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Figure S1 

 

Figure S1. (a) XPS survey of LSC/LDH (75/25); (b) XRD patterns of pristine and LSC 

prepared by sintering at 1000° and (c) XRD patterns of LSC/LDH (50/50), LSC/LDH (25/75) 

and LSC/LDH (75/25) with respect to LSC. 
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Figure S2 

 

Figure S2. High-resolution deconvolution peaks of (a-f) LSC/LDH (50/50) and (g-l) LSC/LDH 

(25/75) from XPS measurement. 
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Figure S3 

 

Figure S3. FESEM micrographs of (a) as-synthesized pristine LSC; (b) LSC; (c) LSC/LDH 

(75/25), (d) LSC/LDH (50/50) and (e) LSC/LDH (25/75) at different magnifications. 
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Figure S4 

 

Figure S4. HREM micrographs of (a-d) LSC; (e-h) LSC/LDH (75/25), (i-l) LSC/LDH (50/50) 

and (m-p) LSC/LDH (25/75) and the corresponding SAED pattern. 
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Figure S5 

 

Figure S5. High resolution TEM micrographs of (a) LSC and (b) LSC/LDH (25/75) composite. 
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Figure S6 

 

Figure S6. BET N2-adsorption desorption isotherms of (a) LSC and LSC/LDH (75/25); (b) 

LSC/LDH (75/25); LSC/LDH (50/50) and (c) LSC/LDH (25/75), comparatively; inset Table 

S1. Surface properties deduced from BET isotherms. 
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Figure S7 

 

Figure S7. (a) Discharge rate capability of LSC/LDH (75/25) measured at different current 

densities; (b) Zinc air battery performance of pristine LSC measured at a constant current 

density of 5 mA cm-2.   
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Figure S8 

 

 

 

Figure S8. Zinc air battery performance measured at a constant current density of 5 mA cm-2   

of (a) LSC/LDH (75/25); (b) LSC/LDH (50/50) and (c) LSC/LDH (25/75); and (d) comparison 

of first few cycles of (a-c).  
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Figure S9 

 

 

 

Figure S9. (a-c) The ORR polarization of (a) LSC/LDH (75/25); (b) LSC/LDH (50/50) and (c) 

LSC/LDH (25/75) measured by varying the rotation speed (400 to 2400 rpm); (d-f) 

corresponding Koutecky–Levich (K-L) plot of (a) LSC/LDH (75/25); (b) LSC/LDH (50/50) 

and (c) LSC/LDH (25/75).  
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Figure S10 

 

Figure S10. The ORR polarization of (a) LSC/LDH (75/25); (b) LSC/LDH (50/50) and (c) 

LSC/LDH (25/75) comparatively; (b) Tafel slope values obtained from (a); (c, d) mass activity 

(MA) A g-1 and specific activity (SA) mA cm-2 calculated from (a). 
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Figure S11 

 

Figure S11. (a) Chronoamperometric durability test of LSC/LDH (75/25) recorded at 10 mA 

cm-2 for 12 h, (b) Zinc air battery performance of LSC/LDH (75/25) measured at a constant 

current density of 5 mA cm-2  for 200 cycles.  



14 
 

Figure S12 

 

Figure S12. The OER polarization of (a) LSC/LDH (75/25), LSC/LDH (50/50) and LSC/LDH 

(25/75) in comparison to LSC; (b) Tafel slope values obtained from (a). 

 

 

 

Figure S13 

 

 

Figure S13. (a) ORR and (b) OER polarization of all the individual material with respect to 

Pt/C and IrO2, respectively. 
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Figure S14 

 

Figure S14. (a, b) CV cycles recorded at different scan rates and (c) the calculated ECSA of 

OER catalysts from (a) LSC and (b) LSC/LDH (75/25). 
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 Table S1 XPS parameters of LSC and LSC/LDH (75/25) 

Name 

 

Binding 

energy 

eV 

Name 

 

Binding 

energy 

eV 

La3d 3d5/2 

3d3/2 

833.32 

837.2 

849.8 

854 

La3d 3d5/2 

3d3/2 

835.2 

851 

Sr3d 3d5/2 

3d3/2 

132.95 

134.4 

Sr3d 3d5/2 

3d3/2 

133.4 

135.1 

Co2p 

Co3+, Co2+ 

2p3/2 

2p1/2 

778.54 

794.1 

Co2p 

Co3+, Co2+ 

2p3/2 

2p1/2 

780.65 

796.1 

O1s 1s lattice 

1s adsorbed 

528.61 

530.6 

O1s 1s adsorbed 530 

531.23 
   

Ni2p 

Ni2+ 

2p3/2 852 

855.5 

  

 Fe2p 

Fe2+ 

2p3/2 712.8 

725 
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Table S2 Zn–air battery Performance of featuring perovskite oxide-based air cathodes   

 

Electrocatalysts Application Overpotential  References 

CMO/S Catalyst 
Zinc-air battery 

@5 mA cm–2 
0.67 

Adv. Energy Mater. 

2018, 8, 1800612 

 Pt-SCFP/C-12  
Zinc-air battery 

@5 mA cm–2 
0.77 

Adv. Energy Mater. 

2020, 10, 1903271 

 MnO2/La0.7Sr0.3MnO3  
Zinc-air battery 

@10 mA cm–2 
0.79 

ACS Appl. Mater. 

Interfaces 2019, 11, 

25870−25881 

LSMF 
Zinc-air battery 

@5 mA cm–2 
0.8 

 Applied Energy 251 

(2019) 113406 

NdBa0.5Sr0.5Co1.5Fe0.5

O5+δ  

Zinc-air battery 

@1 mA cm−2 
0.7 

J. Mater. Chem. A, 

2019,7, 24231-24238  

PBSCN1  
Zinc-air battery 

@1 mA cm−2 
~0.8  

ChemElectroChem 

2019, 6, 3154 –3159 

 LMCO  Zinc-air battery 0.8  
Inorg. Chem. 2019, 58, 

12, 8208–8214 

BSCF/NiFe 
Zinc-air battery 

@5 mA cm–2 
0.89 

ACS Appl. Mater. 

Interfaces 2019, 11, 39 

PrBa0.5Sr0.5Co2–

xFexO5+δ  

Zinc-air battery 

@10 mA cm–2 
0.8 

ACS Nano 2017, 11, 

11, 11594–11601 

La0.750nm 
Zinc-air battery 

@10 mA cm–2 
 0.75  

 

Energy Environ. Sci., 

2016,9, 176-183 

LSC/LDH (NiFe) 
Zinc-air battery 

@5 mA cm–2 
0.73 This work 


