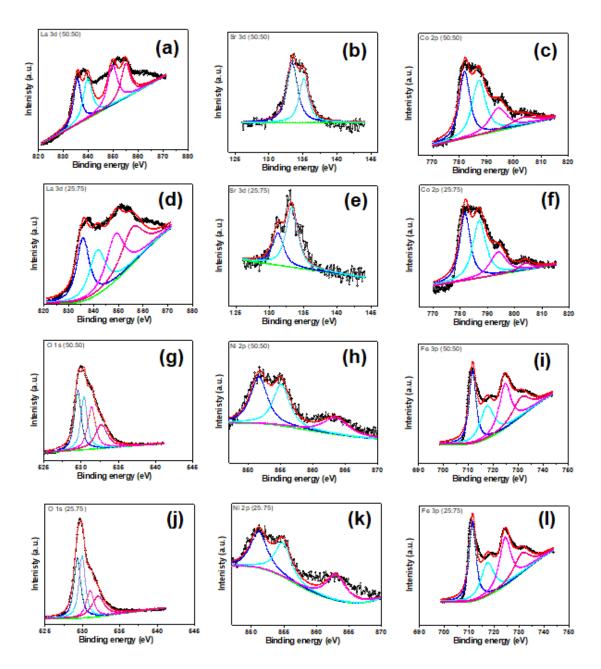


Figure S2. High-resolution deconvolution peaks of (a-f) LSC/LDH (50/50) and (g-l) LSC/LDH (25/75) from XPS measurement.

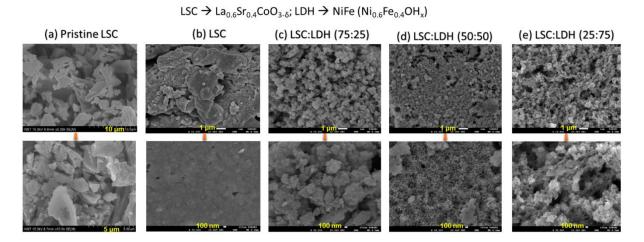


Figure S3. FESEM micrographs of (a) as-synthesized pristine LSC; (b) LSC; (c) LSC/LDH (75/25), (d) LSC/LDH (50/50) and (e) LSC/LDH (25/75) at different magnifications.

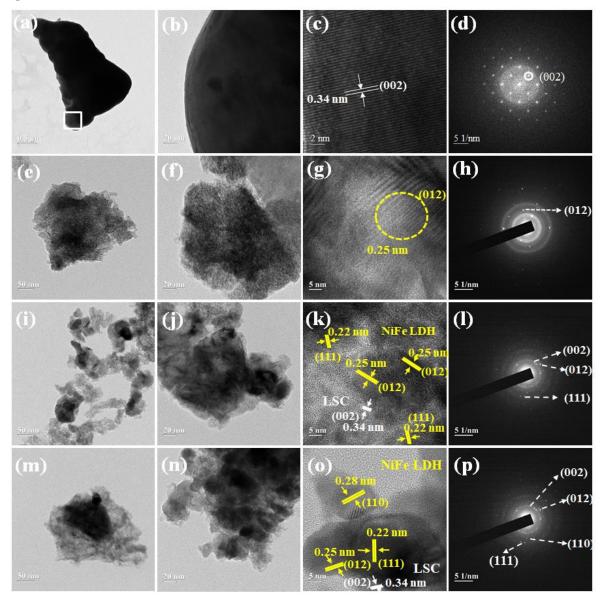


Figure S4. HREM micrographs of (a-d) LSC; (e-h) LSC/LDH (75/25), (i-l) LSC/LDH (50/50) and (m-p) LSC/LDH (25/75) and the corresponding SAED pattern.

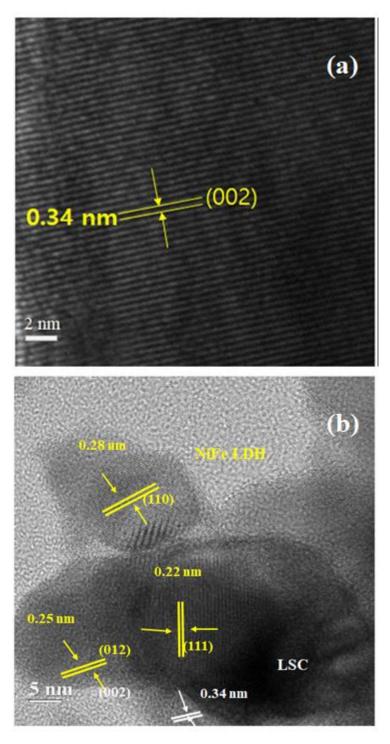


Figure S5. High resolution TEM micrographs of (a) LSC and (b) LSC/LDH (25/75) composite.

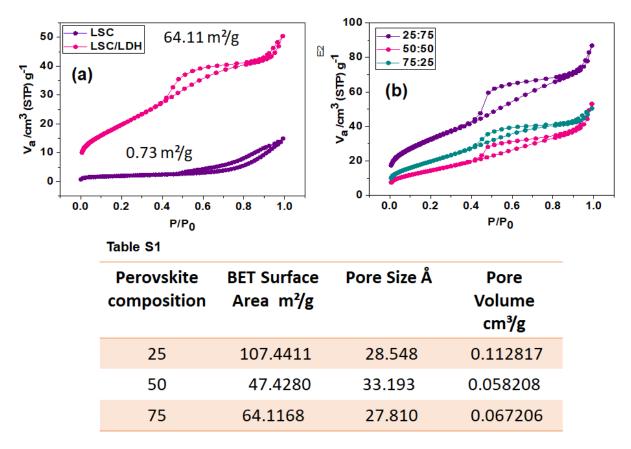


Figure S6. BET N₂-adsorption desorption isotherms of (a) LSC and LSC/LDH (75/25); (b) LSC/LDH (75/25); LSC/LDH (50/50) and (c) LSC/LDH (25/75), comparatively; inset Table S1. Surface properties deduced from BET isotherms.

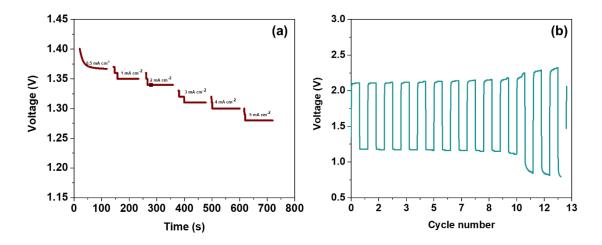


Figure S7. (a) Discharge rate capability of LSC/LDH (75/25) measured at different current densities; (b) Zinc air battery performance of pristine LSC measured at a constant current density of 5 mA cm⁻².

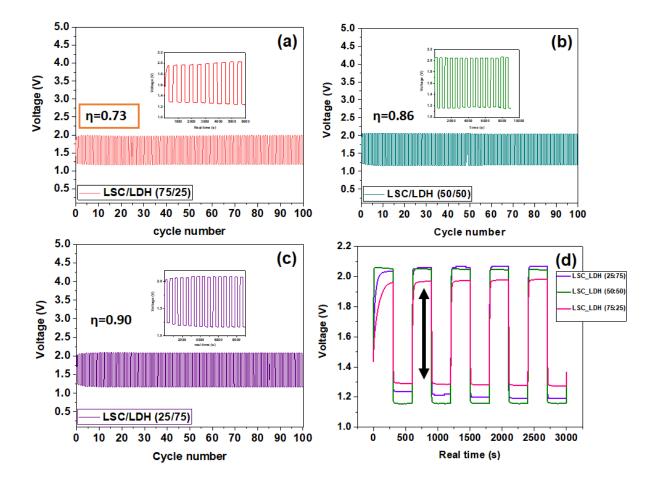


Figure S8. Zinc air battery performance measured at a constant current density of 5 mA cm⁻² of (a) LSC/LDH (75/25); (b) LSC/LDH (50/50) and (c) LSC/LDH (25/75); and (d) comparison of first few cycles of (a-c).

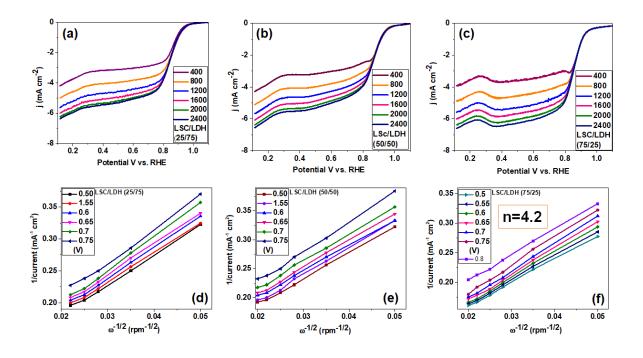


Figure S9. (a-c) The ORR polarization of (a) LSC/LDH (75/25); (b) LSC/LDH (50/50) and (c) LSC/LDH (25/75) measured by varying the rotation speed (400 to 2400 rpm); (d-f) corresponding Koutecky–Levich (K-L) plot of (a) LSC/LDH (75/25); (b) LSC/LDH (50/50) and (c) LSC/LDH (25/75).

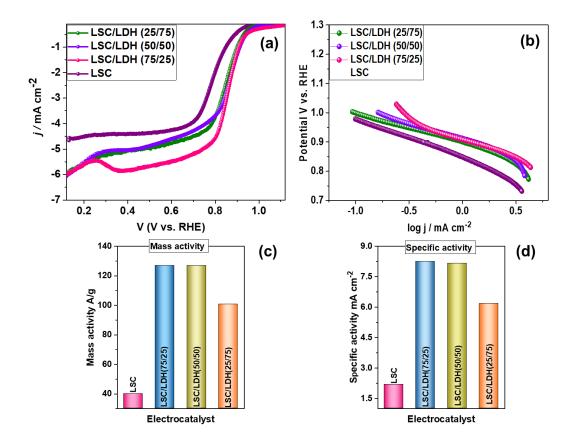


Figure S10. The ORR polarization of (a) LSC/LDH (75/25); (b) LSC/LDH (50/50) and (c) LSC/LDH (25/75) comparatively; (b) Tafel slope values obtained from (a); (c, d) mass activity (MA) A g⁻¹ and specific activity (SA) mA cm⁻² calculated from (a).

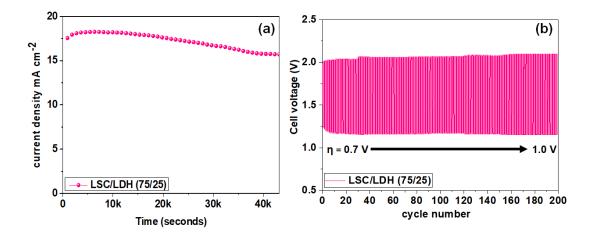


Figure S11. (a) Chronoamperometric durability test of LSC/LDH (75/25) recorded at 10 mA cm^{-2} for 12 h, (b) Zinc air battery performance of LSC/LDH (75/25) measured at a constant current density of 5 mA cm^{-2} for 200 cycles.

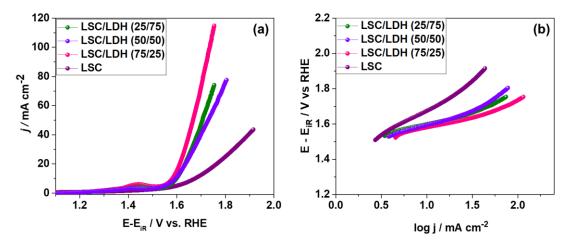


Figure S12. The OER polarization of (a) LSC/LDH (75/25), LSC/LDH (50/50) and LSC/LDH (25/75) in comparison to LSC; (b) Tafel slope values obtained from (a).

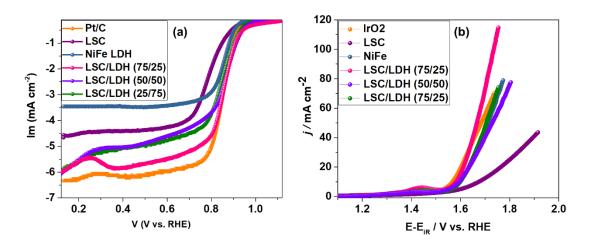


Figure S13. (a) ORR and (b) OER polarization of all the individual material with respect to Pt/C and IrO₂, respectively.

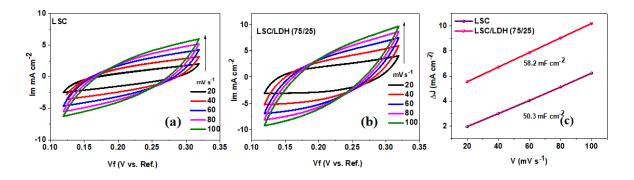


Figure S14. (a, b) CV cycles recorded at different scan rates and (c) the calculated ECSA of OER catalysts from (a) LSC and (b) LSC/LDH (75/25).

Name		Binding energy eV	Name		Binding energy eV
La3d	3d5/2	833.32	La3d	3d5/2	835.2
	3d3/2	837.2		3d3/2	851
		849.8			
		854			
Sr3d	3d5/2	132.95	Sr3d	3d5/2	133.4
	3d3/2	134.4		3d3/2	135.1
Co2p	2p3/2	778.54	Co2p	2p3/2	780.65
<i>Co</i> ³⁺ , <i>Co</i> ²⁺	2p1/2	794.1	<i>Co</i> ³⁺ , <i>Co</i> ²⁺	2p1/2	796.1
O1s	1s lattice	528.61	O1s	1s adsorbed	530
	1s adsorbed	530.6			531.23
			Ni2p	2p3/2	852
			Ni ²⁺		855.5
			Fe2p	2p3/2	712.8
			Fe^{2+}		725

Table S1 XPS parameters of LSC and LSC/LDH (75/25)

Electrocatalysts	Application	Overpotential	References
CMO/S Catalyst	Zinc-air battery @5 mA cm ⁻²	0.67	Adv. Energy Mater. 2018, 8, 1800612
Pt-SCFP/C-12	Zinc-air battery @5 mA cm ⁻²	0.77	Adv. Energy Mater. 2020, 10, 1903271
MnO2/Lao.7Sro.3MnO3	Zinc-air battery @10 mA cm ⁻²	0.79	ACS Appl. Mater. Interfaces 2019, 11, 25870–25881
LSMF	Zinc-air battery @5 mA cm ⁻²	0.8	Applied Energy 251 (2019) 113406
NdBa0.5Sr0.5C01.5Fe0.5 O5+δ	Zinc-air battery @1 mA cm ⁻²	0.7	J. Mater. Chem. A, 2019,7, 24231-24238
PBSCN1	Zinc-air battery @1 mA cm ⁻²	~0.8	ChemElectroChem 2019, 6, 3154 –3159
LMCO	Zinc-air battery	0.8	Inorg. Chem. 2019, 58, 12, 8208–8214
BSCF/NiFe	Zinc-air battery @5 mA cm ⁻²	0.89	ACS Appl. Mater. Interfaces 2019, 11, 39
PrBa _{0.5} Sr _{0.5} Co ₂₋ xFe _x O _{5+δ}	Zinc-air battery @10 mA cm ⁻²	0.8	ACS Nano 2017, 11, 11, 11594–11601
La0.750nm	Zinc-air battery @10 mA cm ⁻²	0.75	Energy Environ. Sci., 2016,9, 176-183
LSC/LDH (NiFe)	Zinc-air battery @5 mA cm ⁻²	0.73	This work

Table S2 Zn–air battery Performance of featuring perovskite oxide-based air cathodes