Termite gut microbiota contribution to wheat straw delignification in anaerobic bioreactors

Louison Dumond^a, Pui Ying Lam^b, Gijs van Erven^{c,d}, Mirjam Kabel^e, Fabien Mounet^e,

Jacqueline Grima-Pettenati, Yuki Tobimatsu, Guillermina Hernandez-Raquet*

^aToulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse,

France.

^bResearch Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, Japan.

eWageningen University & Research, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708 WG,

Wageningen, The Netherlands.

^dWageningen Food & Biobased Research, Bornse Weilanden 9, 6708 WG, Wageningen, The

Netherlands

•Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, UMR

5546, 24 Chemin de Borde Rouge, 31320 Castanet-Tolosan, France

Supporting table 1. Peak assignments for 2D HSQC NMR spectra of wheat cell walls.

Supporting table 2: Identity, structural classification and relative abundance of ligninderived pyrolysis products by quantitative ¹³C-IS py-GC-MS. Average relative abundance of analytical triplicates.

Supplementary Material and Methods. Detailed description of the experimental methodology.

Number of pages: 9 (S1-S9)

Number of tables: 2

Supporting Table S1. Peak assignments for 2D HSQC NMR spectra of wheat cell walls.

Labels	δ _C /δ _H (ppm)	Assignment						
Lignin and cini	namate aromatic signals							
S _{2/6}	104.2/6.77	C2–H2 and C6–H6 in syringyl units						
S′ _{2/6}	106.8/7.23, 106.6/7.07	C2–H2 and C6–H6 in C α -oxidized syringyl units						
G ₂	111.2/7.06	C2–H2 in guaiacyl units						
G _{5/6}	119.3/6.88, 114.9/6.78	C5–H5 and C6–H6 in guaiacyl units						
G′₂	112.5/7.32, 111.6/7.53	C2–H2 in C α -oxidized guaiacyl units						
H _{2/6}	128.0/7.23	C2–H2 and C6–H6 in <i>p</i> -hydroxyphenyl units						
H _{3/5}	114.9/6.74	C3–H3 and C5–H5 in <i>p</i> -hydroxyphenyl units						
T ₃	104.9/7.06	C3–H3 in tricin residues						
T ₆	98.9/6.31	C6–H6 in tricin residues						
T ₈	94.2/6.63	C8–H8 in tricin residues						
T _{2′/6′}	104.3/7.36	C2′–H2′ and C6′–H6′ in tricin residues						
P _{2/6}	130.1/7.50	C2–H2 and C6–H6 in ρ -coumarate residues						
P _{3/5}	115.6/6.85	C3–H3 and C5–H5 in ρ -coumarate residues						
P ₈	113.8/6.36	C8–H8 in <i>p</i> -coumarate residues						

F ₂	111.0/7.36	C2–H2 in ferulate residues
F ₆	123.2/7.12	C6–H6 in ferulate residues

Lignin inter-monomeric linkage and end-unit signals

lα	71.5/4.87	$C\alpha$ –H α in β – O –4 units
ıα	11.5/4.07	
l _β	86.2/4.22, 83.9/4.38	Cβ–Hβ in $β-O-4$ units
I_γ (γ-free)	60.5/3.86	C γ –H γ in γ -free β – O –4 units
$I_{\gamma}(\gamma$ -acylated)	64.6/4.30	Cy–H γ in γ -acylated β – O –4 units
llα	87.2/5.50	$C\alpha$ –H α in β –5 substructures
II _β	53.6/3.49	$C\beta$ –H β in β –5 substructures
III _α	85.0/4.67	$C\alpha$ –H α in resinol-type β – β substructures
III′α	82.9/4.98	C α –H α in tetrahydrofuran-type β – β substructures
IVγ	61.8/4.14	Cγ–Hγ in cinnamyl alcohol end-units
IV″ _Y	193.9/9.61	Cγ–Hγ in cinnamylaldehyde end-units
Ιν″α	190.8/9.81	$C\alpha$ –H α in benzaldehyde end-units
Ι \ <i>"</i> "β	41.2/3.13	$C\beta$ –H β in HPV/HPS end-units
Ιν‴γ	57.3/3.83	Cγ–Hγ in HPV/HPS end-units

Supporting Table S1 (continued)

Lignin methoxyl signals

ОМе	55.7/3.74	C-H in aromatic methoxyl groups					
Polysaccharide a	nomeric signals						
Gl₁	103.5/4.44	C1–H1 in (1→4)-β-D-glucopyranosyl units					
X ₁	102.1/4.28	C1–H1 in (1→4)-β-D-xylopyranosyl units					
X′1	99.9/4.58	C1–H1 in 2- <i>O</i> -acetyl-β-D-xylopyranosyl units					
X″1	101.8/4.40	C1–H1 in 3- <i>O</i> -acetyl-β-D-xylopyranosyl units					
X‴ ₁	99.1/4.78	C1–H1 in 2,3-di- <i>O</i> -acetyl-β-D-xylopyranosyl units					
A ₁	108.2/4.90	C1–H1 in α -L-arabinofuranosyl units					
U ₁	97.7/5.27	C1–H1 in 4- <i>O</i> -methyl-α-D-glucuronopyranosyl units					

Measured in DMSO- d_{β} pyridine- d_{β} (4:1, v/v). Signal assignment was based on comparison with NMR data in literature.¹⁻⁷

Supporting Table S2. Identity, structural classification and relative abundance of lignin-derived pyrolysis products by quantitative ¹³C-IS py-GC-MS. Average relative abundance of analytical triplicates.

#	Compound	CAS	Retention	Structural	Sidechain		Quan ion	Original	N. luiae	M. parvus	T. hospes
			time (min)		length	(g•mol ⁻¹)	¹² C [M- <i>e</i>]	-		,	
1	phenol	108952	9.79	H, unsub.	0	94	94.04132	0.7	0.7	0.7	0.7
2 3	guaiacol	90051	10.03	G, unsub.	0	124	124.05188 108.05698	2.8 0.1	3.5 0.1	3.8 0.1	3.6 0.2
	2-methylphenol	95487	11.03	H, methyl	Ca	108 108				0.1	0.2
4	4-methylphenol (+3-MP)	106445	12.00	H, methyl	C _a		107.04914	0.4	0.4		
5	4-methylguaiacol	93516	12.71	G, methyl	C _a	138 122	138.06753	1.6	1.7	1.7	1.9
6	2,4-dimethylphenol	105679	13.18	H, methyl	C _a		107.04914	0.1	0.1	0.1	0.1
7	4-ethylphenol	123079	14.25	H, misc.	C _β	122	107.04914	0.1	0.1	0.1	0.1
8	4-ethylguaiacol	2785899	14.83	G, misc.	C _β	152	137.05971	0.2	0.2	0.2	0.2
9	4-vinylguaiacol	7786610	16.29	G, vinyl	C _β	150	150.06753	26.7	23.7	23.4	23.3
10	4-vinylphenol	2628173	16.46	H, vinyl	C _β	120	120.05697	8.1	6.2	6.5	6.6
11	eugenol	97530	16.89	G, misc.	Cγ	164	164.08318	0.2	0.2	0.2	0.3
12	4-propylguaiacol	2785877	16.99	G, misc.	Cγ	166	137.05971	0.1	0.1	0.1	0.2
13	syringol	91101	17.64	S, unsub.	0	154	154.06245	1.7	1.9	2.0	1.9
14	<i>cis</i> -isoeugenol	97541	18.25	G, misc.	Cγ	164	164.08318	0.1	0.1	0.1	0.1
15	4-propenylphenol	539128	19.24	H, misc.	Cγ	134	133.06479	0.1	0.1	0.1	0.1
16	trans-isoeugenol	97541	19.50	G, misc.	Cγ	164	164.08318	0.8	1.0	0.9	1.0
17	4-methylsyringol	6638057	19.86	S, methyl	Cα	168	168.07810	0.8	0.8	0.8	0.8
18	vanillin	121335	19.99	G, C _α -Ο	Cα	152	151.03897	1.2	1.2	1.1	1.2
19	4-propyneguaiacol	-	20.23	G, misc.	Cγ	162	162.06753	0.1	0.1	0.1	0.1
20	4-alleneguaiacol	-	20.49	G, misc.	Cγ	162	162.06753	0.1	0.1	0.1	0.1
21	homovanillin	5603242	21.44	G, C _β -Ο	C_{β}	166	137.05971	0.4	0.5	0.4	0.5
22	4-ethylsyringol	14059928	21.58	S, misc.	C_{β}	182	167.07022	0.1	0.1	0.1	0.1
23	vanillic acid methyl ester	3943746	21.82	G, C _α -Ο	Cα	182	182.05736	0.01	0.01	0.01	0.01
24	acetovanillone	498022	21.89	G, C _α -Ο	C _β	166	151.03897	0.4	0.4	0.4	0.4
25	4-hydroxybenzaldehyde	123080	22.76	H, C _α -Ο	C _a	122	121.02848	0.1	0.1	0.1	0.1
26	4-vinylsyringol	28343228	22.90	S, vinyl	C _β	180	180.07810	4.8	4.6	4.5	4.4
27	guaiacylacetone	2503460	23.10	G, C _β -Ο	Cγ	180	137.05971	0.3	0.4	0.4	0.4
28	4-allylsyringol	6627889	23.31	S, misc.	Cγ	194	194.09373	0.3	0.3	0.2	0.3
29	propiovanillone	1835149	23.79	S, C _a -O	Cγ	180	151.03897	0.03	0.03	0.03	0.03
30	guaiacyl vinyl ketone	-	24.09	G, Cα-O	Cγ	178	151.03897	0.2	0.2	0.2	0.2
31	guaiacyl diketone	2034608	24.32	$G, C_{\alpha}\text{-}O, C_{\beta}\text{-}O$	Cγ	194	151.03897	0.3	0.3	0.3	0.3
32	cis-4-propenylsyringol	26624135	24.43	S, misc.	Cγ	194	194.09373	0.2	0.2	0.1	0.2
33	4-propynesyringol	-	25.06	S, misc.	Cγ	192	192.07810	0.2	0.2	0.1	0.2
34	4-allenesyringol	-	25.27	S, misc.	Cγ	192	192.07810	0.1	0.1	0.1	0.1
35	trans-4-propenylsyringol	26624135	25.72	S, misc.	Cγ	194	194.09373	1.2	1.2	1.2	1.3
36	dihydroconiferyl alcohol	2305137	25.81	S, C _γ -O	Cγ	182	137.05971	0.1	0.2	0.2	0.2
37	syringaldehyde	134963	26.34	S, Cα-O	Cα	182	182.05736	0.9	0.9	0.9	0.9
38	cis-coniferyl-alcohol	458355	26.42	G, Cγ-O	Cγ	180	137.05971	1.1	1.2	1.2	1.2
39	homosyringaldehyde	-	27.32	S, C _β -O	C_{β}	196	167.07027	1.1	1.1	0.9	1.0
40	syringic acid methyl ester	884355	27.66	S, C _α -Ο	Cα	212	212.06793	0.02	0.02	0.02	0.02
41	acetosyringone	2478388	27.76	S, C _α -Ο	C _β	196	181.04954	0.7	0.7	0.6	0.7
42	trans-coniferyl alcohol	458355	28.11	G, C _γ -O	C _y	180	137.05971	21.1	24.8	25.8	25.6
43	trans-coniferaldehyde	458366	28.50	G, C _γ -O	C _y	178	147.04406	1.4	1.4	1.4	1.4
44	syringylacetone	19037582	28.68	S, C_{β} -O	Cγ	210	167.07027	0.4	0.4	0.4	0.4
45	propiosyringone	5650431	29.29	S, C _α -O	C _y	210	181.04954	0.05	0.05	0.05	0.05
46	syringyl diketone	6925651	29.43	S, C_{α} -O, C_{β} -O	Cγ	224	181.04954	0.3	0.3	0.2	0.3
47	syringyl vinyl ketone	-	29.57	S, C _α -O	Cγ	208	181.04954	0.03	0.03	0.03	0.03
48	dihydrosinapyl alcohol	20736258	31.13	G, Cγ-O	Cγ	212	168.07841	0.1	0.1	0.1	0.1
49	cis-sinapyl alcohol	537337	31.63	S, C _γ -O	C _y	210	167.07027	1.0	1.0	1.0	0.9

50 trans-sinapyl alcohol	537337	33.31	S, C _y -O	Cγ	210	167.07027	15.6	15.9	15.3	14.5
51 trans-sinapaldehyde	4206580	33.54	S, C _γ -O	Cγ	208	208.07301	1.3	1.3	1.1	1.2

Supplementary Material and Methods

Lignocellulose substrate and termite gut inocula

Wheat straw from the winter wheat variety Koreli was collected at an experimental farm (INRAE, Boissy-le-Repos, France) in August 2011. After harvesting, the straw was milled to 2 mm and stored at room temperature (20–25°C). As described in our previous work,⁸ four different species of higher termites (Termitidae family) *Microcerotermes parvus, Termes hospes, Nasutitermes ephratae*, and an undescribed species closely related to *N. lujae* (herein after *N. lujae*) were selected as inocula. The initial termite gut inoculum (500 dissected guts) from each termite was provided by IRD (Institute for Research and Development, Bondy, France).

Anaerobic bioreactors

The lignocellulose degradation capacity of the different gut microbiomes were assessed in two replicate anaerobic bioreactors (Applikon MiniBio 500) for each termite species as previously described.⁸ Briefly, following centrifugation (7,197 × g, 10 min, 4°C) and elimination of the saline PBS solution, termite guts (500 guts) were used to inoculate 400 mL of mineral media

(MM),¹ supplemented with 250 µL of V7 vitamin solution⁹ and 1 mL of sterilized (0.2 µm filtration) trace elements solution.8 Milled wheat straw (2 mm) was autoclaved (120°C, 20 min and 1.2 bars) and added to the medium (20 g.L⁻¹) as the sole carbon source. Stirred bioreactors (400 rpm) were operated under strict anaerobic conditions. The absence of dissolved oxygen was ensured by nitrogen flushing after inoculation and continuous monitoring with a polarographic dissolved oxygen probe (AppliSens). The temperature was set to 35°C and pH was maintained at 6.15 by adding a 2 M NaOH solution. During the incubation, methane production was monitored and, if necessary, inhibited by the addition of 2bromoethanesulfonate (BES), a methanogenesis inhibitor, until a maximum concentration of 10 mM. At the end of the 20 days of incubation, VFA and gas production were determined and the whole culture broth was snap frozen in liquid nitrogen and kept at -80°C until further use. For chemical characterization replicate samples were pooled together.

Volatile solid quantification

Wheat straw concentration was determined at the beginning and at the end of the 20-day incubation by measuring the total (TS) and volatile (VS) solids. TS were determined using 10 mL samples that were first centrifuged (7,197 × g, 10 min), rinsed twice with distilled water and dried for 48 h at 55°C. The mineral fraction (MF) was estimated by mineralization of the

samples at 500°C for 2 h, and VS were determined by subtracting MF from TS. Wheat straw degradation was reported as percentage of VS (%, w/w) related to the initial VS mass.

Cell wall extraction and grinding

Extractive-free cell wall residues (CWR) were obtained by sonication-solvent extraction.⁵ Two g of wheat straw samples with 40 ml of ultrapure water were sonicated for 20 min at room temperature then centrifuged (5 min, 7197g, 20°C). The water was removed and replaced by 80% ethanol:water and the sonication/centrifugation cycle was repeated twice and then washed with 100% acetone. CWR was obtained after drying at room temperature overnight and for 24 h at 55°C. CWR was then milled in a ball mill MM 400 (Retsch) by two successive steps (15s mill at 30 Hz.s⁻¹) with a 2 cm diameter metal ball.

Polysaccharide analysis and Klason lignin determination

Wheat straw composition was determined on the original wheat straw and the digested samples collected from the bioreactors at the end of the incubation period kept at -80°C. These last were thawed, the replicates were mixed together and centrifuged (7,197 g, 10 min); the solid fraction was then washed with distilled water and dried at 55°C (48h). Raw wheat straw

was incubated in the culture medium for 4 hours, and then treated as the digested samples. Their chemical composition was determined using the sulfuric acid hydrolysis method described by de Souza et al.¹⁰ and modified by Lazuka et al.¹¹ on triplicate 80 mg samples, using a the first hydrolysis step of 1h, 30°C and a second step for 1h at 120°C in an oil bath. The insoluble residue was washed with distilled water and dried at 105 °C overnight to determine Klason lignin content. The soluble fraction was filtered and monomeric sugar composition was determined on an Ultimate 3000 Dionex HPLC with refractive index detector (Thermo Scientific) equipped with a BioRad Aminex HPX 87H affinity column, as described previously.¹²

Thioacidolysis

Thiacidolysis of the samples was done according to Méchin et al.¹³ The thioacidolysis solution was prepared by adding 20ml ethanethiol and 5ml BF₃ etherate in 40 ml dioxane and adjusted to 200ml with dioxane. 10 ml thioacidolysis solution with and 100µl of tetracosane 1.25 mg/ml was added to 10 mg of dry CWR. An aliquot of this solution (10 µL) was dried and trimethylsilylated (TMS) with 50 µL of *N*,*O*-bis(trimethylsilyl)trifluoroacetamide and 5 µL of ACS-grade pyridine for 1 h at room temperature. The TMS sample was injected (1 µL) onto a Trace1300 GC/MS (Thermoscientific) equipped with a Triple Quadripole-Ion trap in electronic

impact mode with a source at 220 °C, an interface at 280 °C, and a 50 to 650 m/z scanning range. The samples were analyzed on an Agilent DB-5 column (Agilent Technologies) operated in the temperature program mode (from 50 to 110 °C at +30 °C/min, then 110 to 320°C at +6 °C/min), with helium carrier gas at a 1.5 mL/min flow rate.¹⁴

References

- Brennan, M.; McLean, J.P.; Altaner, C.M.; Ralph, J.; Harris, P.J. Cellulose microfibril angles and cell-wall polymers in different wood types of *Pinus radiata. Cellulose*. **2012**, *19*, 1385-1404.
- (2) van Erven, G.; Hilgers, R.; Waard, P. de; Gladbeek, E.-J.; van Berkel, W. J. H.; Kabel, M. A. Elucidation of In Situ Ligninolysis Mechanisms of the Selective White-Rot Fungus *Ceriporiopsis Subvermispora*. ACS Sustainable Chem. Eng. **2019**, *7*, 16757–16764.
- Kim, H.; Ralph, J. Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-*d*₆/pyridine-*d*₅. *Org. Biomol. Chem.* 2010, *8*, 576–591.
- Lan, W., Lu, F., Regner, M., Zhu, Y., Rencoret, J., Ralph, S.A., et al. Tricin, a flavonoid monomer in monocot lignification. *Plant Physiol.* 2015, *167*, 1284–1295.
- (5) Mansfield, S.D.; Kim, H.; Lu, F.; Ralph, J. Whole plant cell wall characterization using solution-state 2D NMR. *Nat. Protoc.* **2012**, *7*, 1579–1589.
- (6) Rencoret, J., Gutiérrez, A., Nieto, L., Jiménez-Barbero, J., Faulds, C.B., Kim, H., et al. Lignin composition and structure in young versus adult *Eucalyptus globulus* plants. *Plant Physiol.* **2011**, *155*, 667–682.
- (7) Tarmadi, D., Tobimatsu, Y., Yamamura, M., Miyamoto, T., Miyagawa, Y., Umezawa, T. et al. NMR studies on lignocellulose deconstructions in the digestive system of the lower termite *Coptotermes formosanus* Shiraki. *Sci. Rep.* **2018**, *8*, 1290, 1-9.
- (8) Auer, L.; Lazuka, A.; Sillam-Dussès, D.; Miambi, E.; O'Donohue, M.; Hernandez-Raquet, G. Uncovering the potential of termite gut microbiome for lignocellulose bioconversion in anaerobic batch bioreactors. Front. Microbiol., 2017, *8*, 2623, 1-14.

- Pfennig, N.; Trüper, H. G. The Family Chromatiaceae. In The Prokaryotes: A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications; Balows, A., Trüper, H. G., Dworkin, M., Harder, W., Schleifer, K.-H., Eds.; Springer: New York, NY, 1992; pp 3200–3221.
- (10) de Souza, A. C.; Rietkerk, T.; Selin, C. G. M.; Lankhorst, P. P. A Robust and universal NMR method for the compositional analysis of polysaccharides. *Carbohyd. Polym.* **2013**, *95*, 657–663.
- (11) Lazuka, A.; Auer, L.; Bozonnet, S.; Morgavi, D. P.; O'Donohue, M.; Hernandez-Raquet, G. Efficient anaerobic transformation of raw wheat straw by a robust cow rumen-derived microbial consortium. *Bioresour. Technol.*, **2015**, *196*, 241–249.
- (12) Monlau, F.; Barakat, A.; Steyer, J. P.; Carrere, H. Comparison of seven types of thermo-chemical pretreatments on the structural features and anaerobic digestion of sunflower stalks. Bioresour. Technol. 2012, *120*, 241–247.
- (13) Méchin, V.; Laluc, A.; Legée, F.; Cézard, L.; Denoue, D.; Barrière, Y.; Lapierre, C. Impact of the Brown-Midrib Bm5 mutation on maize lignins. *J. Agric. Food Chem.*, **2014**, *62*, 5102–5107.
- (14) Ployet, R. Régulation de la formation du bois chez l'eucalyptus lors du développement et en réponse à des contraintes environnementales. phd, Université de Toulouse, Université Toulouse III - Paul Sabatier, 2017.