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Electric current

The current flowing through a molecular junction, in the limit of weak coupling between the

junction and the conducting electrodes, is a result of electron transfers between the molecule

and the electrodes. This leads to consequent changes in the charge state of the molecule

when an electron is transferred to the molecule and when the molecule loses the electron.

The probability of the molecule being at these electronic states is denoted respectively by

Pox and Pred. The current is computed from these occupation probabilities as1,2

I = e(Poxk
S
red − PredkSox), (S1)

where kba is the electron transfer rate as defined below in Fig. S1 and e is the electron charge.

The occupation probabilities are time dependent and can be estimated from master equations

of the form
dPox
dt

= −(kSred + kDred)Pox + (kSox + kDox)Pred. (S2)

The current is computed in the steady-state limit where dPox/dt = 0 and by recalling that

Pox + Pred = 1, the current is then obtained as1,3–7

I = e
kSredk

D
ox − kSoxkDred

kSred + kDox + kSox + kDred
. (S3)

For the magnesium porphine (MgP) molecule considered in the main text, we plot the values

of the electron transfer rates as a function of the bias voltage in Fig. (S2). The current

computed from the electron transfer rates, for different bias and gate voltages, is plotted

in Fig. (S3). If we neglect oxidation at the source electrode and reduction at the drain

electrode, Eq. (S3) can be written as

I = e
kSkD
kS + kD

. (S4)
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Figure S1: Schematic representation of a single-molecule junction bridging a source (S) and
a drain (D) electrode. The electron transfer rates in Eq. (S3) are also defined.

Figure S2: Electron transfer rates for magnesium porphine computed as a function of the
bias voltage at gate voltages of (a) -200.0 mV, (b) 0.0 mV and (c) 200.0 mV. The gate voltage
is shifted by −1252.6 mV.

Figure S3: Electric current in magnesium porphine computed as a function of bias and gate
voltages. The gate voltage is shifted by −1252.6 mV.
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Photonic gates

In photonic quantum computing, the fundamental physical systems of interest are opti-

cal modes of the quantized electromagnetic field. They are mathematically represented

by a Hilbert space of infinite dimension, where a general state can be expressed as |ψ〉 =∑∞
n=0 cn |n〉, with

∑∞
n=0 |cn|2 = 1. The basis states |n〉 are known as Fock states, and they

have the physical interpretation of a mode with n photons.

The state of a multi-system can also be uniquely specified by its Wigner function. Gaussian

states have a Wigner function which is a Gaussian distribution. Similarly, Gaussian gates

are unitary transformations that map Gaussian states into Gaussian states. In terms of the

creation and annihilation operators ai and a†i on mode i, a squeezing gate is given by

Ŝ(ri) = exp[ri(a
†2
i − a2

i )/2], (S5)

a displacement gate by

D̂(αi) = exp(αia
†
i − α∗i ai), (S6)

and the linear interferometer R̂(U) characterized by a unitary matrix U transforms the mode

operators as 

a1

a2

...

am


−→



a′1

a′2
...

a′m


= U



a1

a2

...

am


. (S7)

All of these gates are Gaussian, which means that the quantum algorithm can be imple-

mented using Gaussian boson sampling devices. In the main text, we use the shorthand

D̂(α), Ŝ(r) with α = (α1, . . . , αm), r = (r1, . . . , rm) to respectively denote displacement and

squeezing gates acting individually on each mode, with αi, ri the displacement and squeezing

parameters in mode i.
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Molecular parameters

We apply the Franck-Condon approximation8–10 and assume that the change in the electronic

state leads to a vertical transition between the vibrational energy levels of the two different

electronic states of the molecule. The relation between the vibrational normal coordinates of

these different electronic states, q and q′, is described by the Duschinsky transformation11

q′ = UDq + d, (S8)

where UD is the Duschinsky matrix, which is related to the overlap between the normal

modes, and d is a real vector that describes the change in the molecular geometries of the

electronic states. The Duschinsky matrix is obtained from the eigenvectors of the Hessian

matrices of the initial and final electronic states, L and L′, respectively12

UD = (L′)TL. (S9)

The displacement vector d is obtained from the the Cartesian geometry vectors of the initial

and final electronic states, x and x′, as12

d = (L′)Tm1/2(x− x′), (S10)

where m is a diagonal matrix of atomic masses. The quantities L, L′, and x were obtained

from density functional theory (DFT) calculations performed on both electronic states of

MgP. The Duschinsky matrix for MgP is plotted in Fig. (S4). The off-diagonal non-zero

terms in this matrix are due to the mixing of the vibrational modes of the initial and final

electronic states.

The Duschinsky matrix and displacement vector are used to program the quantum com-

puter with parameters that determine the unitary operator ÛDok. This operator is defined
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in terms of displacement D̂(α), squeezing Ŝ(r), and rotation R̂(UL), R̂(UR) operations13,14

ÛDok = D̂(α)R̂(UL)Ŝ(r)R̂(UR), (S11)

where UL and UR are unitary matrices. The matrices UL, UR, and the vector r are obtained

from the singular value decomposition J = UL diag(r)UR of the matrix J := Ω′UDΩ−1

where13

Ω = diag(
√
ω1, ...,

√
ωM), (S12)

Ω′ = diag(
√
ω′1, ...,

√
ω′M). (S13)

The terms ω and ω′ in Eq. (S12) are the vibrational frequencies of the two electronic states

which are also obtained from DFT calculations. The displacement vector α in Eq. (S11)

is obtained from the Duschinsky displacement vector as α = ~−1/2Ω′d/
√

2 where ~ is the

reduced Planck constant.

Figure S4: Duschinsky matrix for magnesium porphine computed from Eq. (S9). The
molecule has 37 atoms and 105 vibrational modes.
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Complexity

The number of optical modes in the quantum computer is equal to the number of vibrational

modes, so the algorithm has linear space complexity. The squeezing and displacement gates

act individually on each mode, leading to a constant depth circuit. The largest set of

operations occur in the interferometer, where it is known that arbitrary interferometers can

be decomposed into circuits of linear depth.15 Therefore, the complexity of generating a

single sample scales linearly with problem size.

Now consider the number of samples needed. The averages of the Fermi function

f̄(i, V ) =

∫ εi+∆

εi−∆

dε f(ε, V ), (S14)

are one-dimensional integrals that can be computed efficiently. In fact, since they are inde-

pendent of the molecule, they can be pre-computed and loaded from memory. To compute

transfer rates, we need to estimateM probabilities q(i). Each such estimation can be viewed

as a Bernoulli trial where success corresponds to observing a sample inside of the energy

subinterval [εi − ∆, εi + ∆]. In the limit of a large number of samples N , the unbiased

estimator q̂(i) = Ni

N
follows a normal distribution with standard deviation σ =

√
q(i)[1−q(i)]

N
,

which can be used to quantify the error in the estimation as

ε :=
σ

q(i)
≈

√
1

Nq(i)
, (S15)

where the approximation holds when q(i) is small. Since there are only M probabilities q(i),

the average probability is exactly 1/M . Probabilities that are much smaller than 1/M don’t

contribute significantly to the transfer rates. Therefore, in terms of the target error ε and

the algorithm parameter M , the number of samples needed scales polynomially as

N = O

(
M

ε2

)
. (S16)

S7



References

(1) Thomas, J. O.; Limburg, B.; Sowa, J. K.; Willick, K.; Baugh, J.; Briggs, G. A. D.;

Gauger, E. M.; Anderson, H. L.; Mol, J. A. Understanding resonant charge transport

through weakly coupled single-molecule junctions. Nat. Commun. 2019, 10, 4628.

(2) Bevan, K. H.; Roy-Gobeil, A.; Miyahara, Y.; Grutter, P. Relating Franck-Condon block-

ade to redox chemistry in the single-particle picture. J. Chem. Phys. 2018, 149, 104109.

(3) Nazin, G. V.; Wu, S. W.; Ho, W. Tunneling rates in electron transport through double-

barrier molecular junctions in a scanning tunneling microscope. Proc. Natl. Acad. Sci.

U.S.A. 2005, 102, 8832–8837.

(4) Migliore, A.; Nitzan, A. Nonlinear charge transport in redox molecular junctions: a

Marcus perspective. ACS Nano 2011, 5, 6669–6685.

(5) Kuznetsov, A. M.; Medvedev, I. G. A theory of redox-mediated electron tunneling

through an electrochemical two-center contact. J. Phys.: Condens. Matter 2008, 20,

374112.

(6) Sowa, J. K.; Mol, J. A.; Briggs, G. A. D.; Gauger, E. M. Beyond Marcus theory and

the Landauer-Büttiker approach in molecular junctions: a unified framework. J. Chem.

Phys. 2018, 149, 154112.

(7) Ingold, G.; Nazarov, Y. In Single charge tunneling ; Grabert, H., Devoret, M., Eds.;

Springer: Boston, United States, 2005; pp 21–107.

(8) Franck, J.; Dymond, E. G. Elementary processes of photochemical reactions. Trans.

Faraday Soc. 1926, 21, 536–542.

(9) Condon, E. A theory of intensity distribution in band systems. Phys. Rev. 1926, 28,

1182–1201.

S8



(10) Condon, E. U. Nuclear motions associated with electron transitions in diatomic

molecules. Phys. Rev. 1928, 32, 858–872.

(11) Duschinsky, F. The importance of the electron spectrum in multiatomic molecules.

Concerning the Franck-Condon principle. Acta Physicochim. USSR 1937, 7, 551.

(12) Jahangiri, S.; Arrazola, J. M.; Quesada, N.; Delgado, A. Quantum algorithm for sim-

ulating molecular vibrational excitations. Phys. Chem. Chem. Phys. 2020, 22, 25528–

25537.

(13) Huh, J.; Guerreschi, G. G.; Peropadre, B.; McClean, J. R.; Aspuru-Guzik, A. Boson

sampling for molecular vibronic spectra. Nat. Photonics 2015, 9, 615–620.

(14) Quesada, N. Franck-Condon factors by counting perfect matchings of graphs with loops.

J. Chem. Phys. 2019, 150, 164113.

(15) Reck, M.; Zeilinger, A.; Bernstein, H. J.; Bertani, P. Experimental realization of any

discrete unitary operator. Phys. Rev. Lett. 1994, 73, 58–61.

S9


