GLP-1 Val8: A biased GLP-1R agonist with altered binding kinetics and impaired release of pancreatic hormones in rats

Wijnand J. C. van der Velden¹, Florent X. Smit¹, Charlotte B. Christiansen^{2,3}, Thor C. *Møller⁴*, Gertrud M. Hjortø¹, Olav Larsen¹, Sine P. Schiellerup¹, Hans Bräuner-Osborne⁴, Jens J. Holst^{2,3}, Bolette Hartmann^{2,3}, Thomas M. Frimurer⁵, Mette M. Rosenkilde¹*

¹ Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

² Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

³ Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark

⁴ Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

⁵ Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

*corresponding author. Email: rosenkilde@sund.ku.dk

Table of Contents

Table S-1 Relaxation of the in-silico homology model	. 3
Table S-2 cAMP accumulation in rat and human GLP-1R	. 3
Figure S-1 Secondary structure characterization through circular dichroism.	4
Figure S-2 Internalization of GLP-1R by GLP-1 and GLP-1 Val8	. 5
Figure S-3 Molecular dynamic simulations of GLP-1R (PDB: 5VAI) with GLP- and GLP-1 Val8	1 . 6
Figure S-4 Serpentine model of GLP-1R	. 7
Figure S-5 Dose-response curves of cAMP production on 27 alanine	
mutations in GLP-1R	. 8

	cAMP accumulation				β-arrestin 2 recruitment		
	rat GLP-1R (n=3)		human GLP-1R (n=3)		rat GLP-1R (n=3)		
Ligand	pEC ₅₀	E _{max} (%)	pEC ₅₀	E _{max} (%)	pEC ₅₀	E _{max} (%)	
GLP-1	10.2 ± 0.1	100 ± 0.0	10.2 ± 0.1	100 ± 0.0	8.2 ± 0.5	100 ± 0.0	
GLP-1 Val8	10.1 ± 0.2	100 ± 11.2	9.7 ± 0.1	96 ± 3.6	8.0 ± 0.1	49 ± 5.4*	

Table S-1 | Pharmacology in rat and human GLP-1R

Human GLP-1R was tested in parallel with the rat GLP-1R. All data were fitted with the three-parameter logistic curve to obtain pEC₅₀ and E_{max} . pEC₅₀ represents the negative logarithm of agonist concentration in molar that produces half the maximal response. E_{max} is characterized as the maximal response normalized to the GLP-1 response. Data represent the mean ± s.e.m. of n independent experiments performed duplicate. Statistical significance was assessed using a two-tailed paired *t*-test for E_{max} (**P* < 0.05; as compared to GLP-1 response).

Stage	Ensemble	Lipids (positional)	Lipids (dihedral)	Protein (bb)	Protein (sc)
Minimization	St. descent	1000	1000	4000	2000
Stage 1	NVT	1000	1000	4000	2000
Stage 2	NVT	1000	400	2000	1000
Stage 3	NPT	400	200	1000	500
Stage 4	NPT	200	200	500	200
Stage 5	NPT	40	100	200	50
Stage 6	NPT	0	0	50	0
Production run	NPT	0	0	0	0

Summary of the ensemble and restraints applied in the six-stage relaxation procedure of the molecular dynamics simulations of the GLP-1R. Units are ln kJ/mol. bb is backbone and sc is side chain.

Figure S-1 | Secondary structure characterization through circular dichroism. Measured mean residue molar ellipticity ($[\theta]_{mr}$) for both GLP-1 (**a**) and GLP-1 Val8 (**b**) for the temperature range 5 to 80 °C (colorbar). A clearly distinguishable double valley appeared, indicating that both GLP-1 and GLP-1 Val8 display an α -helical nature ⁸⁴. In addition, we observed a loss of this distinct absorbance upon heating of the sample, indicating the transition from helical to a disordered state. (**c**) The corresponding melting curve obtained by plotting the [θ]_{mr} at 222 nm as a function of temperature. This value gives an indirect measure of the peptide's helical propensity, which can be estimated using equation (6).

Figure S-2 | Internalization of GLP-1R by GLP-1 and GLP-1 Val8.

TR-FRET internalization (**a**) for GLP-1 and (**b**) GLP-1 Val8 in HEK 293A cells expressing SNAP-tagged human GLP-1R. Data represent the mean \pm s.e.m. of 6 independent experiments performed in duplicate and triplicate.

Figure S-3 | Molecular dynamic simulations of GLP-1R (PDB: 5VAI) with GLP-1 and GLP-1 Val8.

Different parameters to determine the stability and mobility of the simulated receptor. (a) Root-mean-square deviation (RMSD) of GLP-1R in complex with GLP-1 or GLP-1 Val8, relative to the starting structure. Root-mean-square fluctuation (RMSF) of regions in GLP-1R when bound to GLP-1 or GLP-1 Val8 displayed as graph (**b**) and visualized in structure of GLP-1R (**c**).

Figure S-4 | Serpentine model of GLP-1R.

The 27 substitutions to alanine are colored based on their interaction pattern: Ligandreceptor, Intramolecular receptor and Ligand and/or intramolecular.

Figure S-5 | Dose-response curves of cAMP production on 27 alanine mutations in GLP-1R.

Data were normalized to GLP-1R WT for both GLP-1 and GLP-1 Val8. Wildtype curves are presented as dashed lines. Data represent the mean \pm s.e.m. of 18 independent experiments performed in duplicate on WT, and 3–4 on the mutants.