
Supporting Information

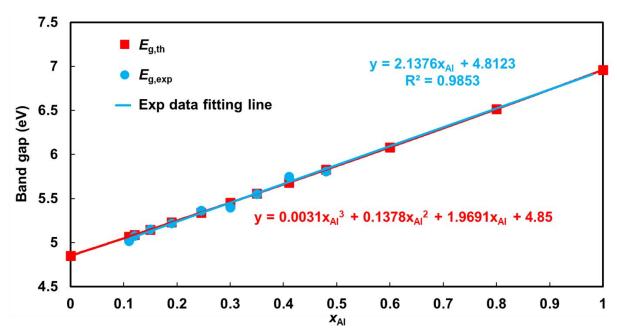
A Generalized Semi-Empirical Approach to the Modelling of the Optical Band Gap of Ternary Al-(Ga, Nb, Ta, W) Oxides Containing Different Alumina Polymorphs.

Francesco Di Quarto*, Andrea Zaffora, Francesco Di Franco, Monica Santamaria

Università degli Studi di Palermo, Dipartimento di Ingegneria, Viale delle Scienze, 90128 Palermo, Italy

^{*} corresponding author: francesco.diquarto@unipa.it (phone number: +393204328592)

Figure S1. Fitting of all the experimental data pertaining β- $(Ga_{(1-x)}Al_x)_2O_3$ mixed oxides system, regardless of band gap measure technique.


 β -(($Ga_{(1-x)}Al_x$)₂ O_3) ternary system: E_g vs x_{Al} for direct optical transitions

In order to complete the test on the influence of different parameters on the ability of the proposed correlation to fit the composition dependence of β –(Ga_(1-x)Al_x)₂O₃ we reported in Figure S2 the experimental $E_{g,opt.dir}$ values of β –(Ga_(1-x)Al_x)₂O₃ derived by using the Tauc's plot approximation¹ and pertaining to samples grown by pulsed laser deposition (PLD). A rather limited range of Al composition (0.11 \leq x \leq 0.48) was exploited in order to maintain the pure monoclinic structure of β –(Ga_(1-x)Al_x)₂O₃ films (x \leq 0.51).

According to the authors, the best fitting linear equation of the experimental data of Figure S2 follows the equation:

$$E_{g,opt,dir} = 4.8123 + 2.1376x_{Al} \text{ [eV]} \quad E_{gl} = 6.95 \text{ eV}$$
 [S1]

From Eq. S1 an extrapolated (x = 1) hypothetical $E_{g,dir.}$ value of 6.95 eV is derived for monoclinic θ -Al₂O₃. The limited range of Al composition exploited (x_{Al} \leq 0.51) could affect the extrapolated $E_{g,opt,dir}$ value of θ -Al₂O₃, but it agrees nicely with the DFT estimated E_g values²⁻⁵ and with experimental E_g value measured by REELS for crystalline Atomic Layer Deposited (ALD)⁶ or sputtered Al₂O₃ films.⁷

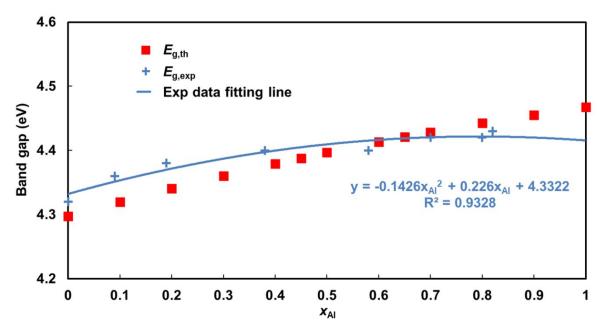
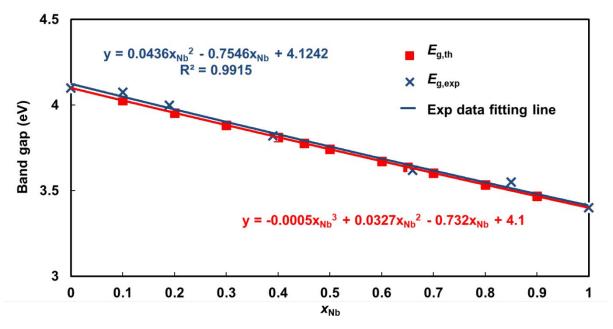


Figure S2. Direct optical band gap values vs Al content $(0.11 \le x_{Al} \le 0.48)$ for PLD polycrystalline films¹ derived from Tauc plots (azure circles). Theoretical band gap values derived according to eqs.8 by assuming (see text): $\chi_{Al}=1.50$; $B_{\theta-Al2O3}=-2.225$ eV; $A_{\theta-Al2O3}=2.3$; $\chi_{Ga}=1.60$; $B_{\beta-Ga2O3}=-2.31$ eV; $A_{\beta-Ga2O3}=1.983$ (red squares).


Fitting procedure of experimental data points was carried out by means of Eq. 8 and by assuming the same values of B and electronegativity, previously used, for fitting the experimental $E_{g,ind.}$ vs x_{Al} data sets. In agreement with literature data⁸ a value of 4.85 ± 0.05 eV was assumed for the direct band gap value of β –Ga₂O₃ from which the value of A₂= 1.98 was derived according to Eq. 1 with B = -2.31 eV. In Figure S2 we report, together with the experimental data, the theoretical values estimated by Eq. 8 providing the following equation:

$$E_{g,th} = 0.0031x_{Al}^3 + 0.1378x_{Al}^2 + 1.9691x_{Al} + 4.85 \text{ [eV]}$$
 [S2]

A value of $A_{Al2O3} = 2.30$, slightly higher (+6%) than the average one of Eq. 3, was derived for θ -alumina in front of a slightly lower (-8%) value, used for β -Ga₂O₃. From Eq. S2 a value of 6.96 eV is obtained for the direct band gap of θ -Al₂O₃ almost coincident with the value derived from fitting the experimental data (see Eq. S1). This last value should be in very good agreement with the value of E_g reported by Peintinger et al. apart the disagreement on the nature of optical transitions which is reported as indirect.²

Figure S3. Non-direct optical band gap values vs Al content $(0 \le x_{Al} \le 0.8)$ (blue plus) for amorphous anodic film grown up to 5 V Hg/HgO at 10 mV s⁻¹ in borate buffer solution on Al-Ta magnetron sputtered alloys of various compositions derived from Tauc plots.

Figure S4. Non-direct optical band gap values vs Nb content (blue times symbols) for amorphous anodic film grown up to 5 V Ag/AgCl at 10 mV s⁻¹ in NaOH solution on Nb-Ta magnetron sputtered alloys of various compositions derived from Tauc plots.

Polymorph/ phase	χ1	$\mathbf{A_1}$	B ₁ [eV]	χ2	$\mathbf{A_2}$	B ₂ [eV]
$\alpha\text{-}(Ga_{(1\text{-}x)}Al_x)_2O_3$	1.50	2.80	-2.71	1.60	2.22	-2.71
$\beta\text{-}(Ga_{(1\text{-}x)}Al_x)_2O_3$	1.50	2.23	-2.225	1.60	1.96	-2.31
$Am (Nb_{(1-x)} Al_x)_2 O_{(5-2x)}$	1.50	1.67	-2.25	1.60	1.302	-1.35
Am $(Ta_{(1-x)}Al_x)_2O_{(5-2x)}$	1.50	1.67	-2.25	1.50	1.35	-1.125
$Am (W_{(1-x)}Al_{2x})O_3$	1.50	1.68	-2.25	1.70	1.35	-1.15

Table S1. Fitting parameters for the different Al-(Ga, Nb, Ta, W) oxides systems studied in the manuscript (see eq. 8). Element 1: Al, Element 2: cationic partner.

References

- (1) Schmidt-Grund, R.; Kranert, C.; Von Wenckstern, H.; Zviagin, V.; Lorenz, M.; Grundmann, M. Dielectric Function in the Spectral Range (0.5-8.5)EV of an (Alx Ga1-x)2O3 Thin Film with Continuous Composition Spread. *J. Appl. Phys.* **2015**, *117* (16), 165307.
- (2) Peintinger, M. F.; Kratz, M. J.; Bredow, T. Quantum-Chemical Study of Stable, Meta-Stable and High-Pressure Alumina Polymorphs and Aluminum Hydroxides. *J. Mater. Chem. A* **2014**, *2* (32), 13143–13158.
- (3) Liu, D.; Guo, Y.; Lin, L.; Robertson, J. First-Principles Calculations of the Electronic Structure and Defects of Al2O3. *J. Appl. Phys.* **2013**, *114* (8), 083704.
- (4) Wang, T.; Li, W.; Ni, C.; Janotti, A. Band Gap and Band Offset of Ga2O3 and (AlxGa1-x)2O3 Alloys. *Phys. Rev. Appl.* **2018**, *10*, 011003.
- (5) Peelaers, H.; Varley, J. B.; Speck, J. S.; Van De Walle, C. G. Structural and Electronic Properties of Ga2O3-Al2O3 Alloys. *Appl. Phys. Lett.* **2018**, *112* (24), 242101.
- (6) Franchy, R.; Schmitz, G.; Gassmann, P.; Bartolucci, F. Growth of Thin, Crystalline Oxide, Nitride, and Oxynitride Films on NiAl and CoGa Surfaces. *Appl. Phys. A Mater. Sci. Process.* **1997**, *65* (6), 551–566.
- (7) Fares, C.; Ren, F.; Lambers, E.; Hays, D. C.; Gila, B. P.; Pearton, S. J. Valence- and Conduction-Band Offsets for Atomic-Layer-Deposited Al2O3 on (010) (Al0.14Ga0.86)2O3. *J. Electron. Mater.* **2019**, *48* (3), 1568–1573.
- (8) Hinuma, Y.; Gake, T.; Oba, F. Band Alignment at Surfaces and Heterointerfaces of Al2O3, Ga2O3, In2O3, and Related Group-III Oxide Polymorphs: A First-Principles Study. *Phys. Rev. Mater.* **2019**, *3* (8), 084605.