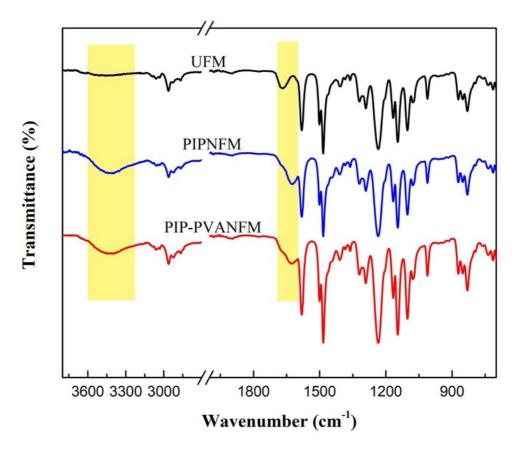
Supporting information

High-flux fine hollow fiber nanofiltration membrane for the purification of drinking water

Peng Gao[†], Sun-Jie Xu[†], Zhen-Liang Xu^{*}, Ping Li, Yu-Zhe Wu, Lan-Qian Li, Hai-Zhen Zhang^{*}

State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D


Lab, Chemical Engineering Research Center, School of Chemical Engineering East China

University of Science and Technology, 130 Meilong Road, Shanghai 200237, China

^{*} To whom all correspondence should be addressed.

Dr. Zhen-Liang Xu, E-mail: chemxuzl@ecust.edu.cn; Dr. Hai-Zhen Zhang, zhang120117@126.com; Tel: 86-21-64253670; Fax: 86-21-64252989.

[†] P. Gao and S. J. Xu contributed equally to this work.

Figure S1. FT-IR spectra for UFM, PIPNFM and PIP-PVANFM over wave numbers of 3800-700 cm⁻¹.

Figure S2. (a) N1s spectra of PIPNFM, (b) N1s spectra of PIP-PVANFM, (c) O1s spectra of UFM, (d) O1s spectra of PIPNFM, (c) O1s spectra of PIP-PVANFM.

Figure S3. The water contact angle of PIPNFM and PIP-PVANFM.

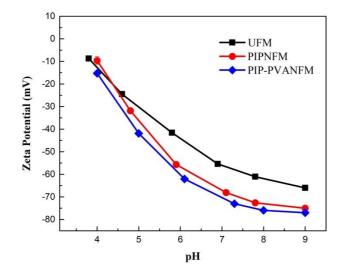


Figure S4. The zeta potential of UFM, PIPNFM and PIP-PVANFM.

Water/salt permeability selectivity was calculated by following equation^[1]:

$$\frac{l}{A} = \frac{\Delta p - \Delta c_s RT}{J_w} \#(S1)$$

where Δp is the transmembrane pressure, Δc_s is the changes of salt concentration, *R* is the gas constant (83.1 cm³·bar·K⁻¹·mol⁻¹), *T* is the operating temperature (K), J_w is the pure water flux $(L \cdot m^{-2} \cdot h^{-1})$.

$$\frac{l}{B} = \frac{\Delta c_s}{J_s} \#(S2)$$

where J_s is the salt flux (L·m⁻²·h⁻¹)

$$P_w = \frac{ALRT}{M_w} \#(S3)$$

where L is the thickness of PA layer, M_w is the molecular weight of water (g·mol⁻¹)

$$P_s = B \times L \#(S4)$$

References

(1) Tan, Z.; Chen, S. F.; Peng, X. S.; Zhang, L.; Gao, C. J. Polyamide membranes with nanoscale Turing structures for water purification. *Science* **2018**, *360*, 518-521.